Skip to content
2000
image of A Review on Anticancer and Anti-inflammatory Constituents from different parts of Olea europaeaL.

Abstract

Plants have always gained importance because of their medicinal attribute leading to the development of a dedicated branch of science. L. is one such plant which has a special mention in medicinal science. This review focuses on the various pharmacological properties of L., particularly its anticancer and anti-inflammatory activities. For the review study, various search engines were used, such as Google Scholar, Science Direct, Pubmed, Academia, Springer, About 129 research articles were reviewed up to 2024 and it was concluded that OE fruits have good numbers of valuable constituents contributing to biological activity like anticancer property where triterpene compounds named hydroxytyrosol, oleuropein, erythrodiol, oleacein and oleocanthal showed significant antiproliferative activity along with apoptosis and angiopreventive activity on cancer cells. Also, Anti-inflammatory and antinociceptive properties has been equally exhibited by the plant; the constituents responsible were maslinic acid, ursolic acid, oleuropein, and hydroxytyrosol mostly present in n-hexane extract of fruits. Hence, it could be concluded that has effective molecules which could be chemically synthesized to get effective therapeutic medicine for cancer treatment.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838342909241115060048
2025-01-03
2025-04-10
The full text of this item is not currently available.

References

  1. Grohmann F. Oleaceae. Flora of Pakistan. 1981 59 9
    [Google Scholar]
  2. Cronquist A. An Integrated System of Classification of Flowering Plants Columbia University Press 1981
    [Google Scholar]
  3. Bianco A. Studies in Natural Products Chemistry Amsterdam, The Netherlands Elsevier Science 1990 32
    [Google Scholar]
  4. USDA, National Genetic Resources Program. Germplasm Resources Information Network—(GRIN). 2003
    [Google Scholar]
  5. Bartolini G. Petruccelli R. Classification, Origin, Diffusion and History of the Olive Rome, Italy Food and Agriculture Organization of the United Nations 2002
    [Google Scholar]
  6. Wallander E. Albert V.A. Phylogeny and classification of Oleaceae based on rps16 and trnL‐F sequence data. Am. J. Bot. 2000 87 12 1827 1841 10.2307/2656836 11118421
    [Google Scholar]
  7. Pérez J.A. Hernández J.M. Trujillo J.M. López H. Iridoids and secoiridoids from Oleaceae. Studies in Natural Products Chemistry 2005 32 303 363 10.1016/S1572‑5995(05)80059‑6
    [Google Scholar]
  8. M’edail F Qu’ezel P Besnard G Khadari B A relictual olive tree in South-west Morocco. Bot. J. Linn. Soc. 2001 137 3 249 266
    [Google Scholar]
  9. Bracci T. Busconi M. Fogher C. Sebastiani L. Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis. Plant Cell Rep. 2011 30 4 449 462 10.1007/s00299‑010‑0991‑9 21212959
    [Google Scholar]
  10. Kaniewski D. Van Campo E. Boiy T. Terral J.F. Khadari B. Besnard G. Primary domestication and early uses of the emblematic olive tree: palaeobotanical, historical and molecular evidence from the Middle East. Biol. Rev. Camb. Philos. Soc. 2012 87 4 885 899 10.1111/j.1469‑185X.2012.00229.x 22512893
    [Google Scholar]
  11. Sarwar M. The theatrical usefulness of olive Olea europaea L. (Oleaceae family) nutrition in human health: a review. Sky J Medicinal Plant Res. 2013 2 1 1 4
    [Google Scholar]
  12. Zohary D. Hopf M. Weiss E. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford, UK Oxford University Press 2012 10.1093/acprof:osobl/9780199549061.001.0001
    [Google Scholar]
  13. Ryan D. Robards K. Critical Review. Phenolic compounds in olives. Analyst (Lond.) 1998 123 5 31R 44R 10.1039/a708920a
    [Google Scholar]
  14. Kanakis P. Termentzi A. Michel T. Gikas E. Halabalaki M. Skaltsounis A.L. From olive drupes to olive oil. An HPLC-orbitrap-based qualitative and quantitative exploration of olive key metabolites. Planta Med. 2013 79 16 1576 1587 10.1055/s‑0033‑1350823 24072502
    [Google Scholar]
  15. Bendini A. Cerretani L. Carrasco-Pancorbo A. Gómez-Caravaca A.M. Segura-Carretero A. Fernández-Gutiérrez A. Lercker G. Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 2007 12 8 1679 1719 10.3390/12081679 17960082
    [Google Scholar]
  16. Ghisalberti E.L. Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine 1998 5 2 147 163 10.1016/S0944‑7113(98)80012‑3 23195768
    [Google Scholar]
  17. Peng Z. He J. Cheng Y. Xu J. Zhang W. Biologically active secoiridoids: A comprehensive update. Med. Res. Rev. 2023 43 4 1201 1252 10.1002/med.21949 36899490
    [Google Scholar]
  18. Amiot M.J. Fleuriet A. Macheix J.J. Importance and evolution of phenolic compounds in olive during growth and maturation. J. Agric. Food Chem. 1986 34 5 823 826 10.1021/jf00071a014
    [Google Scholar]
  19. Le Tutour B. Guedon D. Antioxidative activities of Olea europaea leaves and related phenolic compounds. Phytochemistry 1992 31 4 1173 1178 10.1016/0031‑9422(92)80255‑D
    [Google Scholar]
  20. Soler-Rivas C. Espín J.C. Wichers H.J. Oleuropein and related compounds. J. Sci. Food Agric. 2000 80 7 1013 1023
    [Google Scholar]
  21. Ryan D. Robards K. Prenzler P. Jardine D. Herlt T. Antolovich M. Liquid chromatography with electrospray ionisation mass spectrometric detection of phenolic compounds from Olea europaea. J. Chromatogr. A 1999 855 2 529 537 10.1016/S0021‑9673(99)00719‑0 10519090
    [Google Scholar]
  22. Servili M. Esposto S. Fabiani R. Urbani S. Taticchi A. Mariucci F. Selvaggini R. Montedoro G.F. Phenolic compounds in olive oil: antioxidant, health and organoleptic activities according to their chemical structure. Inflammopharmacology 2009 17 2 76 84 10.1007/s10787‑008‑8014‑y 19234678
    [Google Scholar]
  23. Piroddi M. Albini A. Fabiani R. Giovannelli L. Luceri C. Natella F. Rosignoli P. Rossi T. Taticchi A. Servili M. Galli F. Nutrigenomics of extra‐virgin olive oil: A review. Biofactors 2017 43 1 17 41 10.1002/biof.1318 27580701
    [Google Scholar]
  24. Menendez J.A. Joven J. Aragonès G. Barrajón-Catalán E. Beltrán-Debón R. Borrás-Linares I. Camps J. Corominas-Faja B. Cufí S. Fernández-Arroyo S. Garcia-Heredia A. Hernández-Aguilera A. Herranz-López M. Jiménez-Sánchez C. López-Bonet E. Lozano-Sánchez J. Luciano-Mateo F. Martin-Castillo B. Martin-Paredero V. Pérez-Sánchez A. Oliveras-Ferraros C. Riera-Borrull M. Rodríguez-Gallego E. Quirantes-Piné R. Rull A. Tomás-Menor L. Vazquez-Martin A. Alonso-Villaverde C. Micol V. Segura-Carretero A. Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil. Cell Cycle 2013 12 4 555 578 10.4161/cc.23756 23370395
    [Google Scholar]
  25. Romani A. Mulas S. Heimler D. Polyphenols and secoiridoids in raw material (Olea europaea L. leaves) and commercial food supplements. Eur. Food Res. Technol. 2017 243 3 429 435 10.1007/s00217‑016‑2756‑3
    [Google Scholar]
  26. Brenes M. Garcia P. Duran M.C. Garrido A. Concentration of Phenolic Compounds Change in Storage Brines of Ripe Olives. J. Food Sci. 1993 58 2 347 350 10.1111/j.1365‑2621.1993.tb04272.x
    [Google Scholar]
  27. Bianco A. Scalzo R.L. Scarpati M.L. Isolation of cornoside from Olea europaea and its transformation into halleridone. Phytochemistry 1993 32 2 455 457 10.1016/S0031‑9422(00)95015‑5
    [Google Scholar]
  28. Esti M. Cinquanta L. La Notte E. Phenolic compounds in different olive varieties. J. Agric. Food Chem. 1998 46 1 32 35 10.1021/jf970391+ 10554192
    [Google Scholar]
  29. Bianco A. Uccella N. Biophenolic components of olives. Food Res. Int. 2000 33 6 475 485 10.1016/S0963‑9969(00)00072‑7
    [Google Scholar]
  30. Owen R.W. Haubner R. Mier W. Giacosa A. Hull W.E. Spiegelhalder B. Bartsch H. Isolation, structure elucidation and antioxidant potential of the major phenolic and flavonoid compounds in brined olive drupes. Food Chem. Toxicol. 2003 41 5 703 717 10.1016/S0278‑6915(03)00011‑5 12659724
    [Google Scholar]
  31. Peralbo-Molina Á. Priego-Capote F. Luque de Castro M.D. Tentative identification of phenolic compounds in olive pomace extracts using liquid chromatography-tandem mass spectrometry with a quadrupole-quadrupole-time-of-flight mass detector. J. Agric. Food Chem. 2012 60 46 11542 11550 10.1021/jf302896m 23106267
    [Google Scholar]
  32. Jerman T. Trebše P. Mozetič Vodopivec B. Ultrasound-assisted solid liquid extraction (USLE) of olive fruit (Olea europaea) phenolic compounds. Food Chem. 2010 123 1 175 182 10.1016/j.foodchem.2010.04.006
    [Google Scholar]
  33. Savarese M. Demarco E. Sacchi R. Characterization of phenolic extracts from olives (Olea europaea cv. Pisciottana) by electrospray ionization mass spectrometry. Food Chem. 2007 105 2 761 770 10.1016/j.foodchem.2007.01.037
    [Google Scholar]
  34. Bianco A. Chiacchio M.A. Grassi G. Iannazzo D. Piperno A. Romeo R. Phenolic components of Olea europea: Isolation of new tyrosol and hydroxytyrosol derivatives. Food Chem. 2006 95 4 562 565 10.1016/j.foodchem.2004.12.033
    [Google Scholar]
  35. Bianco A. Melchioni C. Ramunno A. Romeo G. Uccella N. Phenolic components of Olea Europaea – isolation of tyrosol derivatives. Nat. Prod. Res. 2004 18 1 29 32 10.1080/1478641031000111570 14974614
    [Google Scholar]
  36. Maestroduran R. Leoncabello R. Ruizgutierrez V. Fiestas P. Vazquezroncero A. Bitter phenolic glucosides from seeds of olive (Olea europaea). Grasas Aceites 1994 45 5 332 335
    [Google Scholar]
  37. Mousavi S. Stanzione V. Mariotti R. Mastio V. Azariadis A. Passeri V. Valeri M.C. Baldoni L. Bufacchi M. Bioactive Compound Profiling of Olive Fruit: The Contribution of Genotype. Antioxidants 2022 11 4 672 10.3390/antiox11040672 35453357
    [Google Scholar]
  38. Bastoni L. Bianco A. Piccioni F. Uccella N. Biophenolic profile in olives by nuclear magnetic resonance. Food Chem. 2001 73 2 145 151 10.1016/S0308‑8146(00)00250‑8
    [Google Scholar]
  39. Bianco A. Buiarelli F. Cartoni G. Coccioli F. Jasionowska R. Margherita P. Analysis by liquid chromatography‐tandem mass spectrometry of biophenolic compounds in olives and vegetation waters, Part I. J. Sep. Sci. 2003 26 5 409 416 10.1002/jssc.200390053
    [Google Scholar]
  40. Bianco A. Buiarelli F. Cartoni G. Coccioli F. Jasionowska R. Margherita P. Analysis by liquid chromatography‐tandem mass spectrometry of biophenolic compounds in virgin olive oil, Part II. J. Sep. Sci. 2003 26 5 417 424 10.1002/jssc.200390054
    [Google Scholar]
  41. Bianchi G. Pozzi N. 3,4-dihydroxyphenylglycol, a major C6-C2 phenolic in Olea europaea fruits. Phytochemistry 1994 35 5 1335 1337 10.1016/S0031‑9422(00)94849‑0
    [Google Scholar]
  42. Rodríguez G. Lama A. Jaramillo S. Fuentes-Alventosa J.M. Guillén R. Jiménez-Araujo A. Rodríguez-Arcos R. Fernández-Bolaños J. 3,4-Dihydroxyphenylglycol (DHPG): an important phenolic compound present in natural table olives. J. Agric. Food Chem. 2009 57 14 6298 6304 10.1021/jf803512r 19545148
    [Google Scholar]
  43. Rodriguez-Pérez M.D. Santiago-Corral L. Ortega-Hombrados L. Verdugo C. Arrebola M.M. Martin-Aurioles E. Fernandez-Prior M.Á. Bermúdez-Oria A. De La Cruz J.P. Gonzalez-Correa J.A. The Effect of the Extra Virgin Olive Oil Minor Phenolic Compound 3′,4′-Dihydroxyphenylglycol in Experimental Diabetic Kidney Disease. Nutrients 2023 15 2 377 10.3390/nu15020377 36678248
    [Google Scholar]
  44. Kabach I. Bouchmaa N. Ben Mrid R. Zouaoui Z. Maadoudi M.E. Kounnoun A. Asraoui F. El Mansouri F. Zyad A. Cacciola F. Oulad El Majdoub Y. Mondello L. Nhiri M. Olea europaea var. Oleaster a promising nutritional food with in vitro antioxidant, antiglycation, antidiabetic and antiproliferative effects. J. Food Meas. Charact. 2023 17 1 882 894 10.1007/s11694‑022‑01655‑0
    [Google Scholar]
  45. Vlahov G. Schiavone C. Simone N. Triacylglycerols of the olive fruit (Olea europaea L.): characterization of mesocarp and seed triacylglycerols in different cultivars by liquid chromatography and 13C NMR spectroscopy. Eur. J. Lipid Sci. Technol. 1999 101 4 146 150
    [Google Scholar]
  46. Bianco A. Mazzei R.A. Melchioni C. Scarpati M.L. Romeo G. Uccella N. Microcomponents of olive oil. Part II: Digalactosyldiacylglycerols from Olea europaea. Food Chem. 1998 62 3 343 346 10.1016/S0308‑8146(97)00192‑1
    [Google Scholar]
  47. Sakouhi F. Absalon C. Kallel H. Boukhchina S. Comparative analysis of triacylglycerols from Olea europaea L. fruits using HPLC and MALDI‐TOFMS. Eur. J. Lipid Sci. Technol. 2010 112 5 574 579 10.1002/ejlt.200900079
    [Google Scholar]
  48. Marra C. Eloisa Giordano M. A new diacylglycerol from fresh Olive pulp. Nat. Prod. Res. 2005 19 1 81 84 10.1080/14786410410001686382 15700650
    [Google Scholar]
  49. Procopio A. Alcaro S. Nardi M. Oliverio M. Ortuso F. Sacchetta P. Pieragostino D. Sindona G. Synthesis, biological evaluation, and molecular modeling of oleuropein and its semisynthetic derivatives as cyclooxygenase inhibitors. J. Agric. Food Chem. 2009 57 23 11161 11167 10.1021/jf9033305 19908866
    [Google Scholar]
  50. Nenadis N. Tsimidou M.Z. Oleuropein and related secoiridoids. Antioxidant activity and sources other than Olea europaea L. (olive tree). Recent Progress in Medicinal Plants, Chemistry and Medicinal Value. Houston, Tex, USA Studium Press LLC 2009 53 74
    [Google Scholar]
  51. Haloui E. Marzouk B. Marzouk Z. Bouraoui A. Fenina N. Hydroxytyrosol and oleuropein from olive leaves: potent anti-inflammatory and analgesic activities. J. Food Agric. Environ. 2011 9 3-4 128 133
    [Google Scholar]
  52. Cardoso S.M. Falcão S.I. Peres A.M. Domingues M.R.M. Oleuropein/ligstroside isomers and their derivatives in Portuguese olive mill wastewaters. Food Chem. 2011 129 2 291 296 10.1016/j.foodchem.2011.04.049 30634229
    [Google Scholar]
  53. Aouidi F. Dupuy N. Artaud J. Roussos S. Msallem M. Perraud Gaime I. Hamdi M. Rapid quantitative determination of oleuropein in olive leaves (Olea europaea) using mid-infrared spectroscopy combined with chemometric analyses. Ind. Crops Prod. 2012 37 1 292 297 10.1016/j.indcrop.2011.12.024
    [Google Scholar]
  54. Lo Scalzo R. Scarpati M.L. A new secoiridoid from olive wastewaters. J. Nat. Prod. 1993 56 4 621 623 10.1021/np50094a026
    [Google Scholar]
  55. Servili M. Baldioli M. Selvaggini R. Macchioni A. Montedoro G. Phenolic compounds of olive fruit: one- and two-dimensional nuclear magnetic resonance characterization of Nüzhenide and its distribution in the constitutive parts of fruit. J. Agric. Food Chem. 1999 47 1 12 18 10.1021/jf9806210 10563841
    [Google Scholar]
  56. Gentile L. Uccella N.A. Selected bioactives from callus cultures of olives (Olea europaea L. Var. Coratina) by LC-MS. Food Res. Int. 2014 55 128 136 10.1016/j.foodres.2013.10.046
    [Google Scholar]
  57. Paiva-Martins F. Pinto M. Isolation and characterization of a new hydroxytyrosol derivative from olive (Olea europaea) leaves. J. Agric. Food Chem. 2008 56 14 5582 5588 10.1021/jf800698y 18582082
    [Google Scholar]
  58. Paiva-Martins F. Rodrigues V. Calheiros R. Marques M.P.M. Characterization of antioxidant olive oil biophenols by spectroscopic methods. J. Sci. Food Agric. 2011 91 2 309 314 10.1002/jsfa.4186 20949551
    [Google Scholar]
  59. Bouaziz M. Grayer R.J. Simmonds M.S.J. Damak M. Sayadi S. Identification and antioxidant potential of flavonoids and low molecular weight phenols in olive cultivar chemlali growing in Tunisia. J. Agric. Food Chem. 2005 53 2 236 241 10.1021/jf048859d 15656655
    [Google Scholar]
  60. Meirinhos J. Silva B.M. ValentÃo P. Seabra R.M. Pereira J.A. Dias A. Andrade P.B. Ferreres F. Analysis and quantification of flavonoidic compounds from Portuguese olive ( Olea Europaea L.) leaf cultivars. Nat. Prod. Res. 2005 19 2 189 195 10.1080/14786410410001704886 15715265
    [Google Scholar]
  61. Sakouhi F. Absalon C. Sebei K. Fouquet E. Boukhchina S. Kallel H. Gas chromatographic–mass spectrometric characterisation of triterpene alcohols and monomethylsterols in developing Olea europaea L. fruits. Food Chem. 2009 116 1 345 350 10.1016/j.foodchem.2009.01.094
    [Google Scholar]
  62. Guinda Á. Rada M. Delgado T. Gutiérrez-Adánez P. Castellano J.M. Pentacyclic triterpenoids from olive fruit and leaf. J. Agric. Food Chem. 2010 58 17 9685 9691 10.1021/jf102039t 20712364
    [Google Scholar]
  63. Gil M. Haïdour A. Ramos J.L. Two glutaric acid derivatives from olives. Phytochemistry 1998 49 5 1311 1315 10.1016/S0031‑9422(97)01066‑2
    [Google Scholar]
  64. Bianchi G. Murelli C. Vlahov G. Surface waxes from olive fruits. Phytochemistry 1992 31 10 3503 3506 10.1016/0031‑9422(92)83716‑C
    [Google Scholar]
  65. Vlahov G. Rinaldi G. Del Re P. Giuliani A.A. 13C nuclear magnetic resonance spectroscopy for determining the different components of epicuticular waxes of olive fruit (Olea europaea) Dritta cultivar. Anal. Chim. Acta 2008 624 2 184 194 10.1016/j.aca.2008.06.049 18706324
    [Google Scholar]
  66. Wang X.F. Li C. Shi Y.P. Di D.L. Two new secoiridoid glycosides from the leaves of Olea europaea L. J. Asian Nat. Prod. Res. 2009 11 11 940 944 10.1080/10286020903310979 20183257
    [Google Scholar]
  67. Lafi O. Essid R. Lachaud L. Synergistic antileishmanial activity of erythrodiol, uvaol, and oleanolic acid isolated from olive leaves of cv. Chemlali. 3 Biotech 2023 13 12 395 10.1007/s13205‑023‑03825‑3
    [Google Scholar]
  68. Golubev V.N. Gusar Z.D. Mamedov E.S. Tocopherols ofOlea europaea. Chem. Nat. Compd. 1987 23 1 119 120 10.1007/BF00602478
    [Google Scholar]
  69. Gómez-González S. Ruiz-Jiménez J. Priego-Capote F. Luque de Castro M.D. Qualitative and quantitative sugar profiling in olive fruits, leaves, and stems by gas chromatography-tandem mass spectrometry (GC-MS/MS) after ultrasound-assisted leaching. J. Agric. Food Chem. 2010 58 23 12292 12299 10.1021/jf102350s 21058721
    [Google Scholar]
  70. Pérez-Bonilla M. Salido S. van Beek T.A. Linares-Palomino P.J. Altarejos J. Nogueras M. Sánchez A. Isolation and identification of radical scavengers in olive tree (Olea europaea) wood. J. Chromatogr. A 2006 1112 1-2 311 318 10.1016/j.chroma.2005.12.055 16426626
    [Google Scholar]
  71. Savournin C. Baghdikian B. Elias R. Dargouth-Kesraoui F. Boukef K. Balansard G. Rapid high-performance liquid chromatography analysis for the quantitative determination of oleuropein in Olea europaea leaves. J. Agric. Food Chem. 2001 49 2 618 621 10.1021/jf000596+ 11262001
    [Google Scholar]
  72. Charoenprasert S. Mitchell A. Factors influencing phenolic compounds in table olives (Olea europaea). J. Agric. Food Chem. 2012 60 29 7081 7095 10.1021/jf3017699 22720792
    [Google Scholar]
  73. Kuwajima H. Uemura T. Takaishi K. Inoue K. Inouyet H. A secoiridoid glucoside from Olea europaea. Phytochemistry 1988 27 6 1757 1759 10.1016/0031‑9422(88)80438‑2
    [Google Scholar]
  74. Karioti A. Chatzopoulou A. Bilia A.R. Liakopoulos G. Stavrianakou S. Skaltsa H. Novel Secoiridoid glucosides in Olea europaea leaves suffering from boron deficiency. Biosci. Biotechnol. Biochem. 2006 70 8 1898 1903 10.1271/bbb.60059 16926502
    [Google Scholar]
  75. Gariboldi P. Jommi G. Verotta L. Secoiridoids from Olea europaea. Phytochemistry 1986 25 4 865 869 10.1016/0031‑9422(86)80018‑8
    [Google Scholar]
  76. Hansen K. Adsersen A. Christensen S.B. Jensen S.R. Nyman U. Smitt U.W. Isolation of an angiotensin converting enzyme (ACE) inhibitor from Olea europaea and Olea lancea. Phytomedicine 1996 2 4 319 325 10.1016/S0944‑7113(96)80076‑6 23194770
    [Google Scholar]
  77. Mussini P. Orsini F. Pelizzoni F. Triterpenes in leaves of Olea europaea. Phytochemistry 1975 14 4 1135 10.1016/0031‑9422(75)85210‑1
    [Google Scholar]
  78. Movsumov I.S. Aliev A.M. Oleanolic and maslinic acids of the fruit ofOlea europaea. Chem. Nat. Compd. 1985 21 1 125 126 10.1007/BF00574276
    [Google Scholar]
  79. Sultana N. Ata A. Oleanolic acid and related derivatives as medicinally important compounds. J. Enzyme Inhib. Med. Chem. 2008 23 6 739 756 10.1080/14756360701633187 18618318
    [Google Scholar]
  80. Komaki E. Yamaguchi S. Maru I. Kinoshita M. Kakehi K. Ohta Y. Tsukada Y. Identification of Anti-α-Amylase Components from Olive Leaf Extracts. Food Sci. Technol. Res. 2003 9 1 35 39 10.3136/fstr.9.35
    [Google Scholar]
  81. Duquesnoy E. Castola V. Casanova J. Triterpenes in the hexane extract of leaves of Olea europaea L.: analysis using 13 C‐NMR spectroscopy. Phytochem. Anal. 2007 18 4 347 353 10.1002/pca.989 17623370
    [Google Scholar]
  82. Romero C. García A. Medina E. Ruíz-Méndez M.V. Castro A. Brenes M. Triterpenic acids in table olives. Food Chem. 2010 118 3 670 674 10.1016/j.foodchem.2009.05.037
    [Google Scholar]
  83. Movsumov I.S. Components of the leaves of Olea verrucosa. Chem. Nat. Compd. 1994 30 5 626 10.1007/BF00629879
    [Google Scholar]
  84. Bianchi G. Pozzi N. Vlahov G. Pentacyclic triterpene acids in olives. Phytochemistry 1994 37 1 205 207 10.1016/0031‑9422(94)85026‑7
    [Google Scholar]
  85. Schumacher B. Scholle S. Hölzl J. Khudeir N. Hess S. Müller C.E. Lignans isolated from valerian: identification and characterization of a new olivil derivative with partial agonistic activity at A(1) adenosine receptors. J. Nat. Prod. 2002 65 10 1479 1485 10.1021/np010464q 12398547
    [Google Scholar]
  86. Campeol E. Flamini G. Cioni P.L. Morelli I. D’Andrea F. Cremonini R. 1,5-Anhydroxylitol from leaves of Olea europaea. Carbohydr. Res. 2004 339 16 2731 2732 10.1016/j.carres.2004.09.001 15519332
    [Google Scholar]
  87. Paiva-Martins F. Gordon M.H. Isolation and characterization of the antioxidant component 3,4-dihydroxyphenylethyl 4-formyl-3-formylmethyl-4-hexenoate from olive (Olea europaea) leaves. J. Agric. Food Chem. 2001 49 9 4214 4219 10.1021/jf010373z 11559113
    [Google Scholar]
  88. Guinda Á. Lanzón A. Rios J.J. Albi T. The isolation and quantification of the components from olive leaf: hexane extract. Grasas Aceites 2002 53 4 419 422 10.3989/gya.2002.v53.i4.340
    [Google Scholar]
  89. Borjan D. Leitgeb M. Knez Ž. Hrnčič M.K. Microbiological and Antioxidant Activity of Phenolic Compounds in Olive Leaf Extract. Molecules 2020 25 24 5946 10.3390/molecules25245946 33334001
    [Google Scholar]
  90. Cicerale S. Lucas L. Keast R. Biological activities of phenolic compounds present in virgin olive oil. Int. J. Mol. Sci. 2010 11 2 458 479 10.3390/ijms11020458 20386648
    [Google Scholar]
  91. Christophoridou S. Dais P. Tseng L.H. Spraul M. Separation and identification of phenolic compounds in olive oil by coupling high-performance liquid chromatography with postcolumn solid-phase extraction to nuclear magnetic resonance spectroscopy (LC-SPE-NMR). J. Agric. Food Chem. 2005 53 12 4667 4679 10.1021/jf040466r 15941298
    [Google Scholar]
  92. Pérez-Trujillo M. Gómez-Caravaca A.M. Segura-Carretero A. Fernández-Gutiérrez A. Parella T. Separation and identification of phenolic compounds of extra virgin olive oil from Olea europaea L. by HPLC-DAD-SPE-NMR/MS. Identification of a new diastereoisomer of the aldehydic form of oleuropein aglycone. J. Agric. Food Chem. 2010 58 16 9129 9136 10.1021/jf101847e 23654238
    [Google Scholar]
  93. Rodríguez G. Lama A. Trujillo M. Espartero J.L. Fernández-Bolaños J. Isolation of a powerful antioxidant from Olea europaea fruit-mill waste: 3,4-Dihydroxyphenylglycol. Lebensm. Wiss. Technol. 2009 42 2 483 490 10.1016/j.lwt.2008.08.015
    [Google Scholar]
  94. Montedoro G. Servili M. Baldioli M. Selvaggini R. Miniati E. Macchioni A. Simple and hydrolyzable compounds in virgin olive oil. 3. Spectroscopic characterizations of the secoiridoid derivatives. J. Agric. Food Chem. 1993 41 11 2228 2234 10.1021/jf00035a076
    [Google Scholar]
  95. Brenes M. Hidalgo F.J. García A. Rios J.J. García P. Zamora R. Garrido A. Pinoresinol and 1‐acetoxypinoresinol, two new phenolic compounds identified in olive oil. J. Am. Oil Chem. Soc. 2000 77 7 715 720 10.1007/s11746‑000‑0115‑4
    [Google Scholar]
  96. Bianco A. Coccioli F. Guiso M. Marra C. The occurrence in olive oil of a new class of phenolic compounds: hydroxy-isochromans. Food Chem. 2002 77 4 405 411 10.1016/S0308‑8146(01)00366‑1
    [Google Scholar]
  97. Pérez-Bonilla M. Salido S. van Beek T.A. Waard P. Linares-Palomino P.J. Sánchez A. Altarejos J. Isolation of antioxidative secoiridoids from olive wood (Olea europaea L.) guided by on-line HPLC–DAD–radical scavenging detection. Food Chem. 2011 124 1 36 41 10.1016/j.foodchem.2010.05.099
    [Google Scholar]
  98. Khlif I. Hamden K. Damak M. Allouche N. A new triterpene from olea europea stem with antidiabetic activity. Chem. Nat. Compd. 2012 48 5 799 802 10.1007/s10600‑012‑0386‑y
    [Google Scholar]
  99. Tsukamoto H. Hisada S. Nishibe S. Lignans from bark of the Olea plants. I. Chem. Pharm. Bull. (Tokyo) 1984 32 7 2730 2735 10.1248/cpb.32.2730 6094026
    [Google Scholar]
  100. Tsukamoto H. Hisada S. Nishibe S. Coumarin and secoiridoid glucosides from bark of Olea africana and Olea capensis. Chem. Pharm. Bull. (Tokyo) 1985 33 1 396 399 10.1248/cpb.33.396
    [Google Scholar]
  101. Tsukamoto H. Hisada S. Nishibe S. Roux D.G. Phenolic glucosides from Olea europaea subs. africana. Phytochemistry 1984 23 12 2839 2841 10.1016/0031‑9422(84)83025‑3
    [Google Scholar]
  102. Tsukamoto H. Hisada S. Nishibe S. Roux D.G. Rourke J.P. Coumarins from Olea africana and Olea capensis. Phytochemistry 1984 23 3 699 700 10.1016/S0031‑9422(00)80417‑3
    [Google Scholar]
  103. Chiba M. Okabe K. Hisada S. Shima K. Takemoto T. Nishibe S. Elucidation of the structure of a new lignan glucoside from Olea europaea by carbon-13 nuclear magnetic resonance spectroscopy. Chem. Pharm. Bull. (Tokyo) 1979 27 11 2868 2873 10.1248/cpb.27.2868
    [Google Scholar]
  104. Casaburi I. Puoci F. Chimento A. Sirianni R. Ruggiero C. Avena P. Pezzi V. Potential of olive oil phenols as chemopreventive and therapeutic agents against cancer: A review of in vitro studies. Mol. Nutr. Food Res. 2013 57 1 71 83 10.1002/mnfr.201200503 23193056
    [Google Scholar]
  105. Juan M.E. Wenzel U. Daniel H. Planas J.M. Erythrodiol, a natural triterpenoid from olives, has antiproliferative and apoptotic activity in HT‐29 human adenocarcinoma cells. Mol. Nutr. Food Res. 2008 52 5 595 599 10.1002/mnfr.200700300 18384095
    [Google Scholar]
  106. Goulas V. Exarchou V. Troganis A.N. Psomiadou E. Fotsis T. Briasoulis E. Gerothanassis I.P. Phytochemicals in olive‐leaf extracts and their antiproliferative activity against cancer and endothelial cells. Mol. Nutr. Food Res. 2009 53 5 600 608 10.1002/mnfr.200800204 19194970
    [Google Scholar]
  107. Marrero A.D. Quesada A.R. Martínez-Poveda B. Medina M.Á. Anti-Cancer, Anti-Angiogenic, and Anti-Atherogenic Potential of Key Phenolic Compounds from Virgin Olive Oil. Nutrients 2024 16 9 1283 10.3390/nu16091283 38732529
    [Google Scholar]
  108. Allouche Y. Warleta F. Campos M. Sánchez-Quesada C. Uceda M. Beltrán G. Gaforio J.J. Antioxidant, antiproliferative, and pro-apoptotic capacities of pentacyclic triterpenes found in the skin of olives on MCF-7 human breast cancer cells and their effects on DNA damage. J. Agric. Food Chem. 2011 59 1 121 130 10.1021/jf102319y 21142067
    [Google Scholar]
  109. Fares R. Bazzi S. Baydoun S.E. Abdel-Massih R.M. The antioxidant and anti-proliferative activity of the Lebanese Olea europaea extract. Plant Foods Hum. Nutr. 2011 66 1 58 63 10.1007/s11130‑011‑0213‑9 21318304
    [Google Scholar]
  110. Wang X. Bai H. Zhang X. Liu J. Cao P. Liao N. Zhang W. Wang Z. Hai C. Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK–p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis. Carcinogenesis 2013 34 6 1323 1330 10.1093/carcin/bgt058 23404993
    [Google Scholar]
  111. Burattini S. Salucci S. Baldassarri V. Accorsi A. Piatti E. Madrona A. Espartero J.L. Candiracci M. Zappia G. Falcieri E. Anti-apoptotic activity of hydroxytyrosol and hydroxytyrosyl laurate. Food Chem. Toxicol. 2013 55 248 256 10.1016/j.fct.2012.12.049 23313337
    [Google Scholar]
  112. Milanizadeh S. Bigdeli M.R. Rasoulian B. Amani D. The effects of olive leaf extract on antioxidant enzymes activity and tumor growth in breast cancer. Thrita 2014 3 1 e12914 10.5812/thrita.12914
    [Google Scholar]
  113. Reyes-Zurita F.J. Rufino-Palomares E.E. Lupiáñez J.A. Cascante M. Maslinic acid, a natural triterpene from Olea europaea L., induces apoptosis in HT29 human colon-cancer cells via the mitochondrial apoptotic pathway. Cancer Lett. 2009 273 1 44 54 10.1016/j.canlet.2008.07.033 18790561
    [Google Scholar]
  114. Rufino-Palomares E.E. Reyes-Zurita F.J. García-Salguero L. Mokhtari K. Medina P.P. Lupiáñez J.A. Peragón J. Maslinic acid, a triterpenic anti-tumoural agent, interferes with cytoskeleton protein expression in HT29 human colon-cancer cells. J. Proteomics 2013 83 15 25 10.1016/j.jprot.2013.02.031 23499989
    [Google Scholar]
  115. Reyes F.J. Centelles J.J. Lupiáñez J.A. Cascante M. (2Alpha,3beta)-2,3-dihydroxyolean-12-en-28-oic acid, a new natural triterpene from Olea europea, induces caspase dependent apoptosis selectively in colon adenocarcinoma cells FEBS Lett. 2006 580 27 6302 6310 10.1016/j.febslet.2006.10.038 17083937
    [Google Scholar]
  116. Cárdeno A. Sánchez-Hidalgo M. Rosillo M.A. de la Lastra C.A. Oleuropein, a secoiridoid derived from olive tree, inhibits the proliferation of human colorectal cancer cell through downregulation of HIF-1α. Nutr. Cancer 2013 65 1 147 156 10.1080/01635581.2013.741758 23368925
    [Google Scholar]
  117. Randon A.M. Attard E. The in vitro immunomodulatory activity of oleuropein, a secoiridoid glycoside from Olea europaea L. Nat. Prod. Commun. 2007 2 5 1934578X0700200501 10.1177/1934578X0700200501
    [Google Scholar]
  118. Beauchamp G.K. Keast R.S.J. Morel D. Lin J. Pika J. Han Q. Lee C.H. Smith A.B. Breslin P.A.S. Ibuprofen-like activity in extra-virgin olive oil. Nature 2005 437 7055 45 46 10.1038/437045a 16136122
    [Google Scholar]
  119. Esmaeili-Mahani S. Rezaeezadeh-Roukerd M. Esmaeilpour K. Abbasnejad M. Rasoulian B. Sheibani V. Kaeidi A. Hajializadeh Z. Olive (Olea europaea L.) leaf extract elicits antinociceptive activity, potentiates morphine analgesia and suppresses morphine hyperalgesia in rats. J. Ethnopharmacol. 2010 132 1 200 205 10.1016/j.jep.2010.08.013 20713147
    [Google Scholar]
  120. Haloui E. Marzouk Z. Marzouk B. Bouftira B. Bouraoui A. Fenina N. Pharmacological activities and chemical composition of the Olea europaea L. leaf essential oils from Tunisia. J. Food Agric. Environ. 2010 8 2 204 208
    [Google Scholar]
  121. Süntar İ.P. Akkol E.K. Baykal T. Assessment of anti-inflammatory and antinociceptive activities of Olea europaea L. J. Med. Food 2010 13 2 352 356 10.1089/jmf.2009.0067 20132039
    [Google Scholar]
  122. Eidi A. Moghadam-kia S. Moghadam J.Z. Eidi M. Rezazadeh S. Antinociceptive and anti-inflammatory effects of olive oil ( Olea europeae L.) in mice. Pharm. Biol. 2012 50 3 332 337 10.3109/13880209.2011.600318 22085252
    [Google Scholar]
  123. Nieto F.R. Cobos E.J. Entrena J.M. Parra A. García-Granados A. Baeyens J.M. Antiallodynic and analgesic effects of maslinic acid, a pentacyclic triterpenoid from Olea europaea. J. Nat. Prod. 2013 76 4 737 740 10.1021/np300783a 23540838
    [Google Scholar]
  124. Ikeda Y. Murakami A. Ohigashi H. Ursolic acid: An anti‐ and pro‐inflammatory triterpenoid. Mol. Nutr. Food Res. 2008 52 1 26 42 10.1002/mnfr.200700389 18203131
    [Google Scholar]
  125. Sahranavard S. Kamalinejad M. Faizi M. Evaluation of anti-inflammatory and anti-nociceptive effects of defatted fruit extract of Olea europaea. Iran. J. Pharm. Res. 2014 13 Suppl. 119 123 24711837
    [Google Scholar]
  126. Hashmi M.A. Khan A. Hanif M. Farooq U. Perveen S. Traditional Uses, Phytochemistry, and Pharmacology of Olea europaea (Olive). Evid. Based Complement. Alternat. Med. 2015 2015 1 29 10.1155/2015/541591 25802541
    [Google Scholar]
  127. Nediani C. Ruzzolini J. Romani A. Calorini L. Oleuropein, a bioactive compound from Olea europaea L., as a potential preventive and therapeutic agent in non-communicable diseases. Antioxidants 2019 8 12 578 10.3390/antiox8120578 31766676
    [Google Scholar]
  128. Losito I. Abbattista R. De Ceglie C. Castellaneta A. Calvano C.D. Cataldi T.R.I. Bioactive secoiridoids in italian extra-virgin olive oils: Impact of olive plant cultivars, cultivation regions and processing. Molecules 2021 26 3 743 10.3390/molecules26030743 33572633
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838342909241115060048
Loading
/content/journals/ctm/10.2174/0122150838342909241115060048
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: anticancer ; hydroxytyrosol ; Olea europaea ; anti-inflammatory ; oleuropein
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test