Skip to content
2000
image of Cucurbitaceae Glycosides: An In-depth Review on its Source, Structural, and Medicinal Significance

Abstract

Background

The Cucurbitaceae family has been well-known since ancient times for its use in daily food preparations. Various traditional medicinal systems have also recognized its therapeutic importance. Its significance has also been established by modern techniques.

Objective

The current review aims to emphasize the glycosides of the Cucurbitaceae family in terms of their source, structures, extraction media, and bioactivities in various therapeutic areas like anti-inflammatory, anti-bacterial, anti-cancerous, anti-diabetic, and cardiac models. Glycosides of Cucurbitaceae have been studied extensively. However, considering the vastness of the diversity among this family; there are still various avenues in which further research work is needed.

Methods

For the present review, we used Elsevier-ScienceDirect, SpringerLink, PubMed, ArticlesPlus, Semantic Scholar, and Google Scholar to conduct a literature search.

Results

Cucurbitaceae is enriched with secondary metabolites, mainly glycosides. The occurrence of glycoside with its species, along with plant parts, is crucial and elaborately covered. It also captures the extraction system. The structure of selected glycosides is represented along with respective references. Various studies elaborate on the pharmacological significance of the extracts in diverse therapeutic areas.

Conclusion

This review provides extensive aspects about the glycosides of the family Cucurbitaceae and will help in further exploration of extraction, isolation, and bioactivity studies of
this important class of compounds from one of the largest families, ., Cucurbitaceae. It 
reiterates the need for further exploration in standardization along with extensive safety and
efficacy studies.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838293392231227065022
2024-01-12
2025-01-22
Loading full text...

Full text loading...

References

  1. Salehi B. Quispe C. Sharifi-Rad J. Giri L. Suyal R. Jugran A.K. Zucca P. Rescigno A. Peddio S. Bobiş O. Moise A.R. Leyva-Gómez G. Del Prado-Audelo M.L. Cortes H. Iriti M. Martorell M. Cruz-Martins N. Kumar M. Zam W. Antioxidant potential of family Cucurbitaceae with special emphasis on Cucurbita genus: A key to alleviate oxidative stress‐mediated disorders. Phytother. Res. 2021 35 7 3533 3557 10.1002/ptr.7045 33590924
    [Google Scholar]
  2. Busuioc A.C. Botezatu A.V.D. Furdui B. Vinatoru C. Maggi F. Caprioli G. Dinica R.M. Comparative study of the chemical compositions and antioxidant activities of fresh juices from Romanian Cucurbitaceae varieties. Molecules 2020 25 22 5468 10.3390/molecules25225468 33238389
    [Google Scholar]
  3. Mishra T. Kondepati A.K. Pasumarthi S.D. Chilana G.S. Devabhaktuni S. Singh P.K. Phytotherapeutic antioxidants. Asian J. Med. Sci. 2020 11 2 96 100 10.3126/ajms.v11i2.26465
    [Google Scholar]
  4. Rajasree R. Sibi P. Francis F. William H. Phytochemicals of Cucurbitaceae family—A review. Int. J. Pharmacogn. Phytochem. Res. 2016 8 113 123
    [Google Scholar]
  5. Salehi B. Sharifi-Rad Capanoglu Adrar Catalkaya Shaheen Jaffer Giri Suyal Jugran Calina Docea Kamiloglu Kregiel Antolak Pawlikowska Sen Acharya Bashiry Selamoglu Martorell Sharopov Martins Namiesnik Cho Cucurbita plants: From farm to industry. Appl. Sci. 2019 9 16 3387 10.3390/app9163387
    [Google Scholar]
  6. Rolnik A. Kowalska I. Soluch A. Stochmal A. Olas B. Comparative phytochemical, antioxidant and haemostatic studies of preparations from selected vegetables from Cucurbitaceae family. Molecules 2020 25 18 4326 10.3390/molecules25184326 32967295
    [Google Scholar]
  7. Senoner T. Dichtl W. Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients 2019 11 9 2090 10.3390/nu11092090 31487802
    [Google Scholar]
  8. Chauhan N.S. Porte S. Joshi V. Shah K. Plants’ steroidal saponins - A review on its pharmacology properties and analytical techniques. World J. Tradit. Chin. Med. 2022 8 3 350 385 10.4103/2311‑8571.353503
    [Google Scholar]
  9. Sharma K. Kaur R. Kumar S. Saini R.K. Sharma S. Pawde S.V. Kumar V. Saponins: A concise review on food related aspects, applications and health implications. Food Chem. Adv. 2023 2 100191 10.1016/j.focha.2023.100191
    [Google Scholar]
  10. Roopashree K. Naik D. Saponins: Properties, applications and as insecticides: A review. Biosci. Trends 2019 8 1 14
    [Google Scholar]
  11. Nwafor F. I. Orabueze I. C. Phytochemistry 197-222 Apple Academic Press 2018
    [Google Scholar]
  12. Arceusz A. Radecka I. Wesolowski M. Identification of diversity in elements content in medicinal plants belonging to different plant families. Food Chem. 2010 120 1 52 58 10.1016/j.foodchem.2009.09.068
    [Google Scholar]
  13. Frodin D.G. History and concepts of big plant genera. Taxon 2004 53 3 753 776 10.2307/4135449
    [Google Scholar]
  14. Hollman A. Plants and cardiac glycosides. Heart 1985 54 3 258 261 10.1136/hrt.54.3.258 4041297
    [Google Scholar]
  15. Kytidou K. Artola M. Overkleeft H.S. Aerts J.M.F.G. Plant glycosides and glycosidases: A treasure-trove for therapeutics. Front. Plant Sci. 2020 11 357 10.3389/fpls.2020.00357 32318081
    [Google Scholar]
  16. Muñoz-Labrador A. Hernandez-Hernandez O. Moreno F.J. A review of the state of sweeteners science: the natural versus artificial non-caloric sweeteners debate. Stevia rebaudiana and Siraitia grosvenorii into the spotlight. Crit. Rev. Biotechnol. 2023 1 23 10.1080/07388551.2023.2254929
    [Google Scholar]
  17. Francis G. Kerem Z. Makkar H.P.S. Becker K. The biological action of saponins in animal systems: A review. Br. J. Nutr. 2002 88 6 587 605 10.1079/BJN2002725 12493081
    [Google Scholar]
  18. Sparg S.G. Light M.E. van Staden J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 2004 94 2-3 219 243 10.1016/j.jep.2004.05.016 15325725
    [Google Scholar]
  19. Ma J. Yang H. Chen Y. Feng X. Wu C. Long F. Purified saponins in Momordica charantia treated with high hydrostatic pressure and ionic liquid-based aqueous biphasic systems. Foods 2022 11 13 1930 10.3390/foods11131930 35804746
    [Google Scholar]
  20. Nhiem N.X. Kiem P.V. Minh C.V. Ban N.K. Cuong N.X. Ha L.M. Tai B.H. Quang T.H. Tung N.H. Kim Y.H. Cucurbitane‐type triterpene glycosides from the fruits of Momordica charantia. Magn. Reson. Chem. 2010 48 5 392 396 10.1002/mrc.2582 20225243
    [Google Scholar]
  21. Jeffrey C. A review of the Cucurbitaceae. Bot. J. Linn. Soc. 1980 81 3 233 247 10.1111/j.1095‑8339.1980.tb01676.x
    [Google Scholar]
  22. Rolnik A. Olas B. J. N. Vegetables from the Cucurbitaceae family and their products: Positive effect on human health. Nutrition 2020 78 110788
    [Google Scholar]
  23. Jamuna S. Karthika K. Paulsamy S. J. J. R. B. Phytochemical and pharmacological properties of certain medicinally important species of Cucurbitaceae family–a review. J. Biol. Res. 2015 5 1835 1849
    [Google Scholar]
  24. Ramalhete C. Gonçalves B.M.F. Barbosa F. Duarte N. Ferreira M.J.U. Momordica balsamina: Phytochemistry and pharmacological potential of a gifted species. Phytochem. Rev. 2022 21 2 617 646 10.1007/s11101‑022‑09802‑7 35153639
    [Google Scholar]
  25. Ahmed A. Saleem M.A. Saeed F. Afzaal M. Imran A. Nadeem M. Ambreen S. Imran M. Hussain M. Al Jbawi E. Gynostemma pentaphyllum an immortal herb with promising therapeutic potential: A comprehensive review on its phytochemistry and pharmacological perspective. Int. J. Food Prop. 2023 26 1 808 832 10.1080/10942912.2023.2185566
    [Google Scholar]
  26. Deokate U. Khadabadi S. Pharmacology and phytochemistry of Coccinia indica. J. Pharmacogn. Phytother. 2011 3 155 159 10.5897/JPP11.005
    [Google Scholar]
  27. Nguyen N.H. Ha T.K.Q. Yang J.L. Pham H.T.T. Oh W.K. Triterpenoids from the genus Gynostemma: Chemistry and pharmacological activities. J. Ethnopharmacol. 2021 268 113574 10.1016/j.jep.2020.113574 33186700
    [Google Scholar]
  28. Iwamoto M. Okabe H. Yamauchi T. Studies on the constituents of momordica cochinchinensis spreng. II. Isolation and characterization of the root saponins, Momordins I, II and III. Chem. Pharm. Bull. 1985 33 1 1 7 10.1248/cpb.33.1
    [Google Scholar]
  29. Cui W.Y. Jin Y. Liu H. Zu M.L. Zhai X.F. Yang C. Gu Y.L. Cheng Y. Piao X.L. Dammarane-type saponins from Gynostemma pentaphyllum and their cytotoxicities. Nat. Prod. Res. 2021 35 22 4433 4441 10.1080/14786419.2020.1723093 32037885
    [Google Scholar]
  30. Nagao T. Tanaka R. Okabe H. Yamauchi T. Studies on the constituents of Thladiantha dubia Bunge. II. Structures of dubiosides D, E and F, neutral saponins of quillaic acid isolated from the tuber. Chem. Pharm. Bull. 1990 38 2 378 381 10.1248/cpb.38.378
    [Google Scholar]
  31. Nagao T. Okabe H. Mihashi K. Yamauchi T. Studies on the constituents of Thladiantha dubia BUNGE. I. The structures of dubiosides A, B and C, the quillaic acid glucuronide saponins isolated from the tuber. Chem. Pharm. Bull. 1989 37 4 925 929 10.1248/cpb.37.925
    [Google Scholar]
  32. Okabe H. Miyahara Y. Yamauchi T. Miyahara K. Kawasaki T. Studies on the constituents of Momordica charantia L. I. Isolation and characterization of momordicosides A and B, glycosides of a pentahydroxy-cucurbitane triterpene. Chem. Pharm. Bull. 1980 28 9 2753 2762 10.1248/cpb.28.2753
    [Google Scholar]
  33. Miyahara Y. Okabe H. Yamauchi T. Studies on the constituents of Momordica charantia L. II. Isolation and characterization of minor seed glycosides, momordicosides C,D and E. Chem. Pharm. Bull. 1981 29 6 1561 1566 10.1248/cpb.29.1561
    [Google Scholar]
  34. Okabe H. Miyahara Y. Yamauchi T. Structures of momordicosides F1, F2, G, I, K and L, novel cucurbitacins in the fruits of Momordica charantia L. J. Tetrahedron Lett. 1982 23 77 80 10.1016/S0040‑4039(00)97537‑3
    [Google Scholar]
  35. Tan M.J. Ye J.M. Turner N. Hohnen-Behrens C. Ke C.Q. Tang C.P. Chen T. Weiss H.C. Gesing E.R. Rowland A. James D.E. Ye Y. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem. Biol. 2008 15 3 263 273 10.1016/j.chembiol.2008.01.013 18355726
    [Google Scholar]
  36. Nagai M. Izawa K. Nagumo S. Sakurai N. Inoue T. Two glycosides of a novel dammarane alcohol from Gynostemma pentaphyllum. Chem. Pharm. Bull. 1981 29 3 779 783 10.1248/cpb.29.779
    [Google Scholar]
  37. Chen J.C. Chiu M.H. Nie R.L. Cordell G.A. Qiu S.X. Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat. Prod. Rep. 2005 22 3 386 399 10.1039/b418841c 16010347
    [Google Scholar]
  38. Chu D. Yaseen A. Wang L. Chen B. Wang M. Hu W. Li F. Two new cucurbitane glycosides from the fruits of <i>siraitia grosvenori</i>. Chem. Pharm. Bull. 2019 67 7 721 724 10.1248/cpb.c19‑00210 30982796
    [Google Scholar]
  39. De Tommasi N. De Simone F. Speranza G. Pizza C. Studies on the constituents of Cyclanthera pedata (Caigua) seeds: Isolation and characterization of six new cucurbitacin glycosides. J. Agric. Food Chem. 1996 44 8 2020 2025 10.1021/jf950532c
    [Google Scholar]
  40. Suzuki Y.A. Murata Y. Inui H. Sugiura M. Nakano Y. Triterpene glycosides of Siraitia grosvenori inhibit rat intestinal maltase and suppress the rise in blood glucose level after a single oral administration of maltose in rats. J. Agric. Food Chem. 2005 53 8 2941 2946 10.1021/jf0478105 15826043
    [Google Scholar]
  41. Takasaki M. Anticarcinogenic activity of natural sweeteners, cucurbitane glycosides, from Momordica grosvenori. Cancer Lett. 2003 198 1 37 42
    [Google Scholar]
  42. Chekroun E. Antioxidant activity and phytochemical screening of two Cucurbitaceae: Citrullus colocynthis fruits and bryonia dioica roots. Asian Pac. J. Trop. Dis. 2015 5 632 637
    [Google Scholar]
  43. Jia Z. Yang X. A minor, sweet cucurbitane glycoside from Siraitia grosvenorii. Nat. Prod. Commun. 2009 4 10.1177/1934578X0900400606
    [Google Scholar]
  44. Li D. Ikeda T. Matsuoka N. Nohara T. Zhang H. Sakamoto T. Nonaka G.I. Cucurbitane glycosides from unripe fruits of Lo Han Kuo (Siraitia grosvenori). Chem. Pharm. Bull. 2006 54 10 1425 1428 10.1248/cpb.54.1425 17015982
    [Google Scholar]
  45. Fiori G.M.L. Demarque D.P. Pereira A.M.S. Klein V.L.G. Lopes N.P. Cucurbitane triterpene glycosides from the roots of wilbrandia hibiscoides. Rev. Bras. Farmacogn. 2021 31 5 715 719 10.1007/s43450‑021‑00172‑3
    [Google Scholar]
  46. Haque M.E. Alam M.B. Hossain M.S. The efficacy of cucurbitane type triterpenoids, glycosides and phenolic compounds isolated from Momordica charantia: A review. Int. J. Pharm. Sci. Res. 2011 2 1135
    [Google Scholar]
  47. Kanchanapoom T. Kasai R. Yamasaki K. Cucurbitane, hexanorcucurbitane and octanorcucurbitane glycosides from fruits of Trichosanthes tricuspidata. Phytochemistry 2002 59 2 215 228 10.1016/S0031‑9422(01)00430‑7 11809458
    [Google Scholar]
  48. Kasai R. Matsumoto K. Nie R.L. Zhou J. Tanaka O. Glycosides from Chinese medicinal plant, Hemsleya panacis-scandens, and structure-taste relationship of cucurbitane glycosides. Chem. Pharm. Bull. 1988 36 1 234 243 10.1248/cpb.36.234 3378287
    [Google Scholar]
  49. Xu B. Li Z. Zeng T. Zhan J. Wang S. Ho C.T. Li S. Bioactives of Momordica charantia as potential anti-diabetic/hypoglycemic agents. Molecules 2022 27 7 2175 10.3390/molecules27072175 35408574
    [Google Scholar]
  50. Morales-Vela K. Pérez-Sánchez F.C. Padrón J.M. Márquez-Fernández O. Antiproliferative activity of Cucurbitaceae species extracts from southeast of Mexico. J. Med. Plants Stud. 2019 8 1 20 25 10.20944/preprints201908.0127.v1
    [Google Scholar]
  51. Kim Y.C. Choi D. Zhang C. Liu H. Lee S. Profiling cucurbitacins from diverse watermelons (Citrullus spp.). Hortic. Environ. Biotechnol. 2018 59 4 557 566 10.1007/s13580‑018‑0066‑3
    [Google Scholar]
  52. Matsumoto K. Kasai R. Ohtani K. Tanaka O. Minor cucurbitane-glycosides from fruits of Siraitia grosvenori (Cucurbitaceae). Chem. Pharm. Bull. 1990 38 7 2030 2032 10.1248/cpb.38.2030
    [Google Scholar]
  53. Murakami T. Emoto A. Matsuda H. Yoshikawa M. Medicinal foodstuffs. XXI. Structures of new cucurbitane-type triterpene glycosides, goyaglycosides-a, -b, -c, -d, -e, -f, -g, and -h, and new oleanane-type triterpene saponins, goyasaponins I, II, and III, from the fresh fruit of Japanese Momordica charantia L. Chem. Pharm. Bull. 2001 49 1 54 63 10.1248/cpb.49.54 11201226
    [Google Scholar]
  54. Fujioka T. Iwase Y. Okabe H. Mihashi K. Yamauchi T. Studies on the constituents of Actinostemma lobatum Maxim. II. Structures of actinostemmosides G and H, new dammarane triterpene glycosides isolated from the herb. Chem. Pharm. Bull. 1987 35 9 3870 3873 10.1248/cpb.35.3870
    [Google Scholar]
  55. Okabe H. Nagao T. Hachiyama S. Yamauchi T. Studies on the constituents of Luffa operculata Cogn. II. Isolation and structure elucidation of saponins in the herb. Chem. Pharm. Bull. 1989 37 4 895 900 10.1248/cpb.37.895
    [Google Scholar]
  56. Zhang Z. Zhang W. Ji Y.P. Zhao Y. Wang C.G. Hu J.F. Gynostemosides A–E, megastigmane glycosides from Gynostemma pentaphyllum. Phytochemistry 2010 71 5-6 693 700 10.1016/j.phytochem.2009.12.017 20097393
    [Google Scholar]
  57. Yin F. Hu L. Pan R. Novel dammarane-type glycosides from Gynostemma pentaphyllum. Chem. Pharm. Bull. 2004 52 12 1440 1444 10.1248/cpb.52.1440 15577241
    [Google Scholar]
  58. Harborne J. B. The flavonoids Advances in research since 1980. 2013
    [Google Scholar]
  59. Yusoff I.M. Chua L.S. Taher Z.M. Valorization of fruit waste from Cucurbitaceae family: Profiling of phytoconstituent of Benincasa hispida and Citrullus lanatus rinds using ultrasound-assisted extraction. Food Biosci. 2023 51 102190 10.1016/j.fbio.2022.102190
    [Google Scholar]
  60. Mukaila Y.O. Ajao A.A. Ajao A.A. A review of the ethnopharmacological significance of Momordica foetida Schumach. (Cucurbitaceae: Cucurbitales). Egypt. J. Basic Appl. Sci. 2023 10 1 45 54 10.1080/2314808X.2022.2149014
    [Google Scholar]
  61. Fapohunda S.O. Adewumi A.A. Jegede D.O. Cucurbitaceae-the family that nourishes and heals. MicroMedicine 2018 6 85 93 10.5281/zenodo.1436798
    [Google Scholar]
  62. An J.P. Dang L.H. Ha T.K.Q. Pham H.T.T. Lee B.W. Lee C.H. Oh W.K. Flavone glycosides from Sicyos angulatus and their inhibitory effects on hepatic lipid accumulation. Phytochem 2019 157 53 63 10.1016/j.phytochem.2018.10.013 30368219
    [Google Scholar]
  63. Abu-Reidah I.M. Arráez-Román D. Quirantes-Piné R. Fernández-Arroyo S. Segura-Carretero A. Fernández-Gutiérrez A. HPLC–ESI-Q-TOF-MS for a comprehensive characterization of bioactive phenolic compounds in cucumber whole fruit extract. Food Res. Int. 2012 46 1 108 117 10.1016/j.foodres.2011.11.026
    [Google Scholar]
  64. Abu-Reidah I.M. Arráez-Román D. Segura-Carretero A. Fernández-Gutiérrez A. Profiling of phenolic and other polar constituents from hydro-methanolic extract of watermelon (Citrullus lanatus) by means of accurate-mass spectrometry (HPLC–ESI–QTOF–MS). Food Res. Int. 2013 51 1 354 362 10.1016/j.foodres.2012.12.033
    [Google Scholar]
  65. Krauze-Baranowska M. Cisowski W. Flavone C-glycosides from Bryonia alba and B. dioica. Phytochemistry 1995 39 3 727 729 10.1016/0031‑9422(95)00069‑J
    [Google Scholar]
  66. Delazar A. Flavone C-glycosides and cucurbitacin glycosides from Citrullus colocynthis. Daru 2006 14 109 114
    [Google Scholar]
  67. Ninomiya M. Itoh T. Fujita S. Hashizume T. Koketsu M. Phenolic glycosides from young fruits of Citrullus lanatus. Phytochem. Lett. 2020 40 135 138 10.1016/j.phytol.2020.09.014
    [Google Scholar]
  68. Amin H. M. Medical pharmacology. 2008
    [Google Scholar]
  69. BERTRAM G KATZUNG, K. 9 edn (EGC).
    [Google Scholar]
  70. Campbell J. Cohall D. Pharmacognosy 513-525. Elsevier 2017
    [Google Scholar]
  71. Buxton I. L. J. G. Gilman’s the pharmacologic basis of therapeutics, t. E. N. Y. M.-H. Pharmacokinetics and pharmacodynamics. 2006 1 52
    [Google Scholar]
  72. Husain G. M. Khan M. A. Urooj M. Kazmi M. H. Pharmacodynamic evaluation: Herbal medicine. Drug Discovery Evaluation: Methods in Clinical Pharmacology. 2020 483 497 10.1007/978‑3‑319‑68864‑0_52
    [Google Scholar]
  73. Kothari V. In vitro antibacterial activity in seed extracts of phoenix sylvestris roxb (Palmae), and tricosanthes dioica L (Cucurbitaceae). Curr Trends Biotechnol Pharm. 2011 5 993 997
    [Google Scholar]
  74. Mozaniel S.O. Wanessa A.C. Fernanda W.F.B. Marilena E.A. Gracialda C.F. Raul N.C.J. Phytochemical profile and biological activities of Momordica charantia L. (Cucurbitaceae): A review. Afr. J. Biotechnol. 2018 17 27 829 846 10.5897/AJB2017.16374
    [Google Scholar]
  75. Sood A. Kaur P. Gupta R. Phytochemical screening and antimicrobial assay of various seeds extract of cucurbitaceae family. Int. J. Appl. Biol. Pharm. Technol. 2012
    [Google Scholar]
  76. Balasubramanian G. Sarathi M. Kumar S.R. Hameed A.S.S. Screening the antiviral activity of Indian medicinal plants against white spot syndrome virus in shrimp. Aquaculture 2007 263 1-4 15 19 10.1016/j.aquaculture.2006.09.037
    [Google Scholar]
  77. Raghavan Anilakumar K. Kumar G.P. Ilaiyaraja N. Nutritional, pharmacological and medicinal properties of Momordica charantia. Int J Food Sci Nutr 2015 4 1 75 83 10.11648/j.ijnfs.20150401.21
    [Google Scholar]
  78. Bhagyalakshmi M. Devaraja S. Viral, Parasitic, Bacterial, and Fungal Infections. Elsevier 2023 209 220 10.1016/B978‑0‑323‑85730‑7.00017‑5
    [Google Scholar]
  79. Raman A. Lau C. Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae). Phytomedicine 1996 2 4 349 362 10.1016/S0944‑7113(96)80080‑8 23194773
    [Google Scholar]
  80. Desai S. Tatke P. Mane T. Gabhe S. Isolation, characterization and quantitative HPLC-DAD analysis of components of charantin from fruits of Momordica charantia. Food Chem. 2021 345 128717 10.1016/j.foodchem.2020.128717 33307430
    [Google Scholar]
  81. Acosta-Patiño J.L. Jiménez-Balderas E. Juárez-Oropeza M.A. Díaz-Zagoya J.C. Hypoglycemic action of Cucurbita ficifolia on type 2 diabetic patients with moderately high blood glucose levels. J. Ethnopharmacol. 2001 77 1 99 101 10.1016/S0378‑8741(01)00272‑0 11483384
    [Google Scholar]
  82. Huerta-Reyes M. Tavera-Hernández R. Alvarado-Sansininea J.J. Jiménez-Estrada M. Selected species of the Cucurbitaceae family used in Mexico for the treatment of diabetes mellitus. Molecules 2022 27 11 3440 10.3390/molecules27113440 35684376
    [Google Scholar]
  83. Sutradhar B.K. An evaluation of antihyperglycemic and antinociceptive effects of crude methanol extract of Coccinia grandis (L.) J. Voigt.(Cucurbitaceae) leaves in Swiss albino mice. Adv. Nat. Appl. Sci. 2011 5 1 5
    [Google Scholar]
  84. Eseyin O.A. Sattar M.A. Rathore H.A. A review of the pharmacological and biological activities of the aerial parts of Telfairia occidentalis Hook. f.(Cucurbitaceae). Trop. J. Pharm. Res. 2014 13 1761 1769 10.4314/tjpr.v13i10.28
    [Google Scholar]
  85. Adedapo A. Adewuyi T. Sofidiya M. J. R. d. B. T. Phytochemistry, anti-inflammatory and analgesic activities of the aqueous leaf extract of Lagenaria breviflora (Cucurbitaceae) in laboratory animals. Rev Biol Trop. 2013 61 1 281 290
    [Google Scholar]
  86. Saeed M. Khan M.S. Amir K. Bi J.B. Asif M. Madni A. Kamboh A.A. Manzoor Z. Younas U. Chao S. Lagenaria siceraria fruit: A review of its phytochemistry, pharmacology, and promising traditional uses. Front. Nutr. 2022 9 927361 10.3389/fnut.2022.927361 36185670
    [Google Scholar]
  87. Saha P. Sen S.K. Bala A. Mazumder U.K. Haldar P.K. Evaluation of anticancer activity of lagenaria siceraria aerial parts. Int. J. Cancer Res. 2011 7 3 244 253 10.3923/ijcr.2011.244.253
    [Google Scholar]
  88. Ukiya M. Akihisa T. Tokuda H. Toriumi M. Mukainaka T. Banno N. Kimura Y. Hasegawa J. Nishino H. Inhibitory effects of cucurbitane glycosides and other triterpenoids from the fruit of Momordica grosvenori on epstein-barr virus early antigen induced by tumor promoter 12-O-tetradecanoylphorbol-13-acetate. J. Agric. Food Chem. 2002 50 23 6710 6715 10.1021/jf0206320 12405766
    [Google Scholar]
  89. Soh D. Bakang B.T. Tchouboun E.N. Nganso Y.O.D. Defokou U.D. Sidjui L.S. Ahmed A. Teponno R.B. Lateef M. Ali M.S. Nyassé B. New cucurbitane type triterpenes from Momordica foetida Schumach. (Cucurbitaceae). Phytochem. Lett. 2020 38 90 95 10.1016/j.phytol.2020.05.010
    [Google Scholar]
  90. Zhang X.Q. Shi J. Feng S.X. Xue L. Tian L.P. Two new phenolic glycosides from the seeds of Citrullus lanatus. Nat. Prod. Res. 2020 34 3 398 404 10.1080/14786419.2018.1536131 30602316
    [Google Scholar]
  91. Arivoli S. Samuel T. Bioefficacy of citrullus colocynthis (L.) Schrad (Cucurbitaceae) whole plant extracts against anopheles stephensi, aedes aegypti and culex quinquefasciatus (diptera: Culicidae). Int. J. Curr. Res. 2011 3 296 304
    [Google Scholar]
  92. Biswas S.K. Das J. Chowdhury A. Karmakar U.K. Sharif S.R. Raihan S.Z. Muhit M.A. Cytotoxicity and antifungal activities of ethanolic and chloroform extracts of Cucumis sativus Linn (Cucurbitaceae) leaves and stems. Res. J. Phytochem. 2012 6 1 25 30 10.3923/rjphyto.2012.25.30
    [Google Scholar]
  93. Beloin N. Gbeassor M. Akpagana K. Hudson J. de Soussa K. Koumaglo K. Arnason J.T. Ethnomedicinal uses of Momordica charantia (Cucurbitaceae) in Togo and relation to its phytochemistry and biological activity. J. Ethnopharmacol. 2005 96 1-2 49 55 10.1016/j.jep.2004.08.009 15588650
    [Google Scholar]
  94. Omosun G. Mbaebie B. Edeoga A. O. H. Osuagwu G. Pharmaceutical and therapeutic potential of some wild Cucurbitaceae species from South East Nigeria. Recent Res. Sci. Technol. 2009 2
    [Google Scholar]
  95. Razia S. Kamrun N. Sitesh C.B. In-vitro membrane stabilizing, thrombolytic, antioxidant and antimicrobial activities of Bangladeshi origin Coccinia indica (Cucurbitaceae). Afr. J. Pharm. Pharmacol. 2018 12 16 188 192 10.5897/AJPP2018.4913
    [Google Scholar]
  96. Yu S. Ye X. Xin W. Xu K. Lian X.Y. Zhang Z. Fatsioside A, a rare baccharane-type glycoside inhibiting the growth of glioma cells from the fruits of Fatsia japonica. Planta Med. 2014 80 4 315 320 10.1055/s‑0033‑1360363 24549925
    [Google Scholar]
  97. Kadhim E.J. Phytochemical investigation and hepato-protective studies of Iraqi Bryonia dioica (Family Cucurbitaceae). Int. J. Pharm. Pharm. Sci. 2014 6 187 190
    [Google Scholar]
  98. T HM A.Y. HM A.A. AZ. H Farid. Insecticidal effect of cucurbitacin E glycoside isolated from citrullus colocynthis against aphis craccivora. Aust. J. Basic Appl. Sci. 2009 4060 4066
    [Google Scholar]
  99. Montoro P. Carbone V. De Simone F. Pizza C. De Tommasi N. Studies on the constituents of Cyclanthera pedata fruits: Isolation and structure elucidation of new flavonoid glycosides and their antioxidant activity. J. Agric. Food Chem. 2001 49 11 5156 5160 10.1021/jf010318q 11714296
    [Google Scholar]
  100. Mohan R. Birari R. Karmase A. Jagtap S. Bhutani K.K. Antioxidant activity of a new phenolic glycoside from lagenaria siceraria stand. fruits. Food Chem. 2012 132 1 244 251 10.1016/j.foodchem.2011.10.063 26434287
    [Google Scholar]
  101. Hassan Khan M.T. Iqbal Choudhary M. Atta-ur-Rahman Mamedova R.P. Agzamova M.A. Sultankhodzhaev M.N. Isaev M.I. Tyrosinase inhibition studies of cycloartane and cucurbitane glycosides and their structure–activity relationships. Bioorg. Med. Chem. 2006 14 17 6085 6088 10.1016/j.bmc.2006.05.002 16716596
    [Google Scholar]
  102. Zhao W. Xu D. Yan W. Wang Y. Zhang N. Development and validation of a UPLC‐MS/MS method for the determination of cucurbitacin B in rat plasma and application to a pharmacokinetic study. Biomed. Chromatogr. 2016 30 4 503 507 10.1002/bmc.3571 26207321
    [Google Scholar]
  103. Hunsakunachai N. Nuengchamnong N. Jiratchariyakul W. Kummalue T. Khemawoot P. Pharmacokinetics of cucurbitacin B from Trichosanthes cucumerina L. in rats. BMC Complement. Altern. Med. 2019 19 1 157 10.1186/s12906‑019‑2568‑7 31272429
    [Google Scholar]
  104. Zeng Y. Wang J. Huang Q. Ren Y. Li T. Zhang X. Yao R. Sun J. Cucurbitacin II a: A review of phytochemistry and pharmacology. Phytother. Res. 2021 35 8 4155 4170 10.1002/ptr.7077 33724593
    [Google Scholar]
  105. Wang S. Guan X. Zhong X. Yang Z. Huang W. Jia B. Cui T. Simultaneous determination of cucurbitacin IIa and cucurbitacin IIb of Hemsleya amabilis by HPLC–MS/MS and their pharmacokinetic study in normal and indomethacin‐induced rats. Biomed. Chromatogr. 2016 30 10 1632 1640 10.1002/bmc.3733 27061415
    [Google Scholar]
  106. Fiori G.M.L. D’Agate S. Rocha A. Pereira A.M.S. Della Pasqua O. Lopes N.P. Development and validation of a quantification method for cucurbitacins E and I in rat plasma: Application to population pharmacokinetic studies. J. Pharm. Biomed. Anal. 2017 144 99 105 10.1016/j.jpba.2017.02.021 28274497
    [Google Scholar]
  107. Bai M. Li H.L. He J.C. He G.H. Feng E.F. Liu Y.Q. Shi P.P. Xu G.L. Development and validation of an LC‐ESI‐MS/MS method for the quantitation of hemslecin A in rhesus monkey plasma and its application in pharmacokinetics. Biomed. Chromatogr. 2014 28 3 385 390 10.1002/bmc.3032 24132644
    [Google Scholar]
  108. Wang Z. Zhu W. Gao M. Wu C. Yang C. Yang J. Wu G. Yang B. Kuang H. Simultaneous determination of cucurbitacin B and cucurbitacin E in rat plasma by UHPLC-MS/MS: A pharmacokinetics study after oral administration of cucurbitacin tablets. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017 1065-1066 63 69 10.1016/j.jchromb.2017.09.024 28946127
    [Google Scholar]
  109. Bhusari S. Rodriguez C. Tarka S.M. Jr Kwok D. Pugh G. Gujral J. Tonucci D. Comparative In vitro metabolism of purified mogrosides derived from monk fruit extracts. Regul. Toxicol. Pharmacol. 2021 120 104856 10.1016/j.yrtph.2020.104856 33387567
    [Google Scholar]
  110. Murata Y. Ogawa T. Suzuki Y.A. Yoshikawa S. Inui H. Sugiura M. Nakano Y. Digestion and absorption of Siraitia grosvenori triterpenoids in the rat. Biosci. Biotechnol. Biochem. 2010 74 3 673 676 10.1271/bbb.90832 20208371
    [Google Scholar]
  111. Xu F. Li D.P. Huang Z.C. Lu F.L. Wang L. Huang Y.L. Wang R.F. Liu G.X. Shang M.Y. Cai S.Q. Exploring in vitro, in vivo metabolism of mogroside V and distribution of its metabolites in rats by HPLC-ESI-IT-TOF-MSn. J. Pharm. Biomed. Anal. 2015 115 418 430 10.1016/j.jpba.2015.07.024 26280925
    [Google Scholar]
  112. Yang X. W. Zhang J. Y. Xu W. Biotransformation of mogroside III by human intestinal bacteria. Beijing Da Xue Xue Bao Yi Xue Ban 2007 39 6 657 662
    [Google Scholar]
  113. Younes M. Aquilina G. Engel K.H. Fowler P. Frutos Fernandez M.J. Fürst P. Gürtler R. Gundert-Remy U. Husøy T. Mennes W. Moldeus P. Oskarsson A. Shah R. Waalkens-Berendsen I. Wölfle D. Degen G. Herman L. Gott D. Leblanc J.C. Giarola A. Rincon A.M. Tard A. Castle L. Safety of use of Monk fruit extract as a food additive in different food categories. EFSA J. 2019 17 12 e05921 10.2903/j.efsa.2019.5921 32626208
    [Google Scholar]
  114. Zhang L.J. Liaw C-C. Hsiao P-C. Huang H-C. Lin M-J. Lin Z-H. Hsu F-L. Kuo Y-H. Cucurbitane-type glycosides from the fruits of Momordica charantia and their hypoglycaemic and cytotoxic activities. J. Funct. Foods 2014 6 564 574 10.1016/j.jff.2013.11.025
    [Google Scholar]
  115. Ríos J. L. Escandell J. M. Recio M. C. New insights into the bioactivity of cucurbitacins. Stud. Nat. Prod. Chem. 2005 32 429 469 10.1016/S1572‑5995(05)80062‑6
    [Google Scholar]
  116. Hsiao P.C. Liaw C.C. Hwang S.Y. Cheng H.L. Zhang L.J. Shen C.C. Hsu F.L. Kuo Y.H. Antiproliferative and hypoglycemic cucurbitane-type glycosides from the fruits of Momordica charantia. J. Agric. Food Chem. 2013 61 12 2979 2986 10.1021/jf3041116 23432055
    [Google Scholar]
  117. Chaudhary R. Kumari P. Stability aspects of herbal formulation. WJPLS 2022 8 103 110
    [Google Scholar]
  118. Dewi M.K. Chaerunisaa A.Y. Muhaimin M. Joni I.M. Improved activity of herbal medicines through nanotechnology. Nanomaterials 2022 12 22 4073 10.3390/nano12224073 36432358
    [Google Scholar]
  119. Rajani M. Kanaki N.S. Bioactive molecules and medicinal plants. Springer 2008 349 369 10.1007/978‑3‑540‑74603‑4_19
    [Google Scholar]
  120. Teja P.K. Mithiya J. Kate A.S. Bairwa K. Chauthe S.K. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. Phytomedicine 2022 96 153890 10.1016/j.phymed.2021.153890 35026510
    [Google Scholar]
  121. Saggar S. Mir P.A. Kumar N. Chawla A. Uppal J. Shilpa S. Kaur A. Traditional and herbal medicines: Opportunities and challenges. Pharmacognosy Res. 2022 14 2 107 114 10.5530/pres.14.2.15
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838293392231227065022
Loading
/content/journals/ctm/10.2174/0122150838293392231227065022
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: phytochemistry ; cucurbitaceae ; saponins ; extraction ; glycosides ; flavonoids ; Biological activity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test