Skip to content
2000
image of An Overview of the Phytopharmacological Characteristics of Urochloa Distachya (L.) and Selected Forage Grasses (Poaceae)

Abstract

Background

The Poaceae families make up the majority of crops and animal feed. We address a comprehensive analysis of the phytopharmacological characteristics of a few species from the Poaceae family, including Urochloa distachya, Brachiaria decumbens, Brachiaria brizantha, Eleusine indica, and others.

Objective

The primary objective of this study was to offer detailed information on the phytocompounds found in different parts of the plant and their pharmacological activities. Additionally, we explored the previous pharmacological activity of these plants.

Methods

A literature review was carried out up to 2023 using various academic databases including Google Scholar, Scopus, Web of Science, Science Direct, Research Gate, PubMed, and Springer.

Results

All of the plants discussed above share the same morphological characteristics, such as the presence of spikelets, racemes, lemma, and glume. The GC-MS analysis revealed that petroleum ether of contains 15 phytoconstituents. Methanolic leave extract of disclosed 26 phytoconstituents by GC-MS analysis. The cold extraction of the whole plant of exhibited 18 compounds from GC-MS analysis. The root exudates of contain phytoconstituents which are collected hydroponically from root exudates by semi-preparative HPLC method. Methanolic extract of , A. hybridus, and grains were found in Caffeic acid, Ferulic acid, p-coumaric acid, p-hydroxybenzoic acid, and Protocatechuic acid. contains three isolated phytoconstituents veratric acid, maltol, and (-)-loliolide. Chemical analyses of extract fractions by LC-MS revealed the presence of the flavones tricin and diosmetin. Megathyrsus maximus, , Urochloa ramosa, and contain the presence of secondary phytoconstituents.

Conclusion

This study found and investigated the phytopharmacological properties of Poaceae species. The Poaceae family is rich in bioactive compounds which exhibit significant pharmacological activity like antioxidant, anti-inflammatory, and antibacterial properties. These findings show that Poaceae plants can be used to provide new drugs and natural health products. Further research is needed to determine these compounds' precise biological activities and mechanisms of action.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838307582240929225650
2025-02-19
2025-04-22
The full text of this item is not currently available.

References

  1. Geng Y. Hu G. Ranjitkar S. Wang Y. Bu D. Pei S. Ou X. Lu Y. Ma X. Xu J. Prioritizing fodder species based on traditional knowledge: A case study of mithun (Bos frontalis) in Dulongjiang area, Yunnan Province, Southwest China. J. Ethnobiol. Ethnomed. 2017 13 1 24 10.1186/s13002‑017‑0153‑z 28472968
    [Google Scholar]
  2. Majeed M. Bhatti K.H. Amjad M.S. Abbasi A.M. Bussmann R.W. Nawaz F. Rashid A. Mehmood A. Mahmood M. Khan W.M. Ahmad K.S. Ethno-veterinary uses of Poaceae in Punjab, Pakistan. PLoS One 2020 15 11 e0241705 10.1371/journal.pone.0241705 33142315
    [Google Scholar]
  3. Baranovsky B.O. Karmyzova L.O. Ivanko I.A. Fodder value of Poaceae family species in the steppe zone of Ukraine. Available fromL: https://www.researchgate.net/publication/335493889_Fodder_value_of_Poaceae_family_species_in_the_steppe_zone_of_Ukraine_In_Current_problems_of_agrarian_industry_in_Ukraine/link/5ddfbd6e4585159aa4503c72/download (accessed June 1, 2023).
  4. Matlebyane M.M. Ng’ambi J.W.W. Aregheorex E.M. Relationships between chemical composition and in vitro digestibility of some common forage species used for ruminant livestock production in three chief areas of capricorn region, limpopo province, South Africa. Res. J. Agric. Biol. Sci. 2009 5 2 138 149
    [Google Scholar]
  5. Poaceae: Characters, distribution and types. 2016 Available from: https://www.biologydiscussion.com/botany/monocotyledons/poaceae-characters-distribution-and-types/48321 (accessed June 20, 2023).
  6. Kumar M. Sharma A. Dhiman A. Medicinal potential of Digitaria: An overview. J. Pharmacogn. Phytochem. 2021 10 1 1717 1719
    [Google Scholar]
  7. Shaheen S. Shinwari Z. Tareen R. Ibrar Shinwari M. Samiullah T. Harun N. Systematic identification of genus brachiaria on the basis of vegetative and floral morpho-palynological markers (LM & SEM). Pak. J. Bot. 2013 143 149
    [Google Scholar]
  8. Rahman M. Sultana R. Anatomy on leaf blade of Eleusine indica L. (Gramineae): A study on kranz grass. Acad. J. EXIM Bank Agric. Univ. Bangladesh 2021 1 8 10.5281/zenodo.6508018
    [Google Scholar]
  9. Urochloa distachya - Signal Grass. Available from: https://www.flowersofindia.net/catalog/slides/Signal%20Grass.html
  10. Ziller S. Urochloa distachya (signal grass) | CABI Compendium. Available from: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.9664
  11. Neupane A. Jnawali B. Taxonomic notes on some species of genus Urochloa from Nepal. Adhyayan J. 2022 9 1 94 100 10.3126/aj.v9i1.48744
    [Google Scholar]
  12. Hatch SL Herbarium SMT Urochloa subquadripara (Poaceae: Paniceae) new to Texas and a key to Urochloa of Texas. Phytoneuron 2010 8 1 4
    [Google Scholar]
  13. Cardoso J.A. Jiménez J.C. Rao I.M. Waterlogging-induced changes in root architecture of germplasm accessions of the tropical forage grass Brachiaria humidicola. AoB Plants 2014 6 plu017 10.1093/aobpla/plu017 24876299
    [Google Scholar]
  14. Urochloa humidicola. 2023
    [Google Scholar]
  15. Koronivia grass (Brachiaria humidicola). 2023 Available from: https://www.feedipedia.org/node/585
  16. Panicum maximum | PlantZAfrica. Available from: https://pza.sanbi.org/panicum-maximum
  17. Panicum maximum Jacq. | Species. India Biodivers Portal. Available from: https://indiabiodiversity.org/species/show/263886
  18. Megathyrsus maximus - Tropical Forages. Available from: https://www.tropicalforages.info/text/entities/megathyrsus_maximus.htm
  19. Rojas-Sandoval J Acevedo-Rodríguez P. Megathyrsus maximus (Guinea grass), CABI International 2013 10.1079/cabicompendium.38666
    [Google Scholar]
  20. Brachiaria brizantha Stapf. Available from: http://www.worldfloraonline.org/taxon/wfo-0000854060;jsessionid=7B0B2C2D292B1575FFA50A2EA9A76495 (accessed June 12, 2023).
  21. Urochloa brizantha. Trop Forages. Available from: https://www.tropicalforages.info/text/entities/urochloa_brizantha.htm
  22. Urochloa ramosa - FNA. Available from: http://dev.semanticfna.org/Urochloa_ramosa (accessed June 12, 2023).
  23. Digitaria sanguinalis (Crabgrass, Crop Grass, Hairy Crabgrass, Hairy Finger Grass, Large Crabgrass) | North Carolina Extension Gardener Plant Toolbox. Available from: https://plants.ces.ncsu.edu/plants/digitaria-sanguinalis/ (accessed June 12, 2023).
  24. Areces-Berazain F. Digitaria sanguinalis (large crabgrass). CABI Compendium 2022 10.1079/cabicompendium.18916
    [Google Scholar]
  25. Digitaria radicosa (J.Presl) Miq. | Species. Available from: https://indiabiodiversity.org/species/show/263811 (accessed June 19, 2023).
  26. Brachiaria reptans (POACEAE/GRAMINEAE). Available from: http://keralaplants.in/keralaplantsdetails.aspx?id=Brachiaria_reptans
  27. Brachiaria decumbens - Useful Tropical Plants. Available from: https://tropical.theferns.info/viewtropical.php?id=Brachiaria+decumbens (accessed June 20, 2023).
  28. Brachiaria decumbens Stapf | Species. India Biodivers Portal. Available from: https://indiabiodiversity.org/species/show/263798 (accessed June 19, 2023).
  29. CABI Digitaria abyssinica (East African couchgrass). CABI Compendium 2021 10.1079/cabicompendium.18917
    [Google Scholar]
  30. Digitaria horizontalis Willd. | Plants of the World Online | Kew Science. Available from: http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:329014-2 (accessed July 12, 2023).
  31. Digitaria horizontalis Willd. | Species. WIKTROP - Weed Identif Knowl Trop Mediterr Areas. Available from: https://portal.wiktrop.org/species/show/110
  32. Parker C. Digitaria insularis (sourgrass). CABI Compendium 2012 10.1079/cabicompendium.109596
    [Google Scholar]
  33. Digitaria insularis (L.) Mez ex Ekman | Species. WIKTROP - Weed Identif Knowl Trop Mediterr Areas. Available from: https://portal.wiktrop.org/species/show/367571 (accessed July 12, 2023).
  34. Heuzé V Tran G Hassoun P Lebas F. Goose grass (Eleusine indica). Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. 2019 Available from: https://www.feedipedia.org/node/446
  35. Dash S. Bohidar J. Das C. Mohanty A. Meher A. Hota R. Evaluation of anthelmintic activity and GC-MS characterization of urochloa distachya (L.). Int. J. Pharm. Investig. 2023 13 2 248 254 10.5530/ijpi.13.2.034
    [Google Scholar]
  36. Dash S. Meher A. Dash S.K. Das C. Dash S.K. GC-MS analysis of methanolic extract of Urochloa distachya (L.) T. Q. Nguyen, leave. Int. J. Pharm. Sci. Res. 2021 13 2380 2394
    [Google Scholar]
  37. Vieira C Evangelista S Cirillo R Lippi A Maggi CA Manzini S Effect of ricinoleic acid in acute and subchronic experimental models of inflammation. Mediators Inflamm. 2000 9 5 223 228 10.1080/09629350020025737
    [Google Scholar]
  38. Dash S. Bohidar J. Sahu A.K. Das C. GC-MS analysis of methanolic cold extract of Urochloa distachya (L.) T.Q. Nguyen, whole plant. Int. J. Pharm. Res. Appl. 2021 6
    [Google Scholar]
  39. Hartmann K.C.D. Fortes A.M.T. Ribeiro V de M. Spiassi A. Phytochemical screen of extracts Brachiaria brizantha and Megathyrsus maximus and their effects on germination and development of Parapiptadenia rigida (Benth.) Brenan. Rev. Acta Ambiental Catarinense 2020 16 1/2 22
    [Google Scholar]
  40. Sapunyo W.L. Mbaria J.M. Kanja L.W. Omolo M.J. Onyancha J.M. Phytochemical screening, toxic effects, and antimicrobial activity studies of Digitaria abyssinica (Hochst. ex A.Rich.) Stapf (Poaceae) rhizome extracts against selected uropathogenic microorganisms. Evid. Based Complement. Alternat. Med. 2023 2023 1 4552095 10.1155/2023/4552095 36644445
    [Google Scholar]
  41. Singh A.M. N D R. Udayashankar A.C. Sumana K. Phytochemical screening, antimicrobial, anti-inflammatory and anti-cancerous activities of ethanol and hexane extracts of Urochloa ramosa. Plant Sci. Today 2022 9 537 545 10.14719/pst.1416
    [Google Scholar]
  42. Egenolf K. Conrad J. Schöne J. Braunberger C. Beifuß U. Walker F. Nuñez J. Arango J. Karwat H. Cadisch G. Neumann G. Rasche F. Brachialactone isomers and derivatives of Brachiaria humidicola reveal contrasting nitrification inhibiting activity. Plant Physiol. Biochem. 2020 154 491 497 10.1016/j.plaphy.2020.06.004 32663650
    [Google Scholar]
  43. Meena H.M. Sachdev M.S. Manjaiah K.M. Dotaniya M.L. Nitrification inhibition potential of brachiaria humidicola. Natl. Acad. Sci. Lett. 2014 37 2 113 116 10.1007/s40009‑013‑0216‑1
    [Google Scholar]
  44. Chitindingu K. Ndhlala A.R. Chapano C. Benhura M.A. Muchuweti M. Phenolic compound content, profiles and antioxidant activities of amaranthus hybridus (pigweed), brachiaria brizantha (upright brachiaria) and panicum maximum (guinea grass). J. Food Biochem. 2007 31 2 206 216 10.1111/j.1745‑4514.2007.00108.x
    [Google Scholar]
  45. Espíndola K.M.M. Ferreira R.G. Narvaez L.E.M. Silva Rosario A.C.R. da Silva A.H.M. Silva A.G.B. Vieira A.P.O. Monteiro M.C. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front. Oncol. 2019 9 541 10.3389/fonc.2019.00541 31293975
    [Google Scholar]
  46. Zduńska K. Dana A. Kolodziejczak A. Rotsztejn H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol. 2018 31 6 332 336 10.1159/000491755 30235459
    [Google Scholar]
  47. Boo Y.C. p-Coumaric acid as an active ingredient in cosmetics: a review focusing on its antimelanogenic effects. Antioxidants 2019 8 8 275 10.3390/antiox8080275 31382682
    [Google Scholar]
  48. 4 Hydroxybenzoic Acid - An overview | ScienceDirect Topics. Available from: https://www.sciencedirect.com/topics/nursing-and-health-professions/4-hydroxybenzoic-acid (accessed June 15, 2023).
  49. Semaming Y. Pannengpetch P. Chattipakorn S.C. Chattipakorn N. Pharmacological properties of protocatechuic Acid and its potential roles as complementary medicine. Evid. Based Complement. Alternat. Med. 2015 2015 1 11 10.1155/2015/593902 25737736
    [Google Scholar]
  50. Kakkar S. Bais S. A review on protocatechuic Acid and its pharmacological potential. ISRN Pharmacol. 2014 2014 1 9 10.1155/2014/952943 25006494
    [Google Scholar]
  51. Zhou B. Kong C.H. Li Y.H. Wang P. Xu X.H. Crabgrass (Digitaria sanguinalis) allelochemicals that interfere with crop growth and the soil microbial community. J. Agric. Food Chem. 2013 61 22 5310 5317 10.1021/jf401605g 23678893
    [Google Scholar]
  52. Yu Q. Chen S. Tang H. Zhang X. Tao R. Yan Z. Shi J. Guo W. Zhang S. Veratric acid alleviates liver ischemia/reperfusion injury by activating the Nrf2 signaling pathway. Int. Immunopharmacol. 2021 101 Pt B 108294 10.1016/j.intimp.2021.108294 34749250
    [Google Scholar]
  53. Murata M. Nakai Y. Kawazu K. Ishizaka M. Kajiwara H. Abe H. Takeuchi K. Ichinose Y. Mitsuhara I. Mochizuki A. Seo S. Loliolide, a carotenoid metabolite, is a potential endogenous inducer of herbivore resistance. Plant Physiol. 2019 179 4 1822 1833 10.1104/pp.18.00837 30700538
    [Google Scholar]
  54. Maltol Applications, Maltol Uses. Food Addit Ingred Supplier - Newseed Chem Co Ltd. 2015 Available from: https://www.foodsweeteners.com/applications-and-uses-of-maltol/ (accessed June 16, 2023).
  55. Ibrahim T. El-Hela A.A. Dawoud G.T.M. Zhran M. Antimethicillin-resistant staphylococcus aureus and biological activities of metabolites from digitaria sanguinalis L. Indian J. Pharm. Sci. 2019 81 4 651 660 10.36468/pharmaceutical‑sciences.556
    [Google Scholar]
  56. Kaur J. Kaur R. p -coumaric acid: A naturally occurring chemical with potential therapeutic applications. Curr. Org. Chem. 2022 26 14 1333 1349 10.2174/1385272826666221012145959
    [Google Scholar]
  57. Li X.X. Chen S.G. Yue G.G.L. Kwok H.F. Lee J.K.M. Zheng T. Shaw P.C. Simmonds M.S.J. Lau C.B.S. Natural flavone tricin exerted anti-inflammatory activity in macrophage via NF-κB pathway and ameliorated acute colitis in mice. Phytomedicine 2021 90 153625 10.1016/j.phymed.2021.153625 34256329
    [Google Scholar]
  58. Rashidi S. Yousefi A.R. Pouryousef M. Goicoechea N. Effect of arbuscular mycorrhizal fungi on the accumulation of secondary metabolites in roots and reproductive organs of Solanum nigrum, Digitaria sanguinalis and Ipomoea purpurea. Chem. Biol. Technol. Agric. 2022 9 1 23 10.1186/s40538‑022‑00288‑1
    [Google Scholar]
  59. Manuja R Sachdeva S Jain A Chaudhary J. A comprehensive review on biological activities of p-hydroxy benzoic acid and its derivatives. Int. J. Pharm. Sci. Rev. Res. 2013 22 2
    [Google Scholar]
  60. Bakrim S. Benkhaira N. Bourais I. Benali T. Lee L.H. El Omari N. Sheikh R.A. Goh K.W. Ming L.C. Bouyahya A. Health benefits and pharmacological properties of stigmasterol. Antioxidants 2022 11 10 1912 10.3390/antiox11101912 36290632
    [Google Scholar]
  61. NCATS Inxight Drugs — ISOORIENTIN. Available from: https://drugs.ncats.io/drug/A37342TIX1 (accessed June 16, 2023).
  62. Balogun A.O. Adeleke A.A. Ikubanni P.P. Adegoke S.O. Alayat A.M. McDonald A.G. Physico-chemical characterization, thermal decomposition and kinetic modeling of Digitaria sanguinalis under nitrogen and air environments. Case Stud. Therm. Eng. 2021 26 101138 10.1016/j.csite.2021.101138
    [Google Scholar]
  63. Takato T. Iwata K. Murakami C. Wada Y. Sakane F. Chronic administration of myristic acid improves hyperglycaemia in the Nagoya–Shibata–Yasuda mouse model of congenital type 2 diabetes. Diabetologia 2017 60 10 2076 2083 10.1007/s00125‑017‑4366‑4 28707095
    [Google Scholar]
  64. Sandhya S. Talukdar J. Chemical and biological properties of lauric acid: A review. Int. J. Adv. Res. 2016 4 1123 1128 10.21474/IJAR01/952
    [Google Scholar]
  65. Dilika F. Bremner P.D. Meyer J.J.M. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: A plant used during circumcision rites. Fitoterapia 2000 71 4 450 452 10.1016/S0367‑326X(00)00150‑7 10925024
    [Google Scholar]
  66. Behenic acid. 2023 Available from: https://en.wikipedia.org/wiki/Behenic_acid
  67. Showing metabocard for Arachidic acid (HMDB0002212). Available from: https://hmdb.ca/metabolites/HMDB0002212
  68. Felton A. What Is Palmitic Acid? WebMD. Available from: https://www.webmd.com/diet/what-is-palmitic-acid
  69. Venn-Watson S.K. Parry C. Baird M. Stevenson S. Carlin K. Daniels R. Smith C.R. Jones R. Wells R.S. Ridgway S. Jensen E.D. Increased dietary intake of saturated fatty acid heptadecanoic acid (C17:0) associated with decreasing ferritin and alleviated metabolic syndrome in dolphins. PLoS One 2015 10 7 e0132117 10.1371/journal.pone.0132117 26200116
    [Google Scholar]
  70. Casillas-Vargas G. Ocasio-Malavé C. Medina S. Morales-Guzmán C. Del Valle R.G. Carballeira N.M. Sanabria-Ríos D.J. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog. Lipid Res. 2021 82 101093 10.1016/j.plipres.2021.101093 33577909
    [Google Scholar]
  71. FT177248 | 2433-96-7 | Tricosanoic acid | Biosynth. Available from: https://www.biosynth.com/p/FT177248/2433-96-7-tricosanoic-acid (accessed October 1, 2023).
  72. Lignoceric acid (Tetracosanoic acid) | Fatty Acid | MedChemExpress. Available from: https://www.medchemexpress.com/lignoceric-acid.html (accessed October 1, 2023).
  73. Santos F.O. de Lima H.G. de Souza Santos N.S. Serra T.M. Uzeda R.S. Reis I.M.A. Botura M.B. Branco A. Batatinha M.J.M. In vitro anthelmintic and cytotoxicity activities the Digitaria insularis (Poaceae). Vet. Parasitol. 2017 245 48 54 10.1016/j.vetpar.2017.08.007 28969837
    [Google Scholar]
  74. Santos F.O. Lima H.G. de Souza Santa Rosa S. das Mercês N.B. Serra T.M. Uzeda R.S. Reis I.M.A. Botura M.B. Branco A. Batatinha M.J.M. In vitro acaricide and anticholinesterase activities of digitaria insularis (Poaceae) against Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 2018 255 102 106 10.1016/j.vetpar.2018.04.003 29773129
    [Google Scholar]
  75. Park S. Bong S.K. Lee J.W. Park N.J. Choi Y. Kim S.M. Yang M.H. Kim Y.K. Kim S.N. Diosmetin and its glycoside, diosmin, improve atopic dermatitis- like lesions in 2,4-dinitrochlorobenzene-induced murine models. Biomol. Ther. 2020 28 6 542 548 10.4062/biomolther.2020.135 32938818
    [Google Scholar]
  76. Carta G. Murru E. Banni S. Manca C. Palmitic acid: Physiological role, metabolism and nutritional implications. Front. Physiol. 2017 8 902 10.3389/fphys.2017.00902 29167646
    [Google Scholar]
  77. Ethyl palmitate (Ethyl hexadecanoate) | Fatty Acid Ethyl Ester | MedChemExpress. Available from: https://www.medchemexpress.com/ethyl-palmitate.html (accessed June 16, 2023).
  78. Saeed N.M. El-Demerdash E. Abdel-Rahman H.M. Algandaby M.M. Al-Abbasi F.A. Abdel-Naim A.B. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models. Toxicol. Appl. Pharmacol. 2012 264 1 84 93 10.1016/j.taap.2012.07.020 22842335
    [Google Scholar]
  79. Santos C.C.M.P. Salvadori M.S. Mota V.G. Costa L.M. de Almeida A.A.C. de Oliveira G.A.L. Costa J.P. de Sousa D.P. de Freitas R.M. de Almeida R.N. Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neurosci. J. 2013 2013 1 9 10.1155/2013/949452 26317107
    [Google Scholar]
  80. Ko G.A. Kim Cho S. Ethyl linoleate inhibits α-MSH-induced melanogenesis through Akt/GSK3β/β-catenin signal pathway. Korean J. Physiol. Pharmacol. 2018 22 1 53 61 10.4196/kjpp.2018.22.1.53 29302212
    [Google Scholar]
  81. 111-61-5 | Ethyl Stearate | Octadecanoic Acid Ethyl Ester; Stearic Acid Ethyl Ester; Ethyl n-Octadecanoate; Ethyl Octadecanoate; Ethyl Stearate; KAK-ES; NSC 8919; | C20H40O2| TRC. Available from: https://www.trc-canada.com/product-detail/?E925950 (accessed June 16, 2023).
  82. Alpha-linolenic acid (ALA): Overview, uses, side effects, precautions, interactions, dosing and reviews. Available from: https://www.webmd.com/vitamins/ai/ingredientmono-1035/alpha-linolenic-acid-ala (accessed October 24, 2023).
  83. Lands B. Fatty acids: Essential fatty acids. Encycl. Food Health. Caballero B. Finglas P.M. Toldrá F. Oxford Academic Press 2016 615 622 10.1016/B978‑0‑12‑384947‑2.00279‑8
    [Google Scholar]
  84. Adoho A.C.C. Zinsou F.T.A. Olounlade P.A. Azando E.V.B. Hounzangbe-Adote M.S. Gbangboche A.B. Review of the literature of Eleusine indica: phytochemical, toxicity, pharmacological and zootechnical studies. J. Pharmacogn. Phytochem. 2021 10 3 29 33 10.22271/phyto.2021.v10.i3a.14060
    [Google Scholar]
  85. Alaekwe I.O. Ajiwe I.O. Ajiwe A.C. Aningo G.N. Phytochemical and anti – microbial screening of the aerial parts of eleusine indica. Int J Pure App Biosci 2015 3 1
    [Google Scholar]
  86. Zhang L. Wu M. Chen Z. Schaftoside improves cerebral ischemia-reperfusion injury by enhancing autophagy and reducing apoptosis and inflammation through the AMPK/mTOR pathway. Adv. Clin. Exp. Med. 2022 31 12 1343 1354 10.17219/acem/152207 36135814
    [Google Scholar]
  87. Liu M. Zhang G. Wu S. Song M. Wang J. Cai W. Mi S. Liu C. Schaftoside alleviates HFD-induced hepatic lipid accumulation in mice via upregulating farnesoid X receptor. J. Ethnopharmacol. 2020 255 112776 10.1016/j.jep.2020.112776 32205261
    [Google Scholar]
  88. Isoschaftoside | CAS:52012-29-0. Available from: https://www.chemfaces.com/natural/Isoschaftoside-CFN92029.html (accessed September 30, 2023).
  89. MI33288 | 52012-29-0 | Isoschaftoside | Biosynth. Available from: https://www.biosynth.com/p/MI33288/52012-29-0-isoschaftoside (accessed September 30, 2023).
  90. Peng Y. Gan R. Li H. Yang M. McClements D.J. Gao R. Sun Q. Absorption, metabolism, and bioactivity of vitexin: Recent advances in understanding the efficacy of an important nutraceutical. Crit. Rev. Food Sci. Nutr. 2021 61 6 1049 1064 10.1080/10408398.2020.1753165 32292045
    [Google Scholar]
  91. Mazumder K. Nabila A. Aktar A. Farahnaky A. Bioactive variability and in vitro and in vivo antioxidant activity of unprocessed and processed flour of nine cultivars of australian lupin species: A comprehensive substantiation. Antioxidants 2020 9 4 282 10.3390/antiox9040282 32230703
    [Google Scholar]
  92. Morah FNI Odey CO Chemical composition and antimicrobial activity of Eleusine indica leaf essential oil. IJCBS 2020 18 129 133
    [Google Scholar]
  93. Khatua S Pandey A Biswas S Surjyo C Biswas J Phytochemical evaluation and antimicrobial properties of Trichosanthes dioica root extract. J. Pharmacogn. Phytochem. 2016 5 5 410 413
    [Google Scholar]
  94. Pope L.E. Marcelletti J.F. Katz L.R. Katz D.H. Anti-herpes simplex virus activity of n-docosanol correlates with intracellular metabolic conversion of the drug. J. Lipid Res. 1996 37 10 2167 2178 10.1016/S0022‑2275(20)37299‑0 8906594
    [Google Scholar]
  95. Aldaba-Muruato L. Ventura-Juárez J. Perez-Hernandez A. Hernández-Morales A. Muñoz-Ortega M. Martínez-Hernández S. Alvarado-Sánchez B. Macías-Pérez J. Therapeutic perspectives of p ‑coumaric acid: Anti‑necrotic, anti‑cholestatic and anti‑amoebic activities. World Acad. Sci. J. 2021 3 5 47 10.3892/wasj.2021.118
    [Google Scholar]
  96. K JT GC-MS analysis of bioactive components of kandelia candel (L.) druce. Int. J. Adv. Sci. Res. 2020 11 193 197
    [Google Scholar]
  97. Jagathy VK Preliminary phytochemical screening and GC-MS analysis in the methanolic leaf extracts of Polyalthia korinti (Dunal) Benth. & J. Hook ex J. Hook & Thorns. World J. Pharm. Res. 2017
    [Google Scholar]
  98. Subramaniam Y. Ramalakshmi S. Neelavathy R. Johnpaul M. Identification and comparative studies of different volatile fractions from monochaetia kansensis by GCMS. Glob. J. Pharmacol. 2012 6 65 71
    [Google Scholar]
  99. Imad H.H. Hussein J.H. Muhanned A.K. Nidaa S.H. Identification of five newly described bioactive chemical compounds in methanolic extract of Mentha viridis by using gas chromatography - mass spectrometry (GC-MS). J. Pharmacogn. Phytother. 2015 7 7 107 125 10.5897/JPP2015.0349
    [Google Scholar]
  100. FC01712 | 1759-53-1 | Cyclopropane carboxylic acid. Available from: https://www.biosynth.com/p/FC01712/1759-53-1-cyclopropane-carboxylic-acid (accessed September 30, 2023).
  101. Youssef A.M.M. Maaty D.A.M. Al-Saraireh Y.M. Phytochemical analysis and profiling of antioxidants and anticancer compounds from Tephrosia purpurea (L.) subsp. apollinea family fabaceae. Molecules 2023 28 9 3939 10.3390/molecules28093939 37175349
    [Google Scholar]
  102. Addai Z.R. Abood M.S. Hlail S.H. Hlail S.G.C-M.S. GC-MS profiling, antioxidants and antimicrobial activity of prickly pear (Opuntiaficus-indica) pulp extract. Pharmacogn. J. 2022 14 2 262 267 10.5530/pj.2022.14.32
    [Google Scholar]
  103. Sukor N.S.M. Zakri Z.H.M. Rasol N.E. Salim F. Annotation and identification of phytochemicals from eleusine indica using high-performance liquid chromatography tandem mass spectrometry: Databases-driven approach. Molecules 2023 28 7 3111 10.3390/molecules28073111 37049873
    [Google Scholar]
  104. He X. Wang J. Li M. Hao D. Yang Y. Zhang C. He R. Tao R. Eucommia ulmoides Oliv.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2014 151 1 78 92 10.1016/j.jep.2013.11.023 24296089
    [Google Scholar]
  105. Singh S. McKintosh R. Adenosine. StatPearls. Treasure Island, FL StatPearls Publishing 2023
    [Google Scholar]
  106. Liu X. Cheng X. Liu X. He L. Zhang W. Wang Y. Sun W. Ji Z. Investigation of the urinary metabolic variations and the application in bladder cancer biomarker discovery. Int. J. Cancer 2018 143 2 408 418 10.1002/ijc.31323 29451296
    [Google Scholar]
  107. Peng J. Qiu S. Jia F. Zhang L. He Y. Zhang F. Sun M. Deng Y. Guo Y. Xu Z. Liang X. Yan W. Wang K. The introduction of l-phenylalanine into antimicrobial peptide protonectin enhances the selective antibacterial activity of its derivative phe-Prt against Gram-positive bacteria. Amino Acids 2021 53 1 23 32 10.1007/s00726‑020‑02919‑z 33236256
    [Google Scholar]
  108. Tris(2-butoxyethyl) phosphate. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/6540 (accessed December 4, 2023).
  109. Sulfamethazine. Available from: https://go.drugbank.com/drugs/DB01582 (accessed December 4, 2023).
  110. 13-keto-9Z,11E-octadecadienoic acid. Available from: https://www.benchchem.com/product/b163644
  111. Kim Y. Hirai S. Goto T. Ohyane C. Takahashi H. Tsugane T. Konishi C. Fujii T. Inai S. Iijima Y. Aoki K. Shibata D. Takahashi N. Kawada T. Potent PPARα activator derived from tomato juice, 13-oxo-9,11-octadecadienoic acid, decreases plasma and hepatic triglyceride in obese diabetic mice. PLoS One 2012 7 2 e31317 10.1371/journal.pone.0031317 22347463
    [Google Scholar]
  112. N-Lauroylsarcosine sodium salt, 95%, Thermo Scientific Chemicals, Quantity: 10 g | Fisher Scientific. Available from: https://www.fishersci.com/shop/products/n-lauroylsarcosine-sodium-salt-95-thermo-scientific-1/AAJ6004009 (accessed December 5, 2023).
  113. Promdam N. Panichayupakaranant P. [6]-Gingerol: A narrative review of its beneficial effect on human health. Food Chemistry Advances 2022 1 100043 10.1016/j.focha.2022.100043
    [Google Scholar]
  114. Inxight Drugs N.C.A.T.S. NCATS Inxight Drugs — 3,5-DI-TERT-BUTYL-4-HYDROXYBENZALDEHYDE. Available from: https://drugs.ncats.io/drug/95VTI93VUL (accessed December 9, 2023).
  115. Mogi K. Koya Y. Yoshihara M. Sugiyama M. Miki R. Miyamoto E. Fujimoto H. Kitami K. Iyoshi S. Tano S. Uno K. Tamauchi S. Yokoi A. Shimizu Y. Ikeda Y. Yoshikawa N. Niimi K. Yamakita Y. Tomita H. Shibata K. Nawa A. Tomoda Y. Kajiyama H. 9-oxo-ODAs suppresses the proliferation of human cervical cancer cells through the inhibition of CDKs and HPV oncoproteins. Sci. Rep. 2023 13 1 19208 10.1038/s41598‑023‑44365‑3 37932321
    [Google Scholar]
  116. Kusumah D. Wakui M. Murakami M. Xie X. Yukihito K. Maeda I. Linoleic acid, α-linolenic acid, and monolinolenins as antibacterial substances in the heat-processed soybean fermented with Rhizopus oligosporus. Biosci. Biotechnol. Biochem. 2020 84 6 1285 1290 10.1080/09168451.2020.1731299 32089087
    [Google Scholar]
  117. Hernández A.F. Common mechanisms of toxicity in pesticides. Encycl. Toxicol. 4th ed Wexler P. Oxford Academic Press 2024 191 204 10.1016/B978‑0‑12‑824315‑2.00768‑5
    [Google Scholar]
  118. Das P. Mukhopadhyay S. Kumar Sarkar N. Mandal S. Kar M. Mukhopadhyay A. Mugineic acid, active ingredient of wheat grass: An oral novel hexadentate iron chelator in iron overloaded diseases. J. Biochem. 2016 160 3 163 176 10.1093/jb/mvw023 27008864
    [Google Scholar]
  119. Saquib Q. Al-Salem A.M. Siddiqui M.A. Ansari S.M. Zhang X. Al-Khedhairy A.A. Tris(2-butoxyethyl) phosphate (TBEP): A flame retardant in solid waste display hepatotoxic and carcinogenic risks for humans. Chemosphere 2022 296 133977 10.1016/j.chemosphere.2022.133977 35216979
    [Google Scholar]
  120. Roy R.N. Laskar S. Sen S.K. Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2. Microbiol. Res. 2006 161 2 121 126 10.1016/j.micres.2005.06.007 16427514
    [Google Scholar]
  121. FH43000 | 2615-15-8 | Hexaethylene glycol | Biosynth. Available from: https://www.biosynth.com/p/FH43000/2615-15-8-hexaethylene-glycol (accessed December 7, 2023).
  122. FB144319 | 120-40-1 | N,N-Bis(2-hydroxyethyl)dodecanamide. Available from: https://www.biosynth.com/p/FB144319/120-40-1-nn-bis2-hydroxyethyldodecanamide (accessed December 7, 2023).
  123. BAA54167 | 1541-67-9 | N-Lauryldiethanolamine | Biosynth. Available from: https://www.biosynth.com/p/BAA54167/1541-67-9-n-lauryldiethanolamine (accessed December 7, 2023).
  124. Nonaethylene Glycol Monododecyl Ether Nonionic Surfactant - Features, Applications, Order Information. Procurenet Ltd. Available from: https://procure-net.com/product/nonaethylene-glycol-monododecyl-ether-nonionic-surfactant/ (accessed December 7, 2023).
  125. Alshaker H. Sauer L. Monteil D. Ottaviani S. Srivats S. Böhler T. Chapter Six - Therapeutic potential of targeting sk1 in human cancers. Adv. Cancer Res. Norris J.S. Academic Press 2013 Vol. 117 143 200 10.1016/B978‑0‑12‑394274‑6.00006‑6
    [Google Scholar]
  126. Miller G.H. Arcieri G. Weinstein M.J. Waitz J.A. Biological activity of netilmicin, a broad-spectrum semisynthetic aminoglycoside antibiotic. Antimicrob. Agents Chemother. 1976 10 5 827 836 10.1128/AAC.10.5.827 1008541
    [Google Scholar]
  127. Justicidin B. Anticancer Lignan | MedChemExpress. Available from: https://www.medchemexpress.com/justicidin-b.html (accessed December 6, 2023).
  128. Basha N.J. Basavarajaiah S.M. Baskaran S. Kumar P. A comprehensive insight on the biological potential of embelin and its derivatives. Nat. Prod. Res. 2022 36 12 3054 3068 10.1080/14786419.2021.1955361 34304655
    [Google Scholar]
  129. Hari Babu R. Savithramma N. Evaluation of grass species for elements through ICP-OES technique. Int. J. Pharm. Sci. Res. 2014 5 8 4908 4915
    [Google Scholar]
  130. Hasiah A.H. Elsheikh H.A. Abdullah A.S.A.L.A.M. Khairi H.M. Rajion M.A. Effect of phenobarbitone treatment against signal grass (Brachiaria decumbens) toxicity in sheep. Vet. J. 2000 160 3 267 272 10.1053/tvjl.2000.0498 11061964
    [Google Scholar]
  131. K T. In vitro assessment of antioxidant and antibacterial activity of green synthesized silver nanoparticles from Digitaria radicosa leaves. Asian J. Pharm. Clin. Res. 2016 297 302
    [Google Scholar]
  132. Sunagar R.R. Sreerama Y.N. Implication of solvent polarities on browntop millet (Urochloa ramosa) phenolic antioxidants and their ability to protect oxidative DNA damage and inhibit α-amylase and α-glucosidase enzymes. Food Chem. 2023 411 135474 10.1016/j.foodchem.2023.135474 36681026
    [Google Scholar]
  133. Sagnia B. Fedeli D. Casetti R. Montesano C. Falcioni G. Colizzi V. Antioxidant and anti-inflammatory activities of extracts from Cassia alata, Eleusine indica, Eremomastax speciosa, Carica papaya and Polyscias fulva medicinal plants collected in Cameroon. PLoS One 2014 9 8 e103999 10.1371/journal.pone.0103999 25090613
    [Google Scholar]
  134. Ali M. Walait S. Farhan Ul Haque M. Mukhtar S. Antimicrobial activity of bacteria associated with the rhizosphere and phyllosphere of Avena fatua and Brachiaria reptans. Environ. Sci. Pollut. Res. Int. 2021 28 48 68846 68861 10.1007/s11356‑021‑15436‑7 34282546
    [Google Scholar]
  135. Ogbole O.O. Segun P.A. Fasinu P.S. Antimicrobial and antiprotozoal activities of twenty-four Nigerian medicinal plant extracts. S. Afr. J. Bot. 2018 117 240 246 10.1016/j.sajb.2018.05.028
    [Google Scholar]
  136. Morah F.N.I. Otuk M.E. Antimicrobial and anthelmintic activity of Eleusine indica. J. Sci. Understand. 2024 1 4 28 32
    [Google Scholar]
  137. Tahir MM Ibrahim N Yaacob WA Cytotoxicity and antiviral activities of Asplenium nidus, Phaleria macrocarpa and Eleusine indica. AIP Conf. Proc. 2014 1614 549 552 10.1063/1.4895259
    [Google Scholar]
  138. ALMEIDA MÂNGELAO DE. Effects of aqueous extracts of leaves of cymbopogon citratus (dc.) stapf (lemongrass) and digitalia insularis (l.) fedde (sugargrass) on cultures of larvae of gastrointestinal nematodes of goats. Rev. Bras. Parasitol. Vet. 2003 12 3 125 129
    [Google Scholar]
  139. Akah P.A. Ezeugo A.O. Eleusine indica Linn, Baertin (Poaceae) ethanol leaf extract and its ethyl acetate fraction display potential anti-inflammatory activities. J. Pharm. Res. Int. 2020 ••• 75 86 10.9734/jpri/2020/v32i1330587
    [Google Scholar]
  140. Adeyemi P.O.O. Neuropharmacologic effects of whole plant extract of Digitaria horizontalis in mice. Afr. J. Med. Med. Sci. 2018 47 249 258
    [Google Scholar]
  141. Bajo L.M. Lomonsod K.C. Tan R.S. Anti-mutagenic potential of the aqueous extract from digitaria sanguinalis. Sci. Int. 2017 1257 1260
    [Google Scholar]
  142. OKOKON J. E. Antiplasmodial and antidiabetic activities of eleusine indica | abstract. IntJDrug Dev & Res 2010 2 3 493 500
    [Google Scholar]
  143. Iqbal M. Gnanaraj C. Eleusine indica L. possesses antioxidant activity and precludes carbon tetrachloride (CCl4)-mediated oxidative hepatic damage in rats. Environ. Health Prev. Med. 2012 17 4 307 315 10.1007/s12199‑011‑0255‑5 22207570
    [Google Scholar]
  144. Desai AV Patil VM Patil SS Kangralkar VA Phytochemical investigation of Eleusine indica for in-vivo anti-hypertensive activity. Int. J. Innov. Sci. Res. Technol. 2017 2 6 405 416
    [Google Scholar]
  145. Potbhare M.S. Barik R. Khobragade D.S. Management of alzheimer’s disease: A review of herbal drugs having potential pharmacological and therapeutic activity. J. Young Pharm. 2023 15 1 13 30 10.5530/097515050344
    [Google Scholar]
  146. Lai H.Y. Ong S.L. Nalamolu K.R. Potential lipid-lowering effects of Eleusine indica (L) Gaertn. Extract on high-fat-diet-induced hyperlipidemic rats. Pharmacogn. Mag. 2017 13 49 Suppl. 1 1 10.4103/0973‑1296.203986 28479718
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838307582240929225650
Loading
/content/journals/ctm/10.2174/0122150838307582240929225650
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Phytochemicals ; forage grasses ; poaceae ; pharmacological overview
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test