Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Background

The Poaceae families make up the majority of crops and animal feed. We address a comprehensive analysis of the phytopharmacological characteristics of a few species from the Poaceae family, including and others.

Objective

The primary objective of this study was to offer detailed information on the phytocompounds found in different parts of the plant and their pharmacological activities. Additionally, we explored the previous pharmacological activity of these plants.

Methods

A literature review was carried out up to 2023 using various academic databases including Google Scholar, Scopus, Web of Science, Science Direct, Research Gate, PubMed, and Springer.

Results

All of the plants discussed above share the same morphological characteristics, such as the presence of spikelets, racemes, lemma, and glume. The GC-MS analysis revealed that petroleum ether of contains 15 phytoconstituents. Methanolic leave extract of disclosed 26 phytoconstituents by GC-MS analysis. The cold extraction of the whole plant of exhibited 18 compounds from GC-MS analysis. The root exudates of contain phytoconstituents which are collected hydroponically from root exudates by semi-preparative HPLC method. Methanolic extract of , A. hybridus, and grains were found in Caffeic acid, Ferulic acid, p-coumaric acid, p-hydroxybenzoic acid, and Protocatechuic acid. contains three isolated phytoconstituents veratric acid, maltol, and (-)-loliolide. Chemical analyses of extract fractions by LC-MS revealed the presence of the flavones tricin and diosmetin. , , and contain the presence of secondary phytoconstituents.

Conclusion

This study found and investigated the phytopharmacological properties of Poaceae species. The Poaceae family is rich in bioactive compounds which exhibit significant pharmacological activity like antioxidant, anti-inflammatory, and antibacterial properties. These findings show that Poaceae plants can be used to provide new drugs and natural health products. Further research is needed to determine these compounds' precise biological activities and mechanisms of action.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838307582240929225650
2025-02-19
2026-02-17
Loading full text...

Full text loading...

/deliver/fulltext/ctm/12/1/CTM-12-E22150838307582.html?itemId=/content/journals/ctm/10.2174/0122150838307582240929225650&mimeType=html&fmt=ahah

References

  1. GengY. HuG. RanjitkarS. WangY. BuD. PeiS. OuX. LuY. MaX. XuJ. Prioritizing fodder species based on traditional knowledge: A case study of mithun (Bos frontalis) in Dulongjiang area, Yunnan Province, Southwest China.J. Ethnobiol. Ethnomed.20171312410.1186/s13002‑017‑0153‑z28472968
    [Google Scholar]
  2. MajeedM. BhattiK.H. AmjadM.S. AbbasiA.M. BussmannR.W. NawazF. RashidA. MehmoodA. MahmoodM. KhanW.M. AhmadK.S. Ethno-veterinary uses of Poaceae in Punjab, Pakistan.PLoS One20201511e024170510.1371/journal.pone.024170533142315
    [Google Scholar]
  3. BaranovskyB.O. KarmyzovaL.O. IvankoI.A. Fodder value of Poaceae family species in the steppe zone of Ukraine.Available from: https://www.researchgate.net/publication/335493889_Fodder_value_of_Poaceae_family_species_in_the_steppe_zone_of_Ukraine_In_Current_problems_of_agrarian_industry_in_Ukraine/link/5ddfbd6e4585159aa4503c72/download (accessed June 1, 2023).
  4. MatlebyaneM.M. Ng’ambiJ.W.W. AregheorexE.M. Relationships between chemical composition and in vitro digestibility of some common forage species used for ruminant livestock production in three chief areas of capricorn region, limpopo province, South Africa.Res. J. Agric. Biol. Sci.200952138149
    [Google Scholar]
  5. Poaceae: Characters, distribution and types.2016Available from: https://www.biologydiscussion.com/botany/monocotyledons/poaceae-characters-distribution-and-types/48321 (accessed June 20, 2023).
  6. KumarM. SharmaA. DhimanA. Medicinal potential of Digitaria: An overview.J. Pharmacogn. Phytochem.202110117171719
    [Google Scholar]
  7. ShaheenS. ShinwariZ. TareenR. Ibrar ShinwariM. SamiullahT. HarunN. Systematic identification of genus brachiaria on the basis of vegetative and floral morpho-palynological markers (LM & SEM).Pak. J. Bot.2013143149
    [Google Scholar]
  8. RahmanM. SultanaR. Anatomy on leaf blade of Eleusine indica L. (Gramineae): A study on kranz grass.Acad. J. EXIM Bank Agric. Univ. Bangladesh20211810.5281/zenodo.6508018
    [Google Scholar]
  9. Urochloa distachya - Signal Grass.Available from: https://www.flowersofindia.net/catalog/slides/Signal%20Grass.html
  10. ZillerS. Urochloa distachya (signal grass) | CABI Compendium.Available from: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.9664
  11. NeupaneA. JnawaliB. Taxonomic notes on some species of genus Urochloa from Nepal.Adhyayan J.2022919410010.3126/aj.v9i1.48744
    [Google Scholar]
  12. HatchSL HerbariumSMT Urochloa subquadripara (Poaceae: Paniceae) new to Texas and a key to Urochloa of Texas.Phytoneuron2010814
    [Google Scholar]
  13. CardosoJ.A. JiménezJ.C. RaoI.M. Waterlogging-induced changes in root architecture of germplasm accessions of the tropical forage grass Brachiaria humidicola.AoB Plants20146plu01710.1093/aobpla/plu01724876299
    [Google Scholar]
  14. Urochloa humidicola. 2023. Available from: https://www.tropicalforages.info/text/entities/urochloa_humidicola.htm
  15. Koronivia grass (Brachiaria humidicola).2023Available from: https://www.feedipedia.org/node/585
  16. Panicum maximum | PlantZAfrica.Available from: https://pza.sanbi.org/panicum-maximum
  17. Panicum maximum Jacq. | Species. India Biodivers Portal.Available from: https://indiabiodiversity.org/species/show/263886
  18. Megathyrsus maximus - Tropical Forages.Available from: https://www.tropicalforages.info/text/entities/megathyrsus_maximus.htm
  19. Rojas-SandovalJ Acevedo-RodríguezP. Megathyrsus maximus (Guinea grass),CABI International201310.1079/cabicompendium.38666
    [Google Scholar]
  20. Brachiaria brizantha Stapf.Available from: http://www.worldfloraonline.org/taxon/wfo-0000854060;jsessionid=7B0B2C2D292B1575FFA50A2EA9A76495 (accessed June 12, 2023).
  21. Urochloa brizantha. Trop Forages.Available from: https://www.tropicalforages.info/text/entities/urochloa_brizantha.htm
  22. Urochloa ramosa - FNA.Available from: http://dev.semanticfna.org/Urochloa_ramosa (accessed June 12, 2023).
  23. Digitaria sanguinalis (Crabgrass, Crop Grass, Hairy Crabgrass, Hairy Finger Grass, Large Crabgrass) | North Carolina Extension Gardener Plant Toolbox.Available from: https://plants.ces.ncsu.edu/plants/digitaria-sanguinalis/ (accessed June 12, 2023).
  24. Areces-BerazainF. Digitaria sanguinalis (large crabgrass).CABI Compendium202210.1079/cabicompendium.18916
    [Google Scholar]
  25. Digitaria radicosa (J.Presl) Miq. | Species.Available from: https://indiabiodiversity.org/species/show/263811 (accessed June 19, 2023).
  26. Brachiaria reptans (POACEAE/GRAMINEAE).Available from: http://keralaplants.in/keralaplantsdetails.aspx?id=Brachiaria_reptans
  27. Brachiaria decumbens - Useful Tropical Plants.Available from: https://tropical.theferns.info/viewtropical.php?id=Brachiaria+decumbens (accessed June 20, 2023).
  28. Brachiaria decumbens Stapf | Species. India Biodivers Portal.Available from: https://indiabiodiversity.org/species/show/263798 (accessed June 19, 2023).
  29. CABI Digitaria abyssinica (East African couchgrass). CABI Compendium202110.1079/cabicompendium.18917
    [Google Scholar]
  30. Digitaria horizontalis Willd. | Plants of the World Online | Kew Science.Available from: http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:329014-2 (accessed July 12, 2023).
  31. Digitaria horizontalis Willd. | Species. WIKTROP - Weed Identif Knowl Trop Mediterr Areas.Available from: https://portal.wiktrop.org/species/show/110
  32. ParkerC. Digitaria insularis (sourgrass). CABI Compendium201210.1079/cabicompendium.109596
    [Google Scholar]
  33. Digitaria insularis (L.) Mez ex Ekman | Species. WIKTROP - Weed Identif Knowl Trop Mediterr Areas.Available from: https://portal.wiktrop.org/species/show/367571 (accessed July 12, 2023).
  34. HeuzéV TranG HassounP LebasF. Goose grass (Eleusine indica). Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO.2019Available from: https://www.feedipedia.org/node/446
  35. DashS. BohidarJ. DasC. MohantyA. MeherA. HotaR. Evaluation of anthelmintic activity and GC-MS characterization of urochloa distachya (L.).Int. J. Pharm. Investig.202313224825410.5530/ijpi.13.2.034
    [Google Scholar]
  36. DashS. MeherA. DashS.K. DasC. DashS.K. GC-MS analysis of methanolic extract of Urochloa distachya (L.) T. Q. Nguyen, leave.Int. J. Pharm. Sci. Res.20211323802394
    [Google Scholar]
  37. VieiraC EvangelistaS CirilloR LippiA MaggiCA ManziniS Effect of ricinoleic acid in acute and subchronic experimental models of inflammation.Mediators Inflamm.20009522322810.1080/09629350020025737
    [Google Scholar]
  38. DashS. BohidarJ. SahuA.K. DasC. GC-MS analysis of methanolic cold extract of Urochloa distachya (L.) T.Q. Nguyen, whole plant.Int. J. Pharm. Res. Appl.20216
    [Google Scholar]
  39. HartmannK.C.D. FortesA.M.T. RibeiroV de M. SpiassiA. Phytochemical screen of extracts Brachiaria brizantha and Megathyrsus maximus and their effects on germination and development of Parapiptadenia rigida (Benth.) Brenan.Rev. Acta Ambiental Catarinense2020161/222
    [Google Scholar]
  40. SapunyoW.L. MbariaJ.M. KanjaL.W. OmoloM.J. OnyanchaJ.M. Phytochemical screening, toxic effects, and antimicrobial activity studies of Digitaria abyssinica (Hochst. ex A.Rich.) Stapf (Poaceae) rhizome extracts against selected uropathogenic microorganisms.Evid. Based Complement. Alternat. Med.202320231455209510.1155/2023/455209536644445
    [Google Scholar]
  41. SinghA.M. N DR. UdayashankarA.C. SumanaK. Phytochemical screening, antimicrobial, anti-inflammatory and anti-cancerous activities of ethanol and hexane extracts of Urochloa ramosa.Plant Sci. Today2022953754510.14719/pst.1416
    [Google Scholar]
  42. EgenolfK. ConradJ. SchöneJ. BraunbergerC. BeifußU. WalkerF. NuñezJ. ArangoJ. KarwatH. CadischG. NeumannG. RascheF. Brachialactone isomers and derivatives of Brachiaria humidicola reveal contrasting nitrification inhibiting activity.Plant Physiol. Biochem.202015449149710.1016/j.plaphy.2020.06.00432663650
    [Google Scholar]
  43. MeenaH.M. SachdevM.S. ManjaiahK.M. DotaniyaM.L. Nitrification inhibition potential of brachiaria humidicola.Natl. Acad. Sci. Lett.201437211311610.1007/s40009‑013‑0216‑1
    [Google Scholar]
  44. ChitindinguK. NdhlalaA.R. ChapanoC. BenhuraM.A. MuchuwetiM. Phenolic compound content, profiles and antioxidant activities of amaranthus hybridus (pigweed), brachiaria brizantha (upright brachiaria) and panicum maximum (guinea grass).J. Food Biochem.200731220621610.1111/j.1745‑4514.2007.00108.x
    [Google Scholar]
  45. EspíndolaK.M.M. FerreiraR.G. NarvaezL.E.M. Silva RosarioA.C.R. da SilvaA.H.M. SilvaA.G.B. VieiraA.P.O. MonteiroM.C. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma.Front. Oncol.2019954110.3389/fonc.2019.0054131293975
    [Google Scholar]
  46. ZduńskaK. DanaA. KolodziejczakA. RotsztejnH. Antioxidant properties of ferulic acid and its possible application.Skin Pharmacol. Physiol.201831633233610.1159/00049175530235459
    [Google Scholar]
  47. BooY.C. p-Coumaric acid as an active ingredient in cosmetics: a review focusing on its antimelanogenic effects.Antioxidants20198827510.3390/antiox808027531382682
    [Google Scholar]
  48. 4 Hydroxybenzoic Acid - An overview | ScienceDirect Topics.Available from: https://www.sciencedirect.com/topics/nursing-and-health-professions/4-hydroxybenzoic-acid (accessed June 15, 2023).
  49. SemamingY. PannengpetchP. ChattipakornS.C. ChattipakornN. Pharmacological properties of protocatechuic Acid and its potential roles as complementary medicine.Evid. Based Complement. Alternat. Med.2015201511110.1155/2015/59390225737736
    [Google Scholar]
  50. KakkarS. BaisS. A review on protocatechuic Acid and its pharmacological potential.ISRN Pharmacol.201420141910.1155/2014/95294325006494
    [Google Scholar]
  51. ZhouB. KongC.H. LiY.H. WangP. XuX.H. Crabgrass (Digitaria sanguinalis) allelochemicals that interfere with crop growth and the soil microbial community.J. Agric. Food Chem.201361225310531710.1021/jf401605g23678893
    [Google Scholar]
  52. YuQ. ChenS. TangH. ZhangX. TaoR. YanZ. ShiJ. GuoW. ZhangS. Veratric acid alleviates liver ischemia/reperfusion injury by activating the Nrf2 signaling pathway.Int. Immunopharmacol.2021101Pt B10829410.1016/j.intimp.2021.10829434749250
    [Google Scholar]
  53. MurataM. NakaiY. KawazuK. IshizakaM. KajiwaraH. AbeH. TakeuchiK. IchinoseY. MitsuharaI. MochizukiA. SeoS. Loliolide, a carotenoid metabolite, is a potential endogenous inducer of herbivore resistance.Plant Physiol.201917941822183310.1104/pp.18.0083730700538
    [Google Scholar]
  54. Maltol Applications, Maltol Uses. Food Addit Ingred Supplier - Newseed Chem Co Ltd.2015Available from: https://www.foodsweeteners.com/applications-and-uses-of-maltol/ (accessed June 16, 2023).
  55. IbrahimT. El-HelaA.A. DawoudG.T.M. ZhranM. Antimethicillin-resistant staphylococcus aureus and biological activities of metabolites from digitaria sanguinalis L.Indian J. Pharm. Sci.201981465166010.36468/pharmaceutical‑sciences.556
    [Google Scholar]
  56. KaurJ. KaurR. p -coumaric acid: A naturally occurring chemical with potential therapeutic applications.Curr. Org. Chem.202226141333134910.2174/1385272826666221012145959
    [Google Scholar]
  57. LiX.X. ChenS.G. YueG.G.L. KwokH.F. LeeJ.K.M. ZhengT. ShawP.C. SimmondsM.S.J. LauC.B.S. Natural flavone tricin exerted anti-inflammatory activity in macrophage via NF-κB pathway and ameliorated acute colitis in mice.Phytomedicine20219015362510.1016/j.phymed.2021.15362534256329
    [Google Scholar]
  58. RashidiS. YousefiA.R. PouryousefM. GoicoecheaN. Effect of arbuscular mycorrhizal fungi on the accumulation of secondary metabolites in roots and reproductive organs of Solanum nigrum, Digitaria sanguinalis and Ipomoea purpurea.Chem. Biol. Technol. Agric.2022912310.1186/s40538‑022‑00288‑1
    [Google Scholar]
  59. ManujaR SachdevaS JainA ChaudharyJ. A comprehensive review on biological activities of p-hydroxy benzoic acid and its derivatives.Int. J. Pharm. Sci. Rev. Res.2013222
    [Google Scholar]
  60. BakrimS. BenkhairaN. BouraisI. BenaliT. LeeL.H. El OmariN. SheikhR.A. GohK.W. MingL.C. BouyahyaA. Health benefits and pharmacological properties of stigmasterol.Antioxidants20221110191210.3390/antiox1110191236290632
    [Google Scholar]
  61. NCATS Inxight Drugs — ISOORIENTIN.Available from: https://drugs.ncats.io/drug/A37342TIX1 (accessed June 16, 2023).
  62. BalogunA.O. AdelekeA.A. IkubanniP.P. AdegokeS.O. AlayatA.M. McDonaldA.G. Physico-chemical characterization, thermal decomposition and kinetic modeling of Digitaria sanguinalis under nitrogen and air environments.Case Stud. Therm. Eng.20212610113810.1016/j.csite.2021.101138
    [Google Scholar]
  63. TakatoT. IwataK. MurakamiC. WadaY. SakaneF. Chronic administration of myristic acid improves hyperglycaemia in the Nagoya–Shibata–Yasuda mouse model of congenital type 2 diabetes.Diabetologia201760102076208310.1007/s00125‑017‑4366‑428707095
    [Google Scholar]
  64. SandhyaS. TalukdarJ. Chemical and biological properties of lauric acid: A review.Int. J. Adv. Res.201641123112810.21474/IJAR01/952
    [Google Scholar]
  65. DilikaF. BremnerP.D. MeyerJ.J.M. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: A plant used during circumcision rites.Fitoterapia200071445045210.1016/S0367‑326X(00)00150‑710925024
    [Google Scholar]
  66. Behenic acid.2023Available from: https://en.wikipedia.org/wiki/Behenic_acid
  67. Showing metabocard for Arachidic acid (HMDB0002212).Available from: https://hmdb.ca/metabolites/HMDB0002212
  68. FeltonA. What Is Palmitic Acid? WebMD.Available from: https://www.webmd.com/diet/what-is-palmitic-acid
  69. Venn-WatsonS.K. ParryC. BairdM. StevensonS. CarlinK. DanielsR. SmithC.R. JonesR. WellsR.S. RidgwayS. JensenE.D. Increased dietary intake of saturated fatty acid heptadecanoic acid (C17:0) associated with decreasing ferritin and alleviated metabolic syndrome in dolphins.PLoS One2015107e013211710.1371/journal.pone.013211726200116
    [Google Scholar]
  70. Casillas-VargasG. Ocasio-MalavéC. MedinaS. Morales-GuzmánC. Del ValleR.G. CarballeiraN.M. Sanabria-RíosD.J. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents.Prog. Lipid Res.20218210109310.1016/j.plipres.2021.10109333577909
    [Google Scholar]
  71. FT177248 | 2433-96-7 | Tricosanoic acid | Biosynth.Available from: https://www.biosynth.com/p/FT177248/2433-96-7-tricosanoic-acid (accessed October 1, 2023).
  72. Lignoceric acid (Tetracosanoic acid) | Fatty Acid | MedChemExpress.Available from: https://www.medchemexpress.com/lignoceric-acid.html (accessed October 1, 2023).
  73. SantosF.O. de LimaH.G. de Souza SantosN.S. SerraT.M. UzedaR.S. ReisI.M.A. BoturaM.B. BrancoA. BatatinhaM.J.M. In vitro anthelmintic and cytotoxicity activities the Digitaria insularis (Poaceae).Vet. Parasitol.2017245485410.1016/j.vetpar.2017.08.00728969837
    [Google Scholar]
  74. SantosF.O. LimaH.G. de Souza Santa RosaS. das MercêsN.B. SerraT.M. UzedaR.S. ReisI.M.A. BoturaM.B. BrancoA. BatatinhaM.J.M. In vitro acaricide and anticholinesterase activities of digitaria insularis (Poaceae) against Rhipicephalus (Boophilus) microplus.Vet. Parasitol.201825510210610.1016/j.vetpar.2018.04.00329773129
    [Google Scholar]
  75. ParkS. BongS.K. LeeJ.W. ParkN.J. ChoiY. KimS.M. YangM.H. KimY.K. KimS.N. Diosmetin and its glycoside, diosmin, improve atopic dermatitis- like lesions in 2,4-dinitrochlorobenzene-induced murine models.Biomol. Ther.202028654254810.4062/biomolther.2020.13532938818
    [Google Scholar]
  76. CartaG. MurruE. BanniS. MancaC. Palmitic acid: Physiological role, metabolism and nutritional implications.Front. Physiol.2017890210.3389/fphys.2017.0090229167646
    [Google Scholar]
  77. Ethyl palmitate (Ethyl hexadecanoate) | Fatty Acid Ethyl Ester | MedChemExpress.Available from: https://www.medchemexpress.com/ethyl-palmitate.html (accessed June 16, 2023).
  78. SaeedN.M. El-DemerdashE. Abdel-RahmanH.M. AlgandabyM.M. Al-AbbasiF.A. Abdel-NaimA.B. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models.Toxicol. Appl. Pharmacol.20122641849310.1016/j.taap.2012.07.02022842335
    [Google Scholar]
  79. SantosC.C.M.P. SalvadoriM.S. MotaV.G. CostaL.M. de AlmeidaA.A.C. de OliveiraG.A.L. CostaJ.P. de SousaD.P. de FreitasR.M. de AlmeidaR.N. Antinociceptive and antioxidant activities of phytol in vivo and in vitro models.Neurosci. J.201320131910.1155/2013/94945226317107
    [Google Scholar]
  80. KoG.A. Kim ChoS. Ethyl linoleate inhibits α-MSH-induced melanogenesis through Akt/GSK3β/β-catenin signal pathway.Korean J. Physiol. Pharmacol.2018221536110.4196/kjpp.2018.22.1.5329302212
    [Google Scholar]
  81. 111-61-5 | Ethyl Stearate | Octadecanoic Acid Ethyl Ester; Stearic Acid Ethyl Ester; Ethyl n-Octadecanoate; Ethyl Octadecanoate; Ethyl Stearate; KAK-ES; NSC 8919; | C20H40O2| TRC.Available from: https://www.trc-canada.com/product-detail/?E925950 (accessed June 16, 2023).
  82. Alpha-linolenic acid (ALA): Overview, uses, side effects, precautions, interactions, dosing and reviews.Available from: https://www.webmd.com/vitamins/ai/ingredientmono-1035/alpha-linolenic-acid-ala (accessed October 24, 2023).
  83. LandsB. Fatty acids: Essential fatty acids.Encycl. Food Health. CaballeroB. FinglasP.M. ToldráF. OxfordAcademic Press201661562210.1016/B978‑0‑12‑384947‑2.00279‑8
    [Google Scholar]
  84. AdohoA.C.C. ZinsouF.T.A. OlounladeP.A. AzandoE.V.B. Hounzangbe-AdoteM.S. GbangbocheA.B. Review of the literature of Eleusine indica: phytochemical, toxicity, pharmacological and zootechnical studies.J. Pharmacogn. Phytochem.2021103293310.22271/phyto.2021.v10.i3a.14060
    [Google Scholar]
  85. AlaekweI.O. AjiweI.O. AjiweA.C. AningoG.N. Phytochemical and anti – microbial screening of the aerial parts of eleusine indica.Int J Pure App Biosci201531
    [Google Scholar]
  86. ZhangL. WuM. ChenZ. Schaftoside improves cerebral ischemia-reperfusion injury by enhancing autophagy and reducing apoptosis and inflammation through the AMPK/mTOR pathway.Adv. Clin. Exp. Med.202231121343135410.17219/acem/15220736135814
    [Google Scholar]
  87. LiuM. ZhangG. WuS. SongM. WangJ. CaiW. MiS. LiuC. Schaftoside alleviates HFD-induced hepatic lipid accumulation in mice via upregulating farnesoid X receptor.J. Ethnopharmacol.202025511277610.1016/j.jep.2020.11277632205261
    [Google Scholar]
  88. Isoschaftoside | CAS:52012-29-0.Available from: https://www.chemfaces.com/natural/Isoschaftoside-CFN92029.html (accessed September 30, 2023).
  89. MI33288 | 52012-29-0 | Isoschaftoside | Biosynth.Available from: https://www.biosynth.com/p/MI33288/52012-29-0-isoschaftoside (accessed September 30, 2023).
  90. PengY. GanR. LiH. YangM. McClementsD.J. GaoR. SunQ. Absorption, metabolism, and bioactivity of vitexin: Recent advances in understanding the efficacy of an important nutraceutical.Crit. Rev. Food Sci. Nutr.20216161049106410.1080/10408398.2020.175316532292045
    [Google Scholar]
  91. MazumderK. NabilaA. AktarA. FarahnakyA. Bioactive variability and in vitro and in vivo antioxidant activity of unprocessed and processed flour of nine cultivars of australian lupin species: A comprehensive substantiation.Antioxidants20209428210.3390/antiox904028232230703
    [Google Scholar]
  92. MorahFNI OdeyCO Chemical composition and antimicrobial activity of Eleusine indica leaf essential oil.IJCBS202018129133
    [Google Scholar]
  93. KhatuaS PandeyA BiswasS SurjyoC BiswasJ Phytochemical evaluation and antimicrobial properties of Trichosanthes dioica root extract.J. Pharmacogn. Phytochem.201655410413
    [Google Scholar]
  94. PopeL.E. MarcellettiJ.F. KatzL.R. KatzD.H. Anti-herpes simplex virus activity of n-docosanol correlates with intracellular metabolic conversion of the drug.J. Lipid Res.199637102167217810.1016/S0022‑2275(20)37299‑08906594
    [Google Scholar]
  95. Aldaba-MuruatoL. Ventura-JuárezJ. Perez-HernandezA. Hernández-MoralesA. Muñoz-OrtegaM. Martínez-HernándezS. Alvarado-SánchezB. Macías-PérezJ. Therapeutic perspectives of p -coumaric acid: Anti-necrotic, anti-cholestatic and anti-amoebic activities.World Acad. Sci. J.2021354710.3892/wasj.2021.118
    [Google Scholar]
  96. KJT GC-MS analysis of bioactive components of kandelia candel (L.) druce.Int. J. Adv. Sci. Res.202011193197
    [Google Scholar]
  97. JagathyVK Preliminary phytochemical screening and GC-MS analysis in the methanolic leaf extracts of Polyalthia korinti (Dunal) Benth. & J. Hook ex J. Hook & Thorns.World J. Pharm. Res.2017
    [Google Scholar]
  98. SubramaniamY. RamalakshmiS. NeelavathyR. JohnpaulM. Identification and comparative studies of different volatile fractions from monochaetia kansensis by GCMS.Glob. J. Pharmacol.201266571
    [Google Scholar]
  99. ImadH.H. HusseinJ.H. MuhannedA.K. NidaaS.H. Identification of five newly described bioactive chemical compounds in methanolic extract of Mentha viridis by using gas chromatography - mass spectrometry (GC-MS).J. Pharmacogn. Phytother.20157710712510.5897/JPP2015.0349
    [Google Scholar]
  100. FC01712 | 1759-53-1 | Cyclopropane carboxylic acid.Available from: https://www.biosynth.com/p/FC01712/1759-53-1-cyclopropane-carboxylic-acid (accessed September 30, 2023).
  101. YoussefA.M.M. MaatyD.A.M. Al-SarairehY.M. Phytochemical analysis and profiling of antioxidants and anticancer compounds from Tephrosia purpurea (L.) subsp. apollinea family fabaceae.Molecules2023289393910.3390/molecules2809393937175349
    [Google Scholar]
  102. AddaiZ.R. AboodM.S. HlailS.H. HlailS.G.C-M.S. GC-MS profiling, antioxidants and antimicrobial activity of prickly pear (Opuntiaficus-indica) pulp extract.Pharmacogn. J.202214226226710.5530/pj.2022.14.32
    [Google Scholar]
  103. SukorN.S.M. ZakriZ.H.M. RasolN.E. SalimF. Annotation and identification of phytochemicals from eleusine indica using high-performance liquid chromatography tandem mass spectrometry: Databases-driven approach.Molecules2023287311110.3390/molecules2807311137049873
    [Google Scholar]
  104. HeX. WangJ. LiM. HaoD. YangY. ZhangC. HeR. TaoR. Eucommia ulmoides Oliv.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine.J. Ethnopharmacol.20141511789210.1016/j.jep.2013.11.02324296089
    [Google Scholar]
  105. SinghS. McKintoshR. Adenosine. StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  106. LiuX. ChengX. LiuX. HeL. ZhangW. WangY. SunW. JiZ. Investigation of the urinary metabolic variations and the application in bladder cancer biomarker discovery.Int. J. Cancer2018143240841810.1002/ijc.3132329451296
    [Google Scholar]
  107. PengJ. QiuS. JiaF. ZhangL. HeY. ZhangF. SunM. DengY. GuoY. XuZ. LiangX. YanW. WangK. The introduction of l-phenylalanine into antimicrobial peptide protonectin enhances the selective antibacterial activity of its derivative phe-Prt against Gram-positive bacteria.Amino Acids2021531233210.1007/s00726‑020‑02919‑z33236256
    [Google Scholar]
  108. Tris(2-butoxyethyl) phosphate.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/6540 (accessed December 4, 2023).
  109. Sulfamethazine.Available from: https://go.drugbank.com/drugs/DB01582 (accessed December 4, 2023).
  110. 13-keto-9Z,11E-octadecadienoic acid.Available from: https://www.benchchem.com/product/b163644
  111. KimY. HiraiS. GotoT. OhyaneC. TakahashiH. TsuganeT. KonishiC. FujiiT. InaiS. IijimaY. AokiK. ShibataD. TakahashiN. KawadaT. Potent PPARα activator derived from tomato juice, 13-oxo-9,11-octadecadienoic acid, decreases plasma and hepatic triglyceride in obese diabetic mice.PLoS One201272e3131710.1371/journal.pone.003131722347463
    [Google Scholar]
  112. N-Lauroylsarcosine sodium salt, 95%, Thermo Scientific Chemicals, Quantity: 10 g | Fisher Scientific.Available from: https://www.fishersci.com/shop/products/n-lauroylsarcosine-sodium-salt-95-thermo-scientific-1/AAJ6004009 (accessed December 5, 2023).
  113. PromdamN. PanichayupakaranantP. (6)-Gingerol: A narrative review of its beneficial effect on human health.Food Chemistry Advances2022110004310.1016/j.focha.2022.100043
    [Google Scholar]
  114. Inxight DrugsN.C.A.T.S. NCATS Inxight Drugs — 3,5-DI-TERT-BUTYL-4-HYDROXYBENZALDEHYDE.Available from: https://drugs.ncats.io/drug/95VTI93VUL (accessed December 9, 2023).
  115. MogiK. KoyaY. YoshiharaM. SugiyamaM. MikiR. MiyamotoE. FujimotoH. KitamiK. IyoshiS. TanoS. UnoK. TamauchiS. YokoiA. ShimizuY. IkedaY. YoshikawaN. NiimiK. YamakitaY. TomitaH. ShibataK. NawaA. TomodaY. KajiyamaH. 9-oxo-ODAs suppresses the proliferation of human cervical cancer cells through the inhibition of CDKs and HPV oncoproteins.Sci. Rep.20231311920810.1038/s41598‑023‑44365‑337932321
    [Google Scholar]
  116. KusumahD. WakuiM. MurakamiM. XieX. YukihitoK. MaedaI. Linoleic acid, α-linolenic acid, and monolinolenins as antibacterial substances in the heat-processed soybean fermented with Rhizopus oligosporus.Biosci. Biotechnol. Biochem.20208461285129010.1080/09168451.2020.173129932089087
    [Google Scholar]
  117. HernándezA.F. Common mechanisms of toxicity in pesticides.Encycl. Toxicol.4th ed WexlerP. OxfordAcademic Press202419120410.1016/B978‑0‑12‑824315‑2.00768‑5
    [Google Scholar]
  118. DasP. MukhopadhyayS. Kumar SarkarN. MandalS. KarM. MukhopadhyayA. Mugineic acid, active ingredient of wheat grass: An oral novel hexadentate iron chelator in iron overloaded diseases.J. Biochem.2016160316317610.1093/jb/mvw02327008864
    [Google Scholar]
  119. SaquibQ. Al-SalemA.M. SiddiquiM.A. AnsariS.M. ZhangX. Al-KhedhairyA.A. Tris(2-butoxyethyl) phosphate (TBEP): A flame retardant in solid waste display hepatotoxic and carcinogenic risks for humans.Chemosphere202229613397710.1016/j.chemosphere.2022.13397735216979
    [Google Scholar]
  120. RoyR.N. LaskarS. SenS.K. Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2.Microbiol. Res.2006161212112610.1016/j.micres.2005.06.00716427514
    [Google Scholar]
  121. FH43000 | 2615-15-8 | Hexaethylene glycol | Biosynth.Available from: https://www.biosynth.com/p/FH43000/2615-15-8-hexaethylene-glycol (accessed December 7, 2023).
  122. FB144319 | 120-40-1 | N,N-Bis(2-hydroxyethyl)dodecanamide.Available from: https://www.biosynth.com/p/FB144319/120-40-1-nn-bis2-hydroxyethyldodecanamide (accessed December 7, 2023).
  123. BAA54167 | 1541-67-9 | N-Lauryldiethanolamine | Biosynth.Available from: https://www.biosynth.com/p/BAA54167/1541-67-9-n-lauryldiethanolamine (accessed December 7, 2023).
  124. Nonaethylene Glycol Monododecyl Ether Nonionic Surfactant - Features, Applications, Order Information. Procurenet Ltd.Available from: https://procure-net.com/product/nonaethylene-glycol-monododecyl-ether-nonionic-surfactant/ (accessed December 7, 2023).
  125. AlshakerH. SauerL. MonteilD. OttavianiS. SrivatsS. BöhlerT. Chapter Six - Therapeutic potential of targeting sk1 in human cancers.Adv. Cancer Res. NorrisJ.S. Academic Press2013Vol. 11714320010.1016/B978‑0‑12‑394274‑6.00006‑6
    [Google Scholar]
  126. MillerG.H. ArcieriG. WeinsteinM.J. WaitzJ.A. Biological activity of netilmicin, a broad-spectrum semisynthetic aminoglycoside antibiotic.Antimicrob. Agents Chemother.197610582783610.1128/AAC.10.5.8271008541
    [Google Scholar]
  127. JusticidinB. Anticancer Lignan | MedChemExpress.Available from: https://www.medchemexpress.com/justicidin-b.html (accessed December 6, 2023).
  128. BashaN.J. BasavarajaiahS.M. BaskaranS. KumarP. A comprehensive insight on the biological potential of embelin and its derivatives.Nat. Prod. Res.202236123054306810.1080/14786419.2021.195536134304655
    [Google Scholar]
  129. Hari BabuR. SavithrammaN. Evaluation of grass species for elements through ICP-OES technique.Int. J. Pharm. Sci. Res.20145849084915
    [Google Scholar]
  130. HasiahA.H. ElsheikhH.A. AbdullahA.S.A.L.A.M. KhairiH.M. RajionM.A. Effect of phenobarbitone treatment against signal grass (Brachiaria decumbens) toxicity in sheep.Vet. J.2000160326727210.1053/tvjl.2000.049811061964
    [Google Scholar]
  131. KT. In vitro assessment of antioxidant and antibacterial activity of green synthesized silver nanoparticles from Digitaria radicosa leaves.Asian J. Pharm. Clin. Res.2016297302
    [Google Scholar]
  132. SunagarR.R. SreeramaY.N. Implication of solvent polarities on browntop millet (Urochloa ramosa) phenolic antioxidants and their ability to protect oxidative DNA damage and inhibit α-amylase and α-glucosidase enzymes.Food Chem.202341113547410.1016/j.foodchem.2023.13547436681026
    [Google Scholar]
  133. SagniaB. FedeliD. CasettiR. MontesanoC. FalcioniG. ColizziV. Antioxidant and anti-inflammatory activities of extracts from Cassia alata, Eleusine indica, Eremomastax speciosa, Carica papaya and Polyscias fulva medicinal plants collected in Cameroon.PLoS One201498e10399910.1371/journal.pone.010399925090613
    [Google Scholar]
  134. AliM. WalaitS. Farhan Ul HaqueM. MukhtarS. Antimicrobial activity of bacteria associated with the rhizosphere and phyllosphere of Avena fatua and Brachiaria reptans.Environ. Sci. Pollut. Res. Int.20212848688466886110.1007/s11356‑021‑15436‑734282546
    [Google Scholar]
  135. OgboleO.O. SegunP.A. FasinuP.S. Antimicrobial and antiprotozoal activities of twenty-four Nigerian medicinal plant extracts.S. Afr. J. Bot.201811724024610.1016/j.sajb.2018.05.028
    [Google Scholar]
  136. MorahF.N.I. OtukM.E. Antimicrobial and anthelmintic activity of Eleusine indica.J. Sci. Understand.2024142832
    [Google Scholar]
  137. TahirMM IbrahimN YaacobWA Cytotoxicity and antiviral activities of Asplenium nidus, Phaleria macrocarpa and Eleusine indica.AIP Conf. Proc.2014161454955210.1063/1.4895259
    [Google Scholar]
  138. ALMEIDA MÂNGELAODE. Effects of aqueous extracts of leaves of cymbopogon citratus (dc.) stapf (lemongrass) and digitalia insularis (l.) fedde (sugargrass) on cultures of larvae of gastrointestinal nematodes of goats.Rev. Bras. Parasitol. Vet.2003123125129
    [Google Scholar]
  139. AkahP.A. EzeugoA.O. Eleusine indica Linn, Baertin (Poaceae) ethanol leaf extract and its ethyl acetate fraction display potential anti-inflammatory activities.J. Pharm. Res. Int.20203213758610.9734/jpri/2020/v32i1330587
    [Google Scholar]
  140. AdeyemiP.O.O. Neuropharmacologic effects of whole plant extract of Digitaria horizontalis in mice.Afr. J. Med. Med. Sci.201847249258
    [Google Scholar]
  141. BajoL.M. LomonsodK.C. TanR.S. Anti-mutagenic potential of the aqueous extract from digitaria sanguinalis.Sci. Int.201712571260
    [Google Scholar]
  142. OKOKON JE, ODOMENA CS, IMABONG EFFIONG, OBOT J, UDOBANG JA.Antiplasmodial and antidiabetic activities of eleusine indica | abstract.IntJDrug Dev & Res201023493500
    [Google Scholar]
  143. IqbalM. GnanarajC. Eleusine indica L. possesses antioxidant activity and precludes carbon tetrachloride (CCl4)-mediated oxidative hepatic damage in rats.Environ. Health Prev. Med.201217430731510.1007/s12199‑011‑0255‑522207570
    [Google Scholar]
  144. DesaiAV PatilVM PatilSS KangralkarVA Phytochemical investigation of Eleusine indica for in-vivo anti-hypertensive activity.Int. J. Innov. Sci. Res. Technol.201726405416
    [Google Scholar]
  145. PotbhareM.S. BarikR. KhobragadeD.S. Management of alzheimer’s disease: A review of herbal drugs having potential pharmacological and therapeutic activity.J. Young Pharm.2023151133010.5530/097515050344
    [Google Scholar]
  146. LaiH.Y. OngS.L. NalamoluK.R. Potential lipid-lowering effects of Eleusine indica (L) Gaertn. Extract on high-fat-diet-induced hyperlipidemic rats.Pharmacogn. Mag.201713Suppl 1S1S910.4103/0973‑1296.20398628479718
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838307582240929225650
Loading
/content/journals/ctm/10.2174/0122150838307582240929225650
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test