Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2772-4328
  • E-ISSN: 2772-4336

Abstract

Many medications have different pharmacokinetics in children than in adults. Knowledge about the safety and efficacy of medications in children requires research into the pharmacokinetic profiles of children's medicines. By analysing registered clinical trial records, this study determined how frequently pharmacokinetic data is gathered in paediatric drug trials.

We searched for the pharmacokinetic data from clinical trial records for preterm infants and children up to the age of 16 from January 2011 to April 2022. The records of trials involving one or more drugs in preterm infants and children up to the age of 16 were examined for evidence that pharmacokinetic data would be collected.

In a total of 1483 records of interventional clinical trials, 136 (9.17%) pharmacokinetic data involved adults. Of those 136 records, 60 (44.1%) records were pharmacokinetics trials involving one or more medicines in children up to the age of 16.20 (33.3%) in America, followed by 19 (31.6%) in Europe. Most trials researched medicines in the field of infection or parasitic diseases 20 (33.3%). 27 (48.2%) and 26 (46.4%) trials investigated medicines that were indicated as essential medicine.

The pharmacokinetic characteristics of children's drugs need to be better understood. The current state of pharmacokinetic research appears to address the knowledge gap in this area adequately. Despite slow progress, paediatric clinical trials have experienced a renaissance as the significance of paediatric trials has gained international attention. The outcome of paediatric trials will have an impact on children's health in the future. In recent years, the need for greater availability and access to safe child-size pharmaceuticals has received a lot of attention.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/2772432818666221223155455
2023-01-11
2025-01-19
Loading full text...

Full text loading...

References

  1. GodbillonJ. RichardJ. GerardinA. MeinertzT. KasperW. JähnchenE. Pharmacokinetics of the enantiomers of acenocoumarol in man.Br. J. Clin. Pharmacol.198112562162910.1111/j.1365‑2125.1981.tb01280.x7332726
    [Google Scholar]
  2. SousaM. PozniakA. BoffitoM. Pharmacokinetics and pharmacodynamics of drug interactions involving rifampicin, rifabutin and antimalarial drugs.J. Antimicrob. Chemother.200862587287810.1093/jac/dkn33018713760
    [Google Scholar]
  3. GlassmanP.M. MuzykantovV.R. Pharmacokinetic and pharmacodynamic properties of drug delivery systems.J. Pharmacol. Exp. Ther.2019370357058010.1124/jpet.119.25711330837281
    [Google Scholar]
  4. WhiteP.J. DavisE.A. SantiagoM. Identifying the core concepts of pharmacology education.Pharmacol. Res. Perspect.202194e0083610.1002/prp2.83634288559
    [Google Scholar]
  5. SantiagoM. DavisE.A. HintonT. Defining and unpacking the core concepts of pharmacology education.Pharmacol. Res. Perspect.202196e0089410.1002/prp2.89434817122
    [Google Scholar]
  6. GoreR. ChughP.K. TripathiC.D. LhamoY. GautamS. Pediatric off-label and unlicensed drug use and its implications.Curr. Clin. Pharmacol.2017121182510.2174/157488471266617031716193528322168
    [Google Scholar]
  7. Pharmacokinetics in children. MSD Manual professional version. 2020. Available from: https://www.msdmanuals.com/professional/pediatrics/principles-of-drug-treatment-in-children/pharmacokine- tics-in-children
  8. O’HaraK. Paediatric pharmacokinetics and drug doses.Aust. Prescr.201639620821010.18773/austprescr.2016.07127990048
    [Google Scholar]
  9. Drug Research and Children. The US Food and Drug Administration 2016. Available from: https://www.fda.gov/drugs/infor- mation-consumers-and-patients-drugs/drug-research-and-children
  10. BarkerCIS StandingJF KellyLE Pharmacokinetic studies in children: Recommendations for practice and research.Arch Dis Child20181037archdischild-2017-31450610.1136/archdischild‑2017‑31450629674514
    [Google Scholar]
  11. World Health Organization (WHO). Available from: https://www.who.int/
  12. Who is a child? – The Hindu. Last updated on June, 2012. Available from: https://www.thehindu.com/news/national/who-is-a-child/article3528624.ece
  13. Food and Drug AdministrationGuidance for Industry: General Considerations for Pediatric Pharmacokinetic Studies for Drugs and Biological Products.Rockville, MDFDA Center for Drug Evaluation and Research1998
    [Google Scholar]
  14. International Classification of Diseases ICD-11 Mortality and Morbidity Statistics (ICD-11 MMS). Available from: https://icd.who.int/browse11/l-m/en
  15. WHO Model List of Essential Medicines for Children - 8th list, 2021. Last updated on 30 September 2021. Available from: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.03
  16. National List of Essential Medicines. 2015. Available from: https://cdsco.gov.in/opencms/opencms/en/consumer/Essential-Medicines/
  17. Centre releases NLEM 2021 with 39 additional drugs and 16 deletions from previous list. Last updated on September 4, 2021. Available from: http://www.pharmabiz.com/NewsDetails.aspx?aid=142320&sid=1
  18. BirbeckG.L. HermanS.T. CapparelliE.V. A clinical trial of enteral Levetiracetam for acute seizures in pediatric cerebral malaria.BMC Pediatr.201919139910.1186/s12887‑019‑1766‑2
    [Google Scholar]
  19. SuF. NicolsonS.C. ZuppaA.F. A dose-response study of dexmedetomidine administered as the primary sedative in infants following open heart surgery.Pediatr. Crit. Care Med.201314549950710.1097/PCC.0b013e31828a880023628837
    [Google Scholar]
  20. GiuglianiR. HwuW.L. Tylki-SzymanskaA. WhitemanD.A.H. PanoA. A multicenter, open-label study evaluating safety and clinical outcomes in children (1.4-7.5 years) with Hunter syndrome receiving idursulfase enzyme replacement therapy.Genet. Med.201416643544110.1038/gim.2013.16224202085
    [Google Scholar]
  21. LeeB.H. AbdallaA.F. ChoiJ.H. A multicenter, open-label, phase III study of Abcertin in Gaucher disease.Medicine20179645e849210.1097/MD.000000000000849229137040
    [Google Scholar]
  22. KhalilS.N. HahnB.J. ChumpitaziC.E. RockA.D. KaelinB.A. MaciasC.G. A multicenter, randomized, open-label, active-comparator trial to determine the efficacy, safety, and pharmacokinetics of intravenous ibuprofen for treatment of fever in hospitalized pediatric patients.BMC Pediatr.20171714210.1186/s12887‑017‑0795‑y
    [Google Scholar]
  23. ChoiJ.H. LeeB.H. KoJ.M. A phase 2 multi-center, open-label, switch-over trial to evaluate the safety and efficacy of Abcertin® in patients with type 1 Gaucher disease.J. Korean Med. Sci.201530437838410.3346/jkms.2015.30.4.37825829804
    [Google Scholar]
  24. FouladiM. PerentesisJ.P. WagnerL.M. A phase I study of cixutumumab (IMC-A12) in combination with temsirolimus (CCI-779) in children with recurrent solid tumors: A children’s oncology group phase I consortium report.Clin. Cancer Res.20152171558156510.1158/1078‑0432.CCR‑14‑059525467181
    [Google Scholar]
  25. JonesS.A. BreenC. HeapF. A phase 1/2 study of intrathecal heparan-N-sulfatase in patients with mucopolysaccharidosis IIIA.Mol. Genet. Metab.2016118319820510.1016/j.ymgme.2016.05.00627211612
    [Google Scholar]
  26. SchaferE.S. RauR.E. BergS. A phase 1 study of eribulin mesylate (E7389), a novel microtubule-targeting chemotherapeutic agent, in children with refractory or recurrent solid tumors: A Children’s Oncology Group Phase 1 Consortium study (ADVL1314).Pediatr. Blood Cancer2018658e2706610.1002/pbc.2706629719113
    [Google Scholar]
  27. SylvesterK.G. LingX.B. LiuG.Y. A novel urine peptide biomarker-based algorithm for the prognosis of necrotising enterocolitis in human infants.Gut20146381284129210.1136/gutjnl‑2013‑30513024048736
    [Google Scholar]
  28. WalkerS. FlumeP. McNamaraJ. A phase 3 study of tezacaftor in combination with ivacaftor in children aged 6 through 11 years with cystic fibrosis.J. Cyst. Fibros.201918570871310.1016/j.jcf.2019.06.00931253540
    [Google Scholar]
  29. WardR.M. KearnsG.L. TammaraB. A multicenter, randomized, open-label, pharmacokinetics and safety study of pantoprazole tablets in children and adolescents aged 6 through 16 years with gastroesophageal reflux disease.J. Clin. Pharmacol.201151687688710.1177/009127001037750120852004
    [Google Scholar]
  30. BaxterP.A. SuJ.M. Onar-ThomasA. A phase I/II study of veliparib (ABT-888) with radiation and temozolomide in newly diagnosed diffuse pontine glioma: A pediatric brain tumor consortium study.Neuro-oncol.202022687588510.1093/neuonc/noaa01632009149
    [Google Scholar]
  31. ChukM.K. AikinA. WhitcombT. A phase I trial and pharmacokinetic study of a 24-hour infusion of trabectedin (Yondelis®, ET-743) in children and adolescents with relapsed or refractory solid tumors.Pediatr. Blood Cancer201259586586910.1002/pbc.2420122847981
    [Google Scholar]
  32. Feruś K, Drabińska N, Krupa-Kozak U, Jarocka-Cyrta E. A randomized, placebo-controlled, pilot clinical trial to evaluate the effect of supplementation with prebiotic synergy 1 on iron homeostasis in children and adolescents with celiac disease treated with a gluten-free diet.Nutrients20181011181810.3390/nu1011181830469412
    [Google Scholar]
  33. Grassin-DelyleS. CouturierR. AbeE. AlvarezJ.C. DevillierP. UrienS. A practical tranexamic acid dosing scheme based on population pharmacokinetics in children undergoing cardiac surgery.Anesthesiology2013118485386210.1097/ALN.0b013e318283c83a23343649
    [Google Scholar]
  34. MuscalJ.A. ThompsonP.A. HortonT.M. A phase I trial of vorinostat and bortezomib in children with refractory or recurrent solid tumors: A children’s oncology group phase I consortium study (ADVL0916).Pediatr. Blood Cancer201360339039510.1002/pbc.2427122887890
    [Google Scholar]
  35. OgungbenroK. WagnerJ.B. Abdel-RahmanS. LeederJ.S. GaletinA. A population pharmacokinetic model for simvastatin and its metabolites in children and adolescents.Eur. J. Clin. Pharmacol.20197591227123510.1007/s00228‑019‑02697‑y31172248
    [Google Scholar]
  36. PintoJ.A. CapparelliE.V. WarshawM. A phase II/III trial of lopinavir/ritonavir dosed according to the WHO pediatric weight band dosing guidelines.Pediatr. Infect. Dis. J.2018372e29e3510.1097/INF.000000000000181729088027
    [Google Scholar]
  37. SuJ.M. ThompsonP. AdesinaA. A phase I trial of veliparib (ABT-888) and temozolomide in children with recurrent CNS tumors: A Pediatric Brain Tumor Consortium report.Neuro-oncol.201416121661166810.1093/neuonc/nou10324908656
    [Google Scholar]
  38. UllrichN.J. PrabhuS.P. ReddyA.T. A phase II study of continuous oral mTOR inhibitor everolimus for recurrent, radiographic-progressive neurofibromatosis type 1-associated pediatric low-grade glioma: A neurofibromatosis clinical trials consortium study.Neuro-oncol.202022101527153510.1093/neuonc/noaa07132236425
    [Google Scholar]
  39. BienertA Bartkowska-Śniatkowska A, Wiczling P, et alAssessing circadian rhythms during prolonged midazolam infusion in the pediatric intensive care unit (PICU) children.Pharmacol. Rep.201365110712110.1016/S1734‑1140(13)70969‑123563029
    [Google Scholar]
  40. CresseyT.R. PunyawudhoB. Le CoeurS. Assessment of nevirapine prophylactic and therapeutic dosing regimens for neonates.J. Acquir. Immune Defic. Syndr.201775555456010.1097/QAI.000000000000144728489732
    [Google Scholar]
  41. DogteromP. RiesenbergR. de GreefR. Asenapine pharmacokinetics and tolerability in a pediatric population.Drug Des. Devel. Ther.2018122677269310.2147/DDDT.S171475
    [Google Scholar]
  42. HallerM.J. GitelmanS.E. GottliebP.A. Antithymocyte globulin plus G-CSF combination therapy leads to sustained immunomodulatory and metabolic effects in a subset of responders with established type 1 diabetes.Diabetes201665123765377510.2337/db16‑082327669730
    [Google Scholar]
  43. MulubwaM. GrieselH.A. MugaboP. DippenaarR. van WykL. Assessment of vancomycin pharmacokinetics and dose regimen optimisation in preterm neonates.Drugs R D.202020210511310.1007/s40268‑020‑00302‑732266599
    [Google Scholar]
  44. NeelyM. MargolA. FuX. Achieving target voriconazole concentrations more accurately in children and adolescents.Antimicrob. Agents Chemother.20155963090309710.1128/AAC.00032‑1525779580
    [Google Scholar]
  45. RosenfeldM. CunninghamS. HarrisW.T. An open-label extension study of ivacaftor in children with CF and a CFTR gating mutation initiating treatment at age 2-5 years (KLIMB).J. Cyst. Fibros.201918683884310.1016/j.jcf.2019.03.00931053538
    [Google Scholar]
  46. SohnW.Y. PortaleA.A. SaluskyI.B. An open-label, single-dose study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of cinacalcet in pediatric subjects aged 28 days to < 6 years with chronic kidney disease receiving dialysis.Pediatr. Nephrol.201934114515410.1007/s00467‑018‑4054‑830141180
    [Google Scholar]
  47. ViscardiR.M. OthmanA.A. HassanH.E. Azithromycin to prevent bronchopulmonary dysplasia in ureaplasma-infected preterm infants: pharmacokinetics, safety, microbial response, and clinical outcomes with a 20-milligram-per-kilogram single intravenous dose.Antimicrob. Agents Chemother.20135752127213310.1128/AAC.02183‑1223439637
    [Google Scholar]
  48. Cohen-RabbieS. MattinsonA. SoK. WangN. GoldwaterR. Effect of food on capsule and granule formulations of selumetinib.Clin. Transl. Sci.202215487888810.1111/cts.1320935170228
    [Google Scholar]
  49. Cohen-WolkowiezM. SampsonM. BloomB.T. Determining population and developmental pharmacokinetics of metronidazole using plasma and dried blood spot samples from premature infants.Pediatr. Infect. Dis. J.201332995696110.1097/INF.0b013e3182947cf823587979
    [Google Scholar]
  50. Drabińska N, Krupa-Kozak U, Jarocka-Cyrta E. Intestinal permeability in children with celiac disease after the administration of oligofructose-enriched inulin into a gluten-free diet-Results of a randomized, placebo-controlled, pilot trial.Nutrients2020126173610.3390/nu1206173632531982
    [Google Scholar]
  51. EsteppJ.H. WiczlingP. MoenJ. Hydroxycarbamide in children with sickle cell anaemia after first-dose vs. chronic therapy: Pharmacokinetics and predictive models for drug exposure.Br. J. Clin. Pharmacol.20188471478148510.1111/bcp.1342628884840
    [Google Scholar]
  52. FogarasiA. FlaminiR. MilhM. Open‐label study to investigate the safety and efficacy of adjunctive perampanel in pediatric patients (4 to < 12 years) with inadequately controlled focal seizures or generalized tonic‐clonic seizures.Epilepsia202061112513710.1111/epi.1641331912493
    [Google Scholar]
  53. HammonK. HartG. VuillemenotB.R. Dose selection for intracerebroventricular cerliponase alfa in children with CLN2 disease, translation from animal to human in a rare genetic disease.Clin. Transl. Sci.20211451810182110.1111/cts.1302834076336
    [Google Scholar]
  54. JiangN. WangL. XiangX. Intracellular vincristine levels in lymphoblasts affect treatment outcome in childhood B‐lymphoblastic leukaemia: Ma‐Spore ALL 2010 study.Br. J. Clin. Pharmacol.20218741990199910.1111/bcp.1459633037681
    [Google Scholar]
  55. JoH. Pilla ReddyV. ParkinsonJ. BoultonD.W. TangW. Model‐informed pediatric dose selection for dapagliflozin by incorporating developmental changes.CPT Pharmacometrics Syst. Pharmacol.202110210811810.1002/psp4.1257733439535
    [Google Scholar]
  56. KleinD.J. BattelinoT. ChatterjeeD.J. JacobsenL.V. HaleP.M. ArslanianS. Liraglutide’s safety, tolerability, pharmacokinetics, and pharmacodynamics in pediatric type 2 diabetes: A randomized, double-blind, placebo-controlled trial.Diabetes Technol. Ther.2014161067968710.1089/dia.2013.036625036533
    [Google Scholar]
  57. LapeyraqueA.L. KassirN. ThéorêtY. Conversion from twice- to once-daily tacrolimus in pediatric kidney recipients: A pharmacokinetic and bioequivalence study.Pediatr. Nephrol.20142961081108810.1007/s00467‑013‑2724‑024435759
    [Google Scholar]
  58. LutsarI. TrafojerU.M. HeathP.T. Meropenem vs. standard of care for treatment of late onset sepsis in children of less than 90 days of age: Study protocol for a randomised controlled trial.Trials20111221510.1186/1745‑6215‑12‑215
    [Google Scholar]
  59. MarachelianA. DesaiA. BalisF. Comparative pharmacokinetics, safety, and tolerability of two sources of ch14.18 in pediatric patients with high-risk neuroblastoma following myeloablative therapy.Cancer Chemother. Pharmacol.201677240541210.1007/s00280‑015‑2955‑926791869
    [Google Scholar]
  60. MudakanagoudarM.S. SanthoshM.C. Comparison of sevoflurane concentration for insertion of proseal laryngeal mask airway and tracheal intubation in children (correlation with BIS).Braz. J. Anesthesiol.2016661242810.1016/j.bjan.2014.07.01226768926
    [Google Scholar]
  61. MuntauA.C. BurlinaA. EyskensF. Efficacy, safety and population pharmacokinetics of sapropterin in PKU patients 4 years: Results from the SPARK open-label, multicentre, randomized phase IIIb trial.Orphanet J. Rare Dis.20171214710.1186/s13023‑017‑0600‑x
    [Google Scholar]
  62. MuntauA.C. BurlinaA. EyskensF. Long-term efficacy and safety of sapropterin in patients who initiated sapropterin at  4 years of age with phenylketonuria: Results of the 3-year extension of the SPARK open-label, multicentre, randomised phase IIIb trial.Orphanet J. Rare Dis.202116134110.1186/s13023‑021‑01968‑1
    [Google Scholar]
  63. OhataY. TomitaY. NakayamaM. KozukiT. SunakawaK. TanigawaraY. Optimal dosage regimen of meropenem for pediatric patients based on pharmacokinetic/pharmacodynamic considerations.Drug Metab. Pharmacokinet.201126552353110.2133/dmpk.DMPK‑11‑RG‑02721747200
    [Google Scholar]
  64. PariserD.M. LainE.L. MamelokR.D. DrewJ. MouldD.R. Limited systemic exposure with topical glycopyrronium tosylate in primary axillary hyperhidrosis.Clin. Pharmacokinet.202160566567610.1007/s40262‑020‑00975‑y33433785
    [Google Scholar]
  65. PerezE.E. HébertJ. EllisA.K. Efficacy, safety and tolerability of a new 10% intravenous immunoglobulin for the treatment of primary immunodeficiencies.Front. Immunol.20211270746310.3389/fimmu.2021.707463
    [Google Scholar]
  66. PetitC. JullienV. SamsonA. Designing a pediatric study for an antimalarial drug by using information from adults.Antimicrob. Agents Chemother.20156031481149110.1128/AAC.01125‑15
    [Google Scholar]
  67. RatjenF. DurhamT. NavratilT. Long term effects of denufosol tetrasodium in patients with cystic fibrosis.J. Cyst. Fibros.201211653954910.1016/j.jcf.2012.05.00322682898
    [Google Scholar]
  68. RosenfeldM. WainwrightC.E. HigginsM. Ivacaftor treatment of cystic fibrosis in children aged 12 to < 24 months and with a CFTR gating mutation (ARRIVAL): A phase 3 single-arm study.Lancet Respir. Med.20186754555310.1016/S2213‑2600(18)30202‑929886024
    [Google Scholar]
  69. SagelS.D. SontagM.K. AnthonyM.M. EmmettP. PapasK.A. Effect of an antioxidant-rich multivitamin supplement in cystic fibrosis.J. Cyst. Fibros.2011101313610.1016/j.jcf.2010.09.00520961818
    [Google Scholar]
  70. SassenS.D.T. MathôtR.A.A. PietersR. Evaluation of the pharmacokinetics of prednisolone in paediatric patients with acute lymphoblastic leukaemia treated according to dutch childhood oncology group protocols and its relation to treatment response.Br. J. Haematol.2021194242343210.1111/bjh.1757234060065
    [Google Scholar]
  71. SchmitzM.L. BlumerJ.L. CetnarowskiW. RubinoC.M. Determination of appropriate weight-based cutoffs for empiric cefazolin dosing using data from a phase 1 pharmacokinetics and safety study of cefazolin administered for surgical prophylaxis in pediatric patients aged 10 to 12 years.Antimicrob. Agents Chemother.20155974173418010.1128/AAC.00082‑1525941220
    [Google Scholar]
  72. SchoemakerR. WadeJ.R. StockisA. Extrapolation of a brivaracetam exposure-response model from adults to children with focal seizures.Clin. Pharmacokinet.201857784385410.1007/s40262‑017‑0597‑228884437
    [Google Scholar]
  73. ShakhnovichV. Abdel-RahmanS. FriesenC.A. Lean body weight dosing avoids excessive systemic exposure to proton pump inhibitors for children with obesity.Pediatr. Obes.2019141e1245910.1111/ijpo.12459
    [Google Scholar]
  74. VealG.J. ColeM. ChinnaswamyG. Cyclophosphamide pharmacokinetics and pharmacogenetics in children with B-cell non-Hodgkin’s lymphoma.Eur. J. Cancer201655566410.1016/j.ejca.2015.12.00726773420
    [Google Scholar]
  75. WillmannS. BeckerC. BurghausR. Development of a paediatric population-based model of the pharmacokinetics of rivaroxaban.Clin. Pharmacokinet.20145318910210.1007/s40262‑013‑0090‑523912563
    [Google Scholar]
  76. AbbasR. ParkG. DamleB. ChertkoffR. AlonS. Pharmacokinetics of novel plant cell-expressed taliglucerase alfa in adult and pediatric patients with gaucher disease.PLoS One2015106e012898610.1371/journal.pone.0128986
    [Google Scholar]
  77. BaverelP.G. JainM. StelmachI. Pharmacokinetics of tralokinumab in adolescents with asthma: Implications for future dosing.Br. J. Clin. Pharmacol.20158061337134910.1111/bcp.1272526182954
    [Google Scholar]
  78. BekkerA. SchaafH.S. DraperH.R. Pharmacokinetics of rifampin, isoniazid, pyrazinamide, and ethambutol in infants dosed according to revised who-recommended treatment guidelines.Antimicrob. Agents Chemother.20166042171217910.1128/AAC.02600‑15
    [Google Scholar]
  79. BerkunY. WasonS. BrikR. Pharmacokinetics of colchicine in pediatric and adult patients with familial Mediterranean fever.Int. J. Immunopathol. Pharmacol.20122541121113010.1177/03946320120250042923298502
    [Google Scholar]
  80. ChokephaibulkitK. CresseyT.R. CapparelliE. Pharmacokinetics and safety of a new paediatric fixed-dose combination of zidovudine/lamivudine/nevirapine in HIV-infected children.Antivir. Ther.20111681287129510.3851/IMP193122155910
    [Google Scholar]
  81. FindlingR.L. RobbA.S. DelBelloM. Pharmacokinetics and safety of vortioxetine in pediatric patients.J. Child Adolesc. Psychopharmacol.201727652653410.1089/cap.2016.015528333546
    [Google Scholar]
  82. GertlerR. GruberM. Grassin-DelyleS. Pharmacokinetics of tranexamic acid in neonates and infants undergoing cardiac surgery.Br. J. Clin. Pharmacol.20178381745175710.1111/bcp.1327428245519
    [Google Scholar]
  83. GhezziA. ComiG. GrimaldiL.M. Pharmacokinetics and pharmacodynamics of natalizumab in pediatric patients with RRMS.Neurol. Neuroimmunol. Neuroinflamm.201965e59110.1212/NXI.000000000000059131355324
    [Google Scholar]
  84. IvaturiV. DvorakC.C. ChanD. Pharmacokinetics and model-based dosing to optimize fludarabine therapy in pediatric hematopoietic cell transplant recipients.Biol. Blood Marrow Transplant.201723101701171310.1016/j.bbmt.2017.06.02128684371
    [Google Scholar]
  85. LerouxS. Jacqz-AigrainE. ElieV. Pharmacokinetics and safety of fluconazole and micafungin in neonates with systemic candidiasis: A randomized, open-label clinical trial.Br. J. Clin. Pharmacol.20188491989199910.1111/bcp.1362829744900
    [Google Scholar]
  86. Martinón-TorresF. RuschS. HuntjensD. Pharmacokinetics, safety, and antiviral effects of multiple doses of the respiratory syncytial virus (RSV) fusion protein inhibitor, JNJ-53718678, in infants hospitalized with RSV infection: A randomized phase 1b study.Clin. Infect. Dis.20207110e594e60310.1093/cid/ciaa28332201897
    [Google Scholar]
  87. MerchanL.M. HassanH.E. TerrinM.L. Pharmacokinetics, microbial response, and pulmonary outcomes of multidose intravenous azithromycin in preterm infants at risk for Ureaplasma respiratory colonization.Antimicrob. Agents Chemother.201559157057810.1128/AAC.03951‑1425385115
    [Google Scholar]
  88. NachmanS. AlveroC. AcostaE.P. Pharmacokinetics and 48-week safety and efficacy of raltegravir for oral suspension in human immunodeficiency virus type-1-infected children 4 weeks to 2 years of age.J. Pediatric Infect. Dis. Soc.201544e76e8310.1093/jpids/piu14626582887
    [Google Scholar]
  89. NachmanS. ZhengN. AcostaE.P. Pharmacokinetics, safety, and 48-week efficacy of oral raltegravir in HIV-1-infected children aged 2 through 18 years.Clin. Infect. Dis.201458341342210.1093/cid/cit69624145879
    [Google Scholar]
  90. NacroB. ZoureE. HienH. Pharmacology and immuno-virologic efficacy of once-a-day HAART in African HIV-infected children: ANRS 12103 phase II trial.Bull. World Health Organ.201189645145810.2471/BLT.10.08164621673861
    [Google Scholar]
  91. NakamuraH. KawashimaH. AzumaR. SatoI. NagaoK. MiyazawaK. Pharmacokinetics of the H(2) blocker roxatidine acetate hydrochloride in pediatric patients, in comparison with healthy adult volunteers.Drug Metab. Pharmacokinet.201227442242910.2133/dmpk.DMPK‑11‑RG‑11222293541
    [Google Scholar]
  92. RubinoC.M. PolakM. SchröpfS. Pharmacokinetics and safety of ceftobiprole in pediatric patients.Pediatr. Infect. Dis. J.20214011997100310.1097/INF.000000000000329634533489
    [Google Scholar]
  93. SchmitzM.L. RubinoC.M. OnufrakN.J. Pharmacokinetics and optimal dose selection of cefazolin for surgical prophylaxis of pediatric patients.J. Clin. Pharmacol.202161566667610.1002/jcph.178533202066
    [Google Scholar]
  94. SchulzJ.D. CoulibalyJ.T. SchindlerC. WimmersbergerD. KeiserJ. Pharmacokinetics of ascending doses of ivermectin in Trichuris trichiura-infected children aged 2-12 years.J. Antimicrob. Chemother.20197461642164710.1093/jac/dkz08330859185
    [Google Scholar]
  95. SmithM.J. GonzalezD. GoldmanJ.L. Pharmacokinetics of clindamycin in obese and nonobese children.Antimicrob. Agents Chemother.2017614e02014e0201610.1128/AAC.02014‑16
    [Google Scholar]
  96. TranA.H. BestB.M. StekA. Pharmacokinetics of rilpivirine in HIV-infected pregnant women.J. Acquir. Immune Defic. Syndr.201672328929610.1097/QAI.000000000000096826918544
    [Google Scholar]
  97. TsaiM. NeryE.S.M. KerrL. Pharmacokinetics, safety, and tolerability of lasmiditan in pediatric patients with migraine.Clin. Pharmacokinet.202160681982810.1007/s40262‑020‑00966‑z33565026
    [Google Scholar]
  98. VelzenA.J. UgesJ.W.F. HeijermanH.G.M. Pharmacokinetics and safety of tobramycin nebulization with the I‐neb and PARI‐LC Plus in children with cystic fibrosis: A randomized, crossover study.Br. J. Clin. Pharmacol.20198591984199310.1111/bcp.1398831112621
    [Google Scholar]
  99. WareR.E. DespotovicJ.M. MortierN.A. Pharmacokinetics, pharmacodynamics, and pharmacogenetics of hydroxyurea treatment for children with sickle cell anemia.Blood2011118184985499110.1182/blood‑2011‑07‑36419021876119
    [Google Scholar]
  100. WattK.M. HornikC.P. BalevicS.J. Pharmacokinetics of ticarcillin-clavulanate in premature infants.Br. J. Clin. Pharmacol.20198551021102710.1111/bcp.1388230710387
    [Google Scholar]
  101. AkshintalaS. MarcusL. WarrenK.E. Phase 1 trial and pharmacokinetic study of the oral platinum analog satraplatin in children and young adults with refractory solid tumors including brain tumors.Pediatr. Blood Cancer201562460361010.1002/pbc.2534425556988
    [Google Scholar]
  102. AlexanderT.B. LacayoN.J. ChoiJ.K. Phase I study of selinexor, a selective inhibitor of nuclear export, in combination with fludarabine and cytarabine, in pediatric relapsed or refractory acute leukemia.J. Clin. Oncol.201634344094410110.1200/JCO.2016.67.506627507877
    [Google Scholar]
  103. AliA.M. PennyM.A. SmithT.A. Population pharmacokinetics of the antimalarial amodiaquine: A pooled analysis to optimize dosing.Antimicrob. Agents Chemother.20186210e02193e0221710.1128/AAC.02193‑17
    [Google Scholar]
  104. AltchehJ. MoscatelliG. MastrantonioG. Population pharmacokinetic study of benznidazole in pediatric Chagas disease suggests efficacy despite lower plasma concentrations than in adults.PLoS Negl. Trop. Dis.201485e290710.1371/journal.pntd.0002907
    [Google Scholar]
  105. AnG. OhlsR.K. ChristensenR.D. WidnessJ.A. MockD.M. Veng-PedersenP. Population pharmacokinetics of darbepoetin in infants following single intravenous and subcutaneous dosing.J. Pharm. Sci.201710661644164910.1016/j.xphs.2017.02.00128189627
    [Google Scholar]
  106. AyyoubA. MethaneethornJ. RamharterM. Population pharmacokinetics of pyronaridine in pediatric malaria patients.Antimicrob. Agents Chemother.20156031450145810.1128/AAC.02004‑15
    [Google Scholar]
  107. BagchusW.M. BezuidenhoutD. Harrison-MoenchE. Kourany-LefollE. WolnaP. YalkinogluO. Relative bioavailability of orally dispersible tablet formulations of Levo and racemic praziquantel: Two phase I studies.Clin. Transl. Sci.2019121667610.1111/cts.1260130536632
    [Google Scholar]
  108. BellantiF. Del VecchioG.C. PuttiM.C. Population pharmacokinetics and dosing recommendations for the use of deferiprone in children younger than 6 years.Br. J. Clin. Pharmacol.201783359360210.1111/bcp.1313427641003
    [Google Scholar]
  109. BestebreurtjeP. de KoningB.A.E. RoeleveldN. Rectal omeprazole in infants with gastroesophageal reflux disease: A randomized pilot trial.Eur. J. Drug Metab. Pharmacokinet.202045563564310.1007/s13318‑020‑00630‑832594305
    [Google Scholar]
  110. ClementsJ.D. ZhuM. KuchimanchiM. TerminelloB. DoshiS. Population pharmacokinetics of blinatumomab in pediatric and adult patients with hematological malignancies.Clin. Pharmacokinet.202059446347410.1007/s40262‑019‑00823‑831679130
    [Google Scholar]
  111. Cohen-WolkowiezM. BenjaminD.K.Jr RossA. Population pharmacokinetics of piperacillin using scavenged samples from preterm infants.Ther. Drug Monit.201234331231910.1097/FTD.0b013e318258766522569355
    [Google Scholar]
  112. CostantineM.M. ClearyK. HebertM.F. Safety and pharmacokinetics of pravastatin used for the prevention of preeclampsia in high-risk pregnant women: A pilot randomized controlled trial.Am. J. Obstet. Gynecol.20162146720.e1720.e1710.1016/j.ajog.2015.12.03826723196
    [Google Scholar]
  113. DongL. ZhaiX.Y. YangY.L. Population pharmacokinetics and dosing optimization of imipenem in children with hematological malignancies.Antimicrob. Agents Chemother.2019636e00006e0001910.1128/AAC.00006‑19
    [Google Scholar]
  114. GonzalezD. ChamberlainJ.M. GuptillJ.T. Population pharmacokinetics and exploratory pharmacodynamics of lorazepam in pediatric status epilepticus.Clin. Pharmacokinet.201756894195110.1007/s40262‑016‑0486‑027943220
    [Google Scholar]
  115. GreenbergR.G. WuH. LaughonM. Population pharmacokinetics of dexmedetomidine in infants.J. Clin. Pharmacol.20175791174118210.1002/jcph.90428444697
    [Google Scholar]
  116. GuidiM. MercierT. AouriM. Population pharmacokinetics and pharmacodynamics of the artesunate-mefloquine fixed dose combination for the treatment of uncomplicated falciparum malaria in African children.Malar. J.201918113910.1186/s12936‑019‑2754‑6
    [Google Scholar]
  117. HanleyM.J. MouldD.R. TaylorT.J. Population pharmacokinetic analysis of bortezomib in pediatric leukemia patients: Model-based support for body surface area-based dosing over the 2- to 16-year age range.J. Clin. Pharmacol.20175791183119310.1002/jcph.90628419486
    [Google Scholar]
  118. HopeW.W. KaibaraA. RoyM. Population pharmacokinetics of micafungin and its metabolites M1 and M5 in children and adolescents.Antimicrob. Agents Chemother.201559290591310.1128/AAC.03736‑1425421470
    [Google Scholar]
  119. Jacobo-CabralC.O. García-RocaP. Romero-TejedaE.M. Population pharmacokinetic analysis of tacrolimus in Mexican paediatric renal transplant patients: Role of CYP3A5 genotype and formulation.Br. J. Clin. Pharmacol.201580463064110.1111/bcp.1264925846845
    [Google Scholar]
  120. KuL.C. HornikC.P. BeechinorR.J. Population pharmacokinetics and exploratory exposure-response relationships of diazepam in children treated for status epilepticus.CPT Pharmacometrics Syst. Pharmacol.201871171872710.1002/psp4.1234930267478
    [Google Scholar]
  121. LullaR.R. GoldmanS. YamadaT. Phase I trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: A pediatric brain tumor consortium study.Neuro-oncol.20161891319132510.1093/neuonc/now04727022131
    [Google Scholar]
  122. MannD. LiuJ. ChewM.L. Safety, tolerability, and pharmacokinetics of pregabalin in children with refractory partial seizures: A phase 1, randomized controlled study.Epilepsia201455121934194310.1111/epi.1283025377429
    [Google Scholar]
  123. MarçonF. GuittetC. MansoM.A. Population pharmacokinetic evaluation of ADV6209, an innovative oral solution of midazolam containing cyclodextrin.Eur. J. Pharm. Sci.2018114465410.1016/j.ejps.2017.11.03029203151
    [Google Scholar]
  124. PrémaudA. WeberL.T. TönshoffB. Population pharmacokinetics of mycophenolic acid in pediatric renal transplant patients using parametric and nonparametric approaches.Pharmacol. Res.201163321622410.1016/j.phrs.2010.10.01721056671
    [Google Scholar]
  125. Ramos-MartínV. NeelyM.N. McGowanP. Population pharmacokinetics and pharmacodynamics of teicoplanin in neonates: making better use of C-reactive protein to deliver individualized therapy.J. Antimicrob. Chemother.201671113168317810.1093/jac/dkw29527543654
    [Google Scholar]
  126. Ramos-MartínV. PaulusS. SinerS. Population pharmacokinetics of teicoplanin in children.Antimicrob. Agents Chemother.201458116920692710.1128/AAC.03685‑1425224001
    [Google Scholar]
  127. RicottiV. SpintyS. RoperH. Safety, tolerability, and pharmacokinetics of smt c1100, a 2-arylbenzoxazole utrophin modulator, following single- and multiple-dose administration to pediatric patients with duchenne muscular dystrophy.PLoS One2016114e015284010.1371/journal.pone.0152840
    [Google Scholar]
  128. RobertsJ.K. BirgA.V. LinT. Population pharmacokinetics of oral topotecan in infants and very young children with brain tumors demonstrates a role of ABCG2 rs4148157 on the absorption rate constant.Drug Metab. Dispos.20164471116112210.1124/dmd.115.06867627052877
    [Google Scholar]
  129. SeibelN.L. ShadA.T. BekerskyI. Safety, tolerability, and pharmacokinetics of liposomal amphotericin B in immunocompromised pediatric patients.Antimicrob. Agents Chemother.2017612e01477e0151610.1128/AAC.01477‑16
    [Google Scholar]
  130. SidhartaP.N. Štěpánová R, Globig S, Ulč I, Csonka D. Relative bioavailability of a pediatric dispersible tablet and adult film‐coated tablet of macitentan in healthy volunteers.Pharmacol. Res. Perspect.202082e0058010.1002/prp2.58032302056
    [Google Scholar]
  131. StrickerP.A. GastonguayM.R. SinghD. Population pharmacokinetics of ε-aminocaproic acid in adolescents undergoing posterior spinal fusion surgery.Br. J. Anaesth.2015114468969910.1093/bja/aeu45925586726
    [Google Scholar]
  132. SuJ.M. LiX.N. ThompsonP. Phase 1 study of valproic acid in pediatric patients with refractory solid or CNS tumors: A children’s oncology group report.Clin. Cancer Res.201117358959710.1158/1078‑0432.CCR‑10‑073821115653
    [Google Scholar]
  133. TeramotoT. MatsuiE. FukaoT. Repeated-dose pharmacokinetics of inhaled ciclesonide (CIC-HFA) in japanese children with bronchial asthma: A phase I study. Allergology international.Official Journal of the Japanese Society of Allergology2012614619624
    [Google Scholar]
  134. TurnerD.C. NavidF. DawN.C. Population pharmacokinetics of bevacizumab in children with osteosarcoma: Implications for dosing.Clin. Cancer Res.201420102783279210.1158/1078‑0432.CCR‑13‑236424637635
    [Google Scholar]
  135. WangA. CuiC. FanY. Prophylactic use of levosimendan in pediatric patients undergoing cardiac surgery: A prospective randomized controlled trial.Crit. Care201923142810.1186/s13054‑019‑2704‑2
    [Google Scholar]
  136. WangH. JonesA.K. DvorakC.C. Population pharmacokinetics of clofarabine as part of pretransplantation conditioning in pediatric subjects before hematopoietic cell transplantation.Biol. Blood Marrow Transplant.20192581603161010.1016/j.bbmt.2019.04.01731002993
    [Google Scholar]
  137. WassermanR.L. ChurchJ.A. SteinM. Safety, efficacy and pharmacokinetics of a new 10% liquid intravenous immunoglobulin (IVIG) in patients with primary immunodeficiency.J. Clin. Immunol.201232466366910.1007/s10875‑012‑9656‑522392046
    [Google Scholar]
  138. WilliamsJ.H. JayaramanB. SwobodaK.J. BarrettJ.S. Population pharmacokinetics of valproic acid in pediatric patients with epilepsy: considerations for dosing spinal muscular atrophy patients.J. Clin. Pharmacol.201252111676168810.1177/009127001142813822167565
    [Google Scholar]
  139. WürthweinG. Lanvers-KaminskyC. SiebelC. Population pharmacokinetics of PEGylated asparaginase in children with acute lymphoblastic leukemia: Treatment phase dependency and predictivity in case of missing data.Eur. J. Drug Metab. Pharmacokinet.202146228930010.1007/s13318‑021‑00670‑833595793
    [Google Scholar]
  140. YoungG. LensingA.W.A. MonagleP. Rivaroxaban for treatment of pediatric venous thromboembolism. An Einstein‐Jr phase 3 dose‐exposure‐response evaluation.J. Thromb. Haemost.20201871672168510.1111/jth.1481332246743
    [Google Scholar]
  141. ZhaoW. ZhangD. StormeT. BaruchelA. DeclèvesX. Jacqz-AigrainE. Population pharmacokinetics and dosing optimization of teicoplanin in children with malignant haematological disease.Br. J. Clin. Pharmacol.20158051197120710.1111/bcp.1271026138279
    [Google Scholar]
  142. CellaM. KnibbeC. de WildtS.N. Van GervenJ. DanhofM. Della PasquaO. Scaling of pharmacokinetics across paediatric populations: The lack of interpolative power of allometric models.Br. J. Clin. Pharmacol.201274352553510.1111/j.1365‑2125.2012.04206.x22300419
    [Google Scholar]
  143. DobsonN.R. LiuX. RheinL.M. Salivary caffeine concentrations are comparable to plasma concentrations in preterm infants receiving extended caffeine therapy.Br. J. Clin. Pharmacol.201682375476110.1111/bcp.1300127145974
    [Google Scholar]
  144. DuBoisS.G. ShustermanS. ReidJ.M. Tolerability and pharmacokinetic profile of a sunitinib powder formulation in pediatric patients with refractory solid tumors: A children’s oncology group study.Cancer Chemother. Pharmacol.20126941021102710.1007/s00280‑011‑1798‑222179104
    [Google Scholar]
  145. El-LahonyD.M. SalehN.Y. HabibM.S. ShehataM.A. El-HawyM.A. The role of recombinant Human erythropoietin in neonatal anemia.Hematol. Oncol. Stem Cell Ther.202013314715110.1016/j.hemonc.2019.08.00431628923
    [Google Scholar]
  146. GastineS. ObieroC. KaneZ. Simultaneous pharmacokinetic/pharmacodynamic (PKPD) assessment of ampicillin and gentamicin in the treatment of neonatal sepsis.J. Antimicrob. Chemother.202277244845610.1093/jac/dkab41335107141
    [Google Scholar]
  147. HillK.D. TunksR.D. BarkerP.C.A. Sildenafil exposure and hemodynamic effect after stage II single-ventricle surgery.Pediatr. Crit. Care Med.201314659360010.1097/PCC.0b013e31828aa5ee23823195
    [Google Scholar]
  148. KingJ.R. YogevR. Jean-PhilippeP. Steady-state pharmacokinetics of tenofovir-based regimens in HIV-infected pediatric patients.Antimicrob. Agents Chemother.20115594290429410.1128/AAC.01334‑1021670182
    [Google Scholar]
  149. MooijM.G. van DuijnE. KnibbeC.A.J. Successful use of [14C]paracetamol microdosing to elucidate developmental changes in drug metabolism.Clin. Pharmacokinet.201756101185119510.1007/s40262‑017‑0508‑628155137
    [Google Scholar]
  150. NemecekE.R. HilgerR.A. AdamsA. Treosulfan, fludarabine, and low-dose total body irradiation for children and young adults with acute myeloid leukemia or myelodysplastic syndrome undergoing allogeneic hematopoietic cell transplantation: Prospective phase II trial of the pediatric blood and marrow transplant consortium.Biol. Blood Marrow Transplant.20182481651165610.1016/j.bbmt.2018.04.02529753157
    [Google Scholar]
  151. OliverA. VanBurenS. AllenA. Tolerability of fluticasone furoate/vilanterol combination therapy in children aged 5 to 11 years with persistent asthma.Clin. Ther.2014366928939.e110.1016/j.clinthera.2014.03.01424793536
    [Google Scholar]
  152. PlykuD. LoebD.M. PrideauxA.R. Strengths and weaknesses of a planar whole-body method of 153Sm dosimetry for patients with metastatic osteosarcoma and comparison with three-dimensional dosimetry.Cancer Biother. Radiopharm.201530936937910.1089/cbr.2014.180326560193
    [Google Scholar]
  153. AzarbarS. SalardiniA. DahdahN. A phase I-II, open-label, multicenter trial to determine the dosimetry and safety of 99mTc-Sestamibi in pediatric subjects.J. Nucl. Med.201556572873610.2967/jnumed.114.14679525858045
    [Google Scholar]
  154. ViergeverR.F. RademakerC.M. GhersiD. Pharmacokinetic research in children: An analysis of registered records of clinical trials.BMJ Open201111e00022110.1136/bmjopen‑2011‑000221
    [Google Scholar]
  155. JosephP.D. CraigJ.C. CaldwellP.H.Y. Clinical trials in children.Br. J. Clin. Pharmacol.201579335736910.1111/bcp.1230524325152
    [Google Scholar]
  156. MahmoodI. Prediction of drug clearance in children from adults: A comparison of several allometric methods.Br. J. Clin. Pharmacol.200661554555710.1111/j.1365‑2125.2006.02622.x16669848
    [Google Scholar]
  157. StephensonT. How children’s responses to drugs differ from adults.Br. J. Clin. Pharmacol.200559667067310.1111/j.1365‑2125.2005.02445.x15948930
    [Google Scholar]
  158. FernandezE. PerezR. HernandezA. TejadaP. ArtetaM. RamosJ.T. Factors and mechanisms for pharmacokinetic differences between pediatric population and adults.Pharmaceutics201131537210.3390/pharmaceutics3010053
    [Google Scholar]
  159. CresteilT. Onset of xenobiotic metabolism in children: Toxicological implications.Food Addit. Contam.199815455110.1080/026520398093746149602911
    [Google Scholar]
  160. Food and Drug Administration. Ontogeny of Transporter Function 2019. Available from: https://www.fda.gov/media/128353/download
  161. VermeulenE. van den AnkerJ.N. Della PasquaO. HoppuK. van der LeeJ.H. How to optimise drug study design: pharmacokinetics and pharmacodynamics studies introduced to paediatricians.J. Pharm. Pharmacol.201769443944710.1111/jphp.1263727671925
    [Google Scholar]
  162. BaberN. PritchardD. Dose estimation for children.Br. J. Clin. Pharmacol.200356548949310.1046/j.1365‑2125.2003.01901.x14651721
    [Google Scholar]
  163. De CockR.F. PianaC. KrekelsE.H. DanhofM. AllegaertK. KnibbeC.A. The role of population PK-PD modelling in paediatric clinical research.Eur. J. Clin. Pharmacol.201167Suppl. 151610.1007/s00228‑009‑0782‑9
    [Google Scholar]
  164. ConroyS McIntyreJ The use of unlicensed and off-label medicines in the neonate.Semin Fetal Neonatal Med200510115e2210.1016/j.siny.2004.11.003
    [Google Scholar]
  165. ConroyS. McIntyreJ. ChoonaraI. Unlicensed and off label drug use in neonates.Arch. Dis. Child. Fetal Neonatal Ed.199980F142F14410.1136/fn.80.2.F142
    [Google Scholar]
  166. AllenH.C. GarbeM.C. LeesJ. Off-label medication use in children, more common than we think: A systematic review of the literature.J. Okla. State Med. Assoc.2018111877678331379392
    [Google Scholar]
  167. KenyonE.M. LipscombJ.C. PegramR.A. GeorgeB.J. HinesR.N. The impact of scaling factor variability on risk-relevant pharmacokinetic outcomes in children: A case study using bromodichloromethane (BDCM).Toxicol. Sci.2019167234735910.1093/toxsci/kfy23630252107
    [Google Scholar]
  168. SaidaK. FukudaT. MizunoK. OguraM. KameiK. ItoS. Pharmacokinetics and pharmacodynamics estimation of eculizumab in a 2-year-old girl with atypical hemolytic uremic syndrome: A case report with 4-year follow-up.Front Pediatr.2019751910.3389/fped.2019.0051931921730
    [Google Scholar]
  169. ConnorE.M. SmoyerW.E. DavisJ.M. Meeting the demand for pediatric clinical trials.Sci. Transl. Med.20146227227fs1110.1126/scitranslmed.300804324622511
    [Google Scholar]
/content/journals/crcep/10.2174/2772432818666221223155455
Loading
/content/journals/crcep/10.2174/2772432818666221223155455
Loading

Data & Media loading...

Supplements


  • Article Type:
    Review Article
Keyword(s): children; disease; essential medicine; off-label drugs; Pharmacokinetics; trials
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test