Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2772-4328
  • E-ISSN: 2772-4336

Abstract

is one of the opportunistic parasites with a global prevalence. Currently, due to the side effects and the emergence of drug resistance to this parasite, much research has been performed on the use of nano-drugs to treat -caused diseases. Therefore, this systematic review study aims to evaluate new strategies for treating diseases caused by based on nanoparticles (NPs).

We designed a systematic review based on the articles published in English between 2000 and 2022. Our search strategy was based on syntax and specific tags for each database, including ScienceDirect, PubMed, Scopus, Ovid, and Cochrane. From the articles, those that had inclusion criteria were selected, and their data were extracted and analyzed.

In this study, 26 studies were selected. Metallic nanoparticles were mostly used against the species (80.7%). 19.2% of the studies used polymeric nanoparticles, and 3.8% used emulsion nanoparticles. Most studies (96.1%) were performed and only one study (3.8%) was carried out . Silver NPs were the most used metallic nanoparticles in the studies. The best effect of the anti- compound was observed for green synthesized nanoparticles based on stabilization by plant gums, loaded with citrus fruits flavonoids hesperidin (HDN) and naringin (NRG) with a 100% growth inhibition at a concentration of 50 μg/mL.

This study showed that chlorhexidine and other plant metabolites loaded with silver and gold nanoparticles increase the anti- activity of these nanoparticles. However, green synthesized nanoparticles based on stabilization by plant gums, loaded with citrus fruits flavonoids hesperidin (HDN) and naringin (NRG), showed the best anti- effect. Nevertheless, further studies should be performed to determine their safety for human use.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/2772432818666221111155119
2022-11-24
2025-01-19
Loading full text...

Full text loading...

References

  1. MartinezA.J. VisvesvaraG.S. Free-living, amphizoic and opportunistic amebas.Brain Pathol.19977158359810.1111/j.1750‑3639.1997.tb01076.x9034567
    [Google Scholar]
  2. La ScolaB. BoyadjievI. GreubG. KhamisA. MartinC. RaoultD. Amoeba-resisting bacteria and ventilator-associated pneumonia.Emerg. Infect. Dis.20039781582110.3201/eid0907.03006512890321
    [Google Scholar]
  3. SissonsJ. AlsamS. JayasekeraS. KimK.S. StinsM. KhanN.A. Acanthamoeba induces cell-cycle arrest in host cells.J. Med. Microbiol.200453871171710.1099/jmm.0.45604‑015272056
    [Google Scholar]
  4. MartinezA. Free-Living Amebas: Naegleria, Acanthamoeba and Balamuthia.Medical Microbiology.4th ed BaronS. Galveston, TXUniversity of Texas Medical Branch at Galveston1996
    [Google Scholar]
  5. BadirzadehA. NiyyatiM. BabaeiZ. AminiH. BadirzadehH. RezaeianM. Isolation of free-living amoebae from sarein hot springs in ardebil province, Iran.Iran. J. Parasitol.2011621822347281
    [Google Scholar]
  6. MazurT. Hadaś E, Iwanicka I. The duration of the cyst stage and the viability and virulence of Acanthamoeba isolates.Trop. Med. Parasitol.19954621061088525280
    [Google Scholar]
  7. IkedaY. MiyazakiD. YakuraK. Assessment of real-time polymerase chain reaction detection of Acanthamoeba and prognosis determinants of Acanthamoeba keratitis.Ophthalmology201211961111111910.1016/j.ophtha.2011.12.02322381810
    [Google Scholar]
  8. AlexanderC.L. CoyneM. JonesB. AnijeetD. Acanthamoeba keratitis: improving the Scottish diagnostic service for the rapid molecular detection of Acanthamoeba species.J. Med. Microbiol.201564768268710.1099/jmm.0.00008625976006
    [Google Scholar]
  9. KhairnarK. TamberG.S. RalevskiF. PillaiD.R. Comparison of molecular diagnostic methods for the detection of Acanthamoeba spp. from clinical specimens submitted for keratitis.Diagn. Microbiol. Infect. Dis.201170449950610.1016/j.diagmicrobio.2011.03.01921658877
    [Google Scholar]
  10. WalochnikJ. ScheiklU. Haller-SchoberE.M. Twenty years of acanthamoeba diagnostics in Austria.J. Eukaryot. Microbiol.201562131110.1111/jeu.1214925047131
    [Google Scholar]
  11. PussardM.J.P. PonsR. Morphology of the cyst wall and taxonomy of the genus Acanthamoeba (Protozoa, Amoebida).Protistologica197713557598
    [Google Scholar]
  12. PageF.C. A new key to freshwater and soil gymnamoebae: with instructions for culture: Freshwater biological association.CCAP19891535556
    [Google Scholar]
  13. Lorenzo-MoralesJ. Monteverde-MirandaC.A. JiménezC. TejedorM.L. ValladaresB. Ortega-RivasA. Evaluation of Acanthamoeba isolates from environmental sources in Tenerife, Canary Islands, Spain.Ann. Agric. Environ. Med.200512223323616457479
    [Google Scholar]
  14. Marciano-CabralF. CabralG. Acanthamoeba spp. as agents of disease in humans.Clin. Microbiol. Rev.200316227330710.1128/CMR.16.2.273‑307.200312692099
    [Google Scholar]
  15. SchusterF.L. VisvesvaraG.S. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals.Int. J. Parasitol.20043491001102710.1016/j.ijpara.2004.06.00415313128
    [Google Scholar]
  16. LimN. GohD. BunceC. Comparison of polyhexamethylene biguanide and chlorhexidine as monotherapy agents in the treatment of Acanthamoeba keratitis.Am. J. Ophthalmol.2008145113013510.1016/j.ajo.2007.08.04017996208
    [Google Scholar]
  17. Martín-Navarro CM, Lorenzo-Morales J, Cabrera-Serra MG, et alThe potential pathogenicity of chlorhexidine-sensitive Acanthamoeba strains isolated from contact lens cases from asymptomatic individuals in Tenerife, Canary Islands, Spain.J. Med. Microbiol.200857111399140410.1099/jmm.0.2008/003459‑018927419
    [Google Scholar]
  18. LeeJ.E. OumB.S. ChoiH.Y. YuH.S. LeeJ.S. Cysticidal effect on acanthamoeba and toxicity on human keratocytes by polyhexamethylene biguanide and chlorhexidine.Cornea200726673674110.1097/ICO.0b013e31805b7e8e17592327
    [Google Scholar]
  19. FerrariG. MatuskaS. RamaP. Double-biguanide therapy for resistant Acanthamoeba keratitis.Case Rep. Ophthalmol.20112333834210.1159/00033427022174703
    [Google Scholar]
  20. ItahashiM. HigakiS. FukudaM. MishimaH. ShimomuraY. Utility of real-time polymerase chain reaction in diagnosing and treating Acanthamoeba keratitis.Cornea201130111233123710.1097/ICO.0b013e318203219621955634
    [Google Scholar]
  21. ThakkarK.N. MhatreS.S. ParikhR.Y. Biological synthesis of metallic nanoparticles.Nanomedicine20106225726210.1016/j.nano.2009.07.00219616126
    [Google Scholar]
  22. SiddiqueS. ChowJ.C.L. Gold nanoparticles for drug delivery and cancer therapy.Appl. Sci.20201011382410.3390/app10113824
    [Google Scholar]
  23. FarzinA. EtesamiS.A. QuintJ. MemicA. TamayolA. Tamayol, AJAHM. Magnetic nanoparticles in cancer therapy and diagnosis.Adv. Healthc. Mater.202099190105810.1002/adhm.20190105832196144
    [Google Scholar]
  24. BanikB.L. FattahiP. BrownJ.L. Polymeric nanoparticles: the future of nanomedicine.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20168227129910.1002/wnan.136426314803
    [Google Scholar]
  25. AnwarA. SiddiquiR. ShahM.R. KhanN.A. Gold nanoparticle-conjugated cinnamic acid exhibits antiacanthamoebic and antibacterial properties.Antimicrob. Agents Chemother.2018629e00630e1810.1128/AAC.00630‑1829967024
    [Google Scholar]
  26. AnwarA. SiddiquiR. ShahM. KhanN. Gold nanoparticles conjugation enhances antiacanthamoebic properties of nystatin, fluconazole and amphotericin B.J. Microbiol. Biotechnol.201929117117710.4014/jmb.1805.0502830415525
    [Google Scholar]
  27. WalvekarS. AnwarA. AnwarA. Conjugation with silver nanoparticles enhances anti-acanthamoebic activity of Kappaphycus alvarezii.J. Parasitol.2021107453754610.1645/21‑4134265050
    [Google Scholar]
  28. GrünA.L. ScheidP. Haurِder B, Emmerling C, Manz W. Assessment of the effect of silver nanoparticles on the relevant soil protozoan genus Acanthamoeba.J. Plant Nutr. Soil Sci.2017180560261310.1002/jpln.201700277
    [Google Scholar]
  29. AnwarA. AbdallaS.A.O. AslamZ. ShahM.R. SiddiquiR. KhanN.A. Oleic acid–conjugated silver nanoparticles as efficient antiamoebic agent against Acanthamoeba castellanii.Parasitol. Res.201911872295230410.1007/s00436‑019‑06329‑331093751
    [Google Scholar]
  30. PadzikM. HendigerE.B. ChomiczL. Tannic acid-modified silver nanoparticles as a novel therapeutic agent against Acanthamoeba.Parasitol. Res.2018117113519352510.1007/s00436‑018‑6049‑630112674
    [Google Scholar]
  31. MasriA. AbdelnasirS. AnwarA. Antimicrobial properties of multifunctional polypyrrole-cobalt oxide-silver nanocomposite against pathogenic bacteria and parasite.Appl. Microbiol. Biotechnol.202110583315332510.1007/s00253‑021‑11221‑133797573
    [Google Scholar]
  32. AnwarA. TingE.L.S. AnwarA. Antiamoebic activity of plant-based natural products and their conjugated silver nanoparticles against Acanthamoeba castellanii (ATCC 50492).AMB Express20201012410.1186/s13568‑020‑0960‑932016777
    [Google Scholar]
  33. KusriniE. SabiraK. HashimF. Design, synthesis and antiamoebic activity of dysprosium‐based nanoparticles using contact lenses as carriers against Acanthamoeba sp.Acta Ophthalmol.2021992e178e18810.1111/aos.1454132701190
    [Google Scholar]
  34. Ziaei HezarjaribiH. TolueeE. SaberiR. DadiM.Y. FakharM. AkhtariJ. In vitro anti-Acanthamoeba activity of the commercial chitosan and nano-chitosan against pathogenic Acanthamoeba genotype T4.J. Parasit. Dis.202145492192910.1007/s12639‑021‑01380‑334789973
    [Google Scholar]
  35. ElkaderyA.A.S. ElsherifE.A. Ezz EldinH.M. FahmyI.A.F. MohammadO.S. Efficient therapeutic effect of Nigella sativa aqueous extract and chitosan nanoparticles against experimentally induced Acanthamoeba keratitis.Parasitol. Res.201911882443245410.1007/s00436‑019‑06359‑x31144032
    [Google Scholar]
  36. AbdelnasirS. MungrooM.R. ShahabuddinS. SiddiquiR. KhanN.A. AnwarA. Polyaniline-conjugated boron nitride nanoparticles exhibiting potent effects against pathogenic brain-eating amoebae.ACS Chem. Neurosci.202112193579358710.1021/acschemneuro.1c0017934545742
    [Google Scholar]
  37. MahboobT. NawazM. Tian-ChyeT. SamudiC. WiartC. NissapatornV. Preparation of poly (dl-lactide-co-glycolide) nanoparticles encapsulated with periglaucine A and betulinic acid for in vitro anti-Acanthamoeba and cytotoxicity activities.Pathogens2018736210.3390/pathogens703006230012991
    [Google Scholar]
  38. MahboobT. NawazM. de Lourdes PereiraM. PLGA nanoparticles loaded with Gallic acid-a constituent of Leea indica against Acanthamoeba triangularis.Sci. Rep.2020101895410.1038/s41598‑020‑65728‑032488154
    [Google Scholar]
  39. PanatieriL.F. BrazilN.T. FaberK. Nanoemulsions containing a coumarin-rich extract from Pterocaulon balansae (Asteraceae) for the treatment of ocular Acanthamoeba keratitis.AAPS PharmSciTech201718372172810.1208/s12249‑016‑0550‑y27225384
    [Google Scholar]
  40. AqeelY. SiddiquiR. AnwarA. ShahM.R. KhanN.A. Gold nanoparticle conjugation enhances the antiacanthamoebic effects of chlorhexidine.Chemother201660312831288
    [Google Scholar]
  41. NiyyatiM. SasaniR. MohebaliM. Anti-Acanthamoeba effects of silver and gold nanoparticles and contact lenses disinfection solutions.Iran. J. Parasitol.201813218018530069201
    [Google Scholar]
  42. PadzikM HendigerEB ŻochowskaEA Evaluation of in vitro effect of selected contact lens solutions conjugated with nanoparticles in terms of preventive approach to public health risk generated by Acanthamoeba strains.Ann. Agric. Environ. Med.201926119820210.26444/aaem/10539430922053
    [Google Scholar]
  43. AnwarA. SoomarooA. AnwarA. SiddiquiR. KhanN.A. Metformin-coated silver nanoparticles exhibit anti-acanthamoebic activities against both trophozoite and cyst stages.Exp. Parasitol.202021510791510.1016/j.exppara.2020.10791532461112
    [Google Scholar]
  44. AnwarA. SiddiquiR. HussainM.A. AhmedD. ShahM.R. Silver nanoparticle conjugation affects antiacanthamoebic activities of amphotericin B, nystatin, and fluconazole.Parasitol. Res.20181171265271
    [Google Scholar]
  45. HendigerE.B. PadzikM. SifaouiI. Silver nanoparticles conjugated with contact lens solutions may reduce the risk of Acanthamoeba keratitis.Pathogens202110558310.3390/pathogens1005058334064555
    [Google Scholar]
  46. AnwarA. YiY.P. FatimaI. Antiamoebic activity of synthetic tetrazoles against Acanthamoeba castellanii belonging to T4 genotype and effects of conjugation with silver nanoparticles.Parasitol. Res.202011961943195410.1007/s00436‑020‑06694‑432385711
    [Google Scholar]
  47. AnwarA. RajendranK. SiddiquiR. Raza ShahM. KhanN.A. Clinically approved drugs against CNS diseases as potential therapeutic agents to target brain-eating amoebae.ACS Chem. Neurosci.201910165866610.1021/acschemneuro.8b0048430346711
    [Google Scholar]
  48. AbdelnasirS. AnwarA. KawishM. Metronidazole conjugated magnetic nanoparticles loaded with amphotericin B exhibited potent effects against pathogenic Acanthamoeba castellanii belonging to the T4 genotype.AMB Express202010112710.1186/s13568‑020‑01061‑z32681358
    [Google Scholar]
  49. IqbalK. AbdallaS.A.O. AnwarA. Isoniazid conjugated magnetic nanoparticles loaded with Amphotericin B as a potent antiamoebic agent against Acanthamoeba castellanii.Antibiotics20209527610.3390/antibiotics905027632466210
    [Google Scholar]
  50. ImranM. MuazzamA.G. HabibA. MatinA. Synthesis, characterization and amoebicidal potential of locally synthesized TiO2 nanoparticles against pathogenic Acanthamoeba trophozoites in vitro.J. Photochem. Photobiol. B201615912513210.1016/j.jphotobiol.2016.03.01427054875
    [Google Scholar]
  51. GoldbergM. LangerR. JiaX. Nanostructured materials for applications in drug delivery and tissue engineering.J. Biomater. Sci. Polym. Ed.200718324126810.1163/15685620777999693117471764
    [Google Scholar]
  52. PatraJ.K. DasG. FracetoL.F. Nano based drug delivery systems: recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  53. RamalingamB. ParandhamanT. DasS.K. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa.ACS Appl. Mater. Interfaces2016874963497610.1021/acsami.6b0016126829373
    [Google Scholar]
  54. LeungY.H. NgA.M.C. XuX. Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli.Small20141061171118310.1002/smll.20130243424344000
    [Google Scholar]
  55. JungW.K. KooH.C. KimK.W. ShinS. KimS.H. ParkY.H. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli.Appl. Environ. Microbiol.20087472171217810.1128/AEM.02001‑0718245232
    [Google Scholar]
  56. WangL. HuC. ShaoL. The antimicrobial activity of nanoparticles: present situation and prospects for the future.Int. J. Nanomedicine2017121227124910.2147/IJN.S12195628243086
    [Google Scholar]
  57. CirriM. MenniniN. MaestrelliF. MuraP. GhelardiniC. Di Cesare MannelliL. Development and in vivo evaluation of an innovative “Hydrochlorothiazide-in cyclodextrins-in solid lipid nanoparticles” formulation with sustained release and enhanced oral bioavailability for potential hypertension treatment in pediatrics.Int. J. Pharm.20175211-2738310.1016/j.ijpharm.2017.02.02228229944
    [Google Scholar]
  58. ZinjardeS.S. Bio-inspired nanomaterials and their applications as antimicrobial agents.Chronicles Young Sci2012317410.4103/2229‑5186.94314
    [Google Scholar]
  59. KishoreV. YarlaN. BishayeeA. Multi-targeting andrographolide and its natural analogs as potential therapeutic agents.Curr. Top. Med. Chem.201717884585710.2174/156802661666616092715045227697058
    [Google Scholar]
  60. ShahrajabianM.H. SunW. ChengQ. Exploring Artemisia annua L., artemisinin and its derivatives, from traditional Chinese wonder medicinal science.Not. Bot. Horti Agrobot. Cluj-Napoca20204841719174110.15835/nbha48412002
    [Google Scholar]
  61. PariharA. PariharD.S. RanjanP. KhanR. Role of microfluidics-based point-of-care testing (POCT) for clinical applications. Advanced Microfluidics-Based Point-of-Care Diagnostics In.CRC Press: FloridaFlorida2022396010.1201/9781003033479‑2
    [Google Scholar]
  62. Al-ArdiM.H. HealthG. The uses of gold nanoparticles and Citrullus colocynthis L. nanoparticles against Giardia lamblia in vivo.Clin. Epidemiol. Glob. Health2020841282128610.1016/j.cegh.2020.04.028
    [Google Scholar]
  63. BavandZ. GholamiS. HonariS. EsboeiB. TorabiN. BorabadiH.J. Effect of gold nanoparticles on Giardia lamblia cyst stage in in vitro.J. Arak Univ. Med. Sci.201416102737
    [Google Scholar]
  64. ConnorE.E. MwamukaJ. GoleA. MurphyC.J. WyattM.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity.Small20051332532710.1002/smll.20040009317193451
    [Google Scholar]
  65. RodriguesG.R. López-Abarrategui C, de la Serna Gómez I, Dias SC, Otero-González AJ, Franco OL. Antimicrobial magnetic nanoparticles based-therapies for controlling infectious diseases.Int. J. Pharm.201955535636710.1016/j.ijpharm.2018.11.04330453018
    [Google Scholar]
  66. Niemirowicz-LaskowskaK MystkowskaJ Łysik D, et al. Antimicrobial and physicochemical properties of artificial saliva formulations supplemented with core-shell magnetic nanoparticles.Int. J. Mol. Sci.2020216197910.3390/ijms2106197932183193
    [Google Scholar]
  67. JagadeeshanS. ParsanathanR. Nano-metal oxides for antibacterial activity.In: Advanced Nanostructured Materials for Environmental RemediationSpringer International Publishing: New York20198059-90
    [Google Scholar]
  68. JahangiriA. BarghiL. Polymeric nanoparticles: review of synthesis methods and applications in drug delivery.J Adv Chem Pharm Mater2018123847
    [Google Scholar]
  69. NoshirvaniN. GhanbarzadehB. Rezaei MokarramR. HashemiM. LifeS. Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread.Food Packag. Shelf Life20171110611410.1016/j.fpsl.2017.01.010
    [Google Scholar]
  70. LimaA.F. AmadoI.R. PiresL.R. Poly (d, l-lactide-co-glycolide)(PLGA) nanoparticles Loaded with proteolipid protein (PLP)—Exploring a new administration route.Polymers20201212306310.3390/polym1212306333371329
    [Google Scholar]
  71. KoulO. WaliaS. DhaliwalG. Essential oils as green pesticides: potential and constraints.Biopestic. Int.2008416384
    [Google Scholar]
  72. HeydariM. BagheriM.J. The antimicrobial effects of hydro-extract of Mentha Piperita lamiaceae essential oil nanoemulsion on gram-negative bacteria of Escherichia coli: A laboratory study.Majallah-i Ilmi-i Danishgah-i Ulum-i Pizishki-i Rafsanjan2019186515528
    [Google Scholar]
/content/journals/crcep/10.2174/2772432818666221111155119
Loading
/content/journals/crcep/10.2174/2772432818666221111155119
Loading

Data & Media loading...

Supplements


  • Article Type:
    Review Article
Keyword(s): Acanthamoeba; in vitro; in vivo; nanoparticles; parasites; systematic review
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test