Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2772-4328
  • E-ISSN: 2772-4336

Abstract

Dental implants have been one of the most popular treatments for rehabilitating individuals with single missing teeth or fully edentulous jaws since their introduction. As more implant patients are well-aged and take several medications due to various systemic conditions, clinicians should take into consideration the possible drug implications on bone remodeling and osseointegration.

The present study aims to examine and review some desirable and unwelcomed implications of medicine on osseointegration.

A broad search for proper relevant studies was conducted in four databases, including Web of Science, Pubmed, Scopus, and Google Scholar.

Some commonly prescribed medicines, such as nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, proton pump inhibitors (PPIs), selective serotonin reuptake inhibitors (SSRIs), anticoagulants, metformin, and chemotherapeutic agents, may jeopardize osseointegration. On the contrary, some therapeutic agents, such as anabolic, anti-catabolic, or dual anabolic agents may enhance osseointegration and increase the treatment’s success rate.

Systemic medications that enhance osseointegration include mineralization promoters and bone resorption inhibitors. On the other hand, medications often given to the elderly with systemic problems might interfere with osseointegration, leading to implant failure. However, to validate the research, more human studies with a higher level of evidence are required.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/2772432817666220607114559
2022-09-28
2025-01-19
Loading full text...

Full text loading...

References

  1. MoraschiniV. PoubelL.A. FerreiraV.F. BarbozaE.S. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: A systematic review.Int. J. Oral Maxillofac. Implants201544337738810.1016/j.ijom.2014.10.02325467739
    [Google Scholar]
  2. BranemarkPI Introduction to osseointegration Tissue-Integrated prostheses.198511-76
    [Google Scholar]
  3. ChrcanovicB.R. KischJ. AlbrektssonT. WennerbergA. Factors influencing early dental implant failures.J. Dent. Res.2016959995100210.1177/002203451664609827146701
    [Google Scholar]
  4. SennerbyL. DasmahA. LarssonB. IverhedM. Bone tissue responses to surface-modified zirconia implants: A histomorphometric and removal torque study in the rabbit.Clin. Implant Dent. Relat. Res.20057s1Suppl. 1S13S2010.1111/j.1708‑8208.2005.tb00070.x16137083
    [Google Scholar]
  5. StadelmannV.A. TerrierA. GauthierO. Implants delivering bisphosphonate locally increase periprosthetic bone density in an osteoporotic sheep model. A pilot study.Cells Mater200816101610.22203/eCM.v016a02
    [Google Scholar]
  6. O’BrienC.A. NakashimaT. TakayanagiH. Osteocyte control of osteoclastogenesis.Bone201354225826310.1016/j.bone.2012.08.12122939943
    [Google Scholar]
  7. WangY.N. JiaT.T. XuX. ZhangD.J. Overview of animal researches about the effects of systemic drugs on implant osseointegration.West China J Stomatol2020382211217
    [Google Scholar]
  8. EspositoM. ThomsenP. EricsonL.E. LekholmU. Histopathologic observations on early oral implant failures.Int. J. Oral Maxillofac. Implants199914679881010612916
    [Google Scholar]
  9. Kovács AFInfluence of chemotherapy on endosteal implant survival and success in oral cancer patients.Int. J. Oral Maxillofac. Surg.200130214414710.1054/ijom.2000.002311405450
    [Google Scholar]
  10. DuttenhoeferF. FuessingerM.A. BeckmannY. SchmelzeisenR. GroetzK.A. BoekerM. Dental implants in immunocompromised patients: A systematic review and meta-analysis.Int. J. Implant Dent.2019514310.1186/s40729‑019‑0191‑531776815
    [Google Scholar]
  11. de MolonR.S. SakakuraC.E. FaedaR.S. Effect of the long-term administration of Cyclosporine A on bone healing around osseointegrated titanium implants: A histomorphometric study in the rabbit tibia.Microsc. Res. Tech.20178091000100810.1002/jemt.2289428544667
    [Google Scholar]
  12. GonçalvesF.C. OliveiraG.J.P.L. ScardueliC.R. Spin-NetoR. StavropoulosA. MarcantonioR.A.C. Cyclosporine A impairs bone repair in critical defects filled with different osteoconductive bone substitutes.Braz. Oral Res.202034e00710.1590/1807‑3107bor‑2020.vol34.000732049108
    [Google Scholar]
  13. SakakuraC.E. MargonarR. HolzhausenM. NocitiF.H.Jr AlbaR.C.Jr MarcantonioE.Jr Influence of cyclosporin A therapy on bone healing around titanium implants: A histometric and biomechanic study in rabbits.J. Periodontol.200374797698110.1902/jop.2003.74.7.97612931759
    [Google Scholar]
  14. El HadaryA.A. YassinH.H. MekhemerS.T. HolmesJ.C. GrootveldM. Evaluation of the effect of ozonated plant oils on the quality of osseointegration of dental implants under the influence of Cyclosporin A: An in vivo study.J. Oral Implantol.201137224725710.1563/AAID‑JOI‑D‑09‑0009820545531
    [Google Scholar]
  15. SakakuraC.E. LopesB.M. MargonarR. Cyclosporine-A and bone density around titanium implants: A histometric study in rabbits.J Osseointegration201132529
    [Google Scholar]
  16. SakakuraC.E. MarcantonioE.Jr WenzelA. ScafG. Influence of cyclosporin A on quality of bone around integrated dental implants: A radiographic study in rabbits.Clin. Oral Implants Res.2007181343910.1111/j.1600‑0501.2006.01253.x17224021
    [Google Scholar]
  17. PetsinisV. KamperosG. AlexandridiF. AlexandridisK. The impact of glucocorticosteroids administered for systemic diseases on the osseointegration and survival of dental implants placed without bone grafting-A retrospective study in 31 patients.J. Craniomaxillofac. Surg.20174581197120010.1016/j.jcms.2017.05.02328684069
    [Google Scholar]
  18. FuJ.H. BashutskiJ.D. Al-HezaimiK. WangH.L. Statins, glucocorticoids, and nonsteroidal anti-inflammatory drugs: Their influence on implant healing.Implant Dent.201221536236710.1097/ID.0b013e3182611ff622968569
    [Google Scholar]
  19. BencharitS. ResideG.J. Howard-WilliamsE.L. Complex prosthodontic treatment with dental implants for a patient with polymyalgia rheumatica: A clinical report.Int. J. Oral Maxillofac. Implants20102561241124521197503
    [Google Scholar]
  20. SchulzM.C. KowaldJ. EstenfelderS. Site-specific variations in bone mineral density under systemic conditions inducing osteoporosis in minipigs.Front. Physiol.2017842610.3389/fphys.2017.0042628676766
    [Google Scholar]
  21. CaiJ. ShaoX. YangQ. Pulsed electromagnetic fields modify the adverse effects of glucocorticoids on bone architecture, bone strength and porous implant osseointegration by rescuing bone-anabolic actions.Bone202013311526610.1016/j.bone.2020.11526632044333
    [Google Scholar]
  22. CarrA.B. RevuruV.S. LohseC.M. Risk of dental implant failure associated with medication use.J. Prosthodont.201928774374910.1111/jopr.1277329508502
    [Google Scholar]
  23. de DecoC.P. da Silva MarchiniA.M. MarchiniL. da RochaR.F. Extended periods of alcohol intake negatively affects osseointegration in rats.J. Oral Implantol.2015413e44e4910.1563/AAID‑JOI‑D‑13‑0011124471800
    [Google Scholar]
  24. MukherjeeS. Alcoholism and its effects on the central nervous system.Curr. Neurovasc. Res.201310325626210.2174/1567202611310999000423713737
    [Google Scholar]
  25. OuanounouA. HassanpourS. GlogauerM. The influence of systemic medications on osseointegration of dental implants.J. Can. Dent. Assoc.201682g714885927548672
    [Google Scholar]
  26. DaiJ. LinD. ZhangJ. Chronic alcohol ingestion induces osteoclastogenesis and bone loss through IL-6 in mice.J. Clin. Invest.2000106788789510.1172/JCI1048311018077
    [Google Scholar]
  27. KooS. König B Jr, Mizusaki CI, Allegrini S Jr, Yoshimoto M, Carbonari MJ. Effects of alcohol consumption on osseointegration of titanium implants in rabbits.Implant Dent.200413323223710.1097/01.id.0000140462.33075.3415359159
    [Google Scholar]
  28. de DecoC.P. da SilvaM.A.M. Bárbara MA, de Vasconcellos LM, da Rocha RF, Marchini L. Negative effects of alcohol intake and estrogen deficiency combination on osseointegration in a rat model.J. Oral Implantol.201137663363910.1563/AAID‑JOI‑D‑10‑0004821504361
    [Google Scholar]
  29. TaoZ.S. ZhouW.S. YangM. XuH. Resveratrol reverses the negative effect of alcohol on hydroxyapatite-coated implant osseointegration in senile female rats.Z. Gerontol. Geriatr.202053653854510.1007/s00391‑019‑01595‑331435788
    [Google Scholar]
  30. WeyantR.J. Characteristics associated with the loss and peri-implant tissue health of endosseous dental implants.Int. J. Oral Maxillofac. Implants199491951028150519
    [Google Scholar]
  31. AlissaR. OliverR.J. Influence of prognostic risk indicators on osseointegrated dental implant failure: A matched case-control analysis.J. Oral Implantol.2012381516110.1563/AAID‑JOI‑D‑10‑0008620932122
    [Google Scholar]
  32. EkfeldtA. ChristianssonU. ErikssonT. A retrospective analysis of factors associated with multiple implant failures in maxillae.Clin. Oral Implants Res.200112546246710.1034/j.1600‑0501.2001.120505.x11564105
    [Google Scholar]
  33. Ortuño MJ, Robinson ST, Subramanyam P, et alSerotoninreuptake inhibitors act centrally to cause bone loss in mice by counteracting a local anti-resorptive effect.Nat Med201622101170910.1038/nm.416627595322
    [Google Scholar]
  34. WuX. Al-AbedallaK. RastikerdarE. Selective serotonin reuptake inhibitors and the risk of osseointegrated implant failure: A cohort study.J. Dent. Res.201493111054106110.1177/002203451454937825186831
    [Google Scholar]
  35. Abu NadaL. Al SubaieA. MansourA. The antidepressant drug, sertraline, hinders bone healing and osseointegration in rats’ tibiae.J. Clin. Periodontol.201845121485149710.1111/jcpe.1301530289996
    [Google Scholar]
  36. HowieR.N. HerbergS. DurhamE. Selective serotonin re-uptake inhibitor sertraline inhibits bone healing in a calvarial defect model.Int. J. Oral Sci.20181032510.1038/s41368‑018‑0026‑x30174329
    [Google Scholar]
  37. WuQ. BencazA.F. HentzJ.G. CrowellM.D. Selective serotonin reuptake inhibitor treatment and risk of fractures: A meta-analysis of cohort and case-control studies.Osteoporos. Int.201223136537510.1007/s00198‑011‑1778‑821904950
    [Google Scholar]
  38. ChrcanovicB.R. KischJ. AlbrektssonT. WennerbergA. Is the intake of selective serotonin reuptake inhibitors associated with an increased risk of dental implant failure?Int. J. Oral Maxillofac. Implants201746678278810.1016/j.ijom.2017.01.01628222946
    [Google Scholar]
  39. CarrA.B. GonzalezR.L.V. JiaL. LohseC.M. Relationship between selective serotonin reuptake inhibitors and risk of dental implant failure.J. Prosthodont.201928325225710.1111/jopr.1301530637850
    [Google Scholar]
  40. AltayMA SindelA Özalp Ö, et alDoes the intake of selective serotonin reuptake inhibitors negatively affect dental implant osseointegration? A retrospective study.J. Oral Implantol.201844426026510.1563/aaid‑joi‑D‑17‑0024029517407
    [Google Scholar]
  41. SilvaC. Dos SantosM.S. MonteiroJ.L. Is there an association between the use of antidepressants and complications involving dental implants? A systematic review and meta-analysis.Int. J. Oral Maxillofac. Surg.202032534847
    [Google Scholar]
  42. CaiW.X. MaL. ZhengL.W. Influence of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) on osseointegration of dental implants in rabbit calvaria.Clin. Oral Implants Res.201526447848310.1111/clr.1239224684486
    [Google Scholar]
  43. ToyV.E. DundarS. BozoglanA. The effects of a nonsteroidal anti-inflammatory drug on the degree of titanium implant osseointegration.J. Oral Biol. Craniofac. Res.202010433333610.1016/j.jobcr.2020.06.00632714785
    [Google Scholar]
  44. RibeiroF.V. César-NetoJ.B. NocitiF.H.Jr Selective cyclooxygenase-2 inhibitor may impair bone healing around titanium implants in rats.J. Periodontol.200677101731173510.1902/jop.2006.06011917032117
    [Google Scholar]
  45. SakkaS. HanounehS.I. Investigation of the effect of ibuprofen on the healing of osseointegrated oral implants.J. Investig. Clin. Dent.20134211311910.1111/j.2041‑1626.2012.00164.x22927165
    [Google Scholar]
  46. WinnettB. TenenbaumH.C. GanssB. JokstadA. Perioperative use of non-steroidal anti-inflammatory drugs might impair dental implant osseointegration.Clin. Oral Implants Res.2016272e1e710.1111/clr.1249325267330
    [Google Scholar]
  47. ChappuisV. Avila-OrtizG. Araújo MG, Monje A. Medication-related dental implant failure: Systematic review and meta-analysis.Clin. Oral Implants Res.201829Suppl. 16556810.1111/clr.1313730328197
    [Google Scholar]
  48. LuoJ.D. MillerC. JirjisT. NasirM. SharmaD. The effect of non-steroidal anti-inflammatory drugs on the osteogenic activity in osseointegration: A systematic review.Int. J. Implant Dent.2018413010.1186/s40729‑018‑0141‑730298361
    [Google Scholar]
  49. ApostuD. LucaciuO. LucaciuG.D. Systemic drugs that influence titanium implant osseointegration.Drug Metab. Rev.20174919210410.1080/03602532.2016.127773728030966
    [Google Scholar]
  50. AbdelhamidA.I. Scanning electron microscope evaluation of the effect of systemic administration of aspirin on the osseointegration of dental implants (experimental study).J. Pak. Dent. Assoc.2011204260265
    [Google Scholar]
  51. TaoZ. ZhouW. WuX. Local administration of aspirin improves osseointegration of hydroxyapatite-coated titanium implants in ovariectomized rats through activation of the Notch signaling pathway.J. Biomater. Appl.20203471009101810.1177/088532821988963031757183
    [Google Scholar]
  52. TrancikT. MillsW. VinsonN. The effect of indomethacin, aspirin, and ibuprofen on bone ingrowth into a porous-coated implant.Clin. Orthop. Relat. Res.198924911312110.1097/00003086‑198912000‑000132582661
    [Google Scholar]
  53. BastosM.F. Serrão CR, Miranda TS, Cruz DF, de Souza MF, Duarte PM. Effects of metformin on bone healing around titanium implants inserted in non-diabetic rats.Clin. Oral Implants Res.20172810e146e15010.1111/clr.1296027573975
    [Google Scholar]
  54. Serrão CRBastos MF, Cruz DF, de Souza MF, Vallim PC, Duarte PM. Role of metformin in reversing the negative impact of hyperglycemia on bone healing around implants inserted in type 2 diabetic rats.Int. J. Oral Maxillofac. Implants201732354755410.11607/jomi.575428494038
    [Google Scholar]
  55. SharmaH. GuptaA.S. MowarA. KusumC. Evaluation of the effect of 1% Metformin Gel coating on the osseointegration achieved around dental implants using bone mineral density and resonance frequency analysis-A clinical and three-dimensional radiographic study.Int J Pharm Res202113119
    [Google Scholar]
  56. WuX. Al-AbedallaK. Abi-NaderS. DanielN.G. NicolauB. TamimiF. Proton pump inhibitors and the risk of osseointegrated dental implant failure: A cohort study.Clin. Implant Dent. Relat. Res.201719222223210.1111/cid.1245527766743
    [Google Scholar]
  57. RogoszinskiT. BoggessW.J. CoburnJ.F. The effect of proton pump inhibitors on long-term implant success.J. Oral Maxillofac. Surg.20207810e6510.1016/j.joms.2020.07.130
    [Google Scholar]
  58. UrsomannoB.L. CohenR.E. LevineM.J. YerkeL.M. Effect of proton pump inhibitors on bone loss at dental implants.Int. J. Oral Maxillofac. Implants202035113013410.11607/jomi.780031923296
    [Google Scholar]
  59. AltayM.A. SindelA. Özalp Ö, Yıldırımyan N, Kocabalkan B. Proton pump inhibitor intake negatively affects the osseointegration of dental implants: A retrospective study.J. Korean Assoc. Oral Maxillofac. Surg.201945313514010.5125/jkaoms.2019.45.3.13531334101
    [Google Scholar]
  60. MesterA. ApostuD. CiobanuL. The impact of proton pump inhibitors on bone regeneration and implant osseointegration.Drug Metab. Rev.201951333033910.1080/03602532.2019.161076731055956
    [Google Scholar]
  61. NagV.D. 59. Proton pump inhibitors and dental implant failure- is there any link?? A scoping review.J. Indian Prosthodont. Soc.2018186Suppl. 2S9210.4103/0972‑4052.24656430602864
    [Google Scholar]
  62. PengZ. Wen-YiS. Da-WeiG. Symbol Effects of proton pump inhibitor FR167356 on osseointegration of dental implant in osteoporosis rabbits.J. Clin. Rehabil. Tissue Eng. Res.2014183353345340
    [Google Scholar]
  63. Al SubaieA. EmamiE. TamimiI. Systemic administration of omeprazole interferes with bone healing and implant osseointegration: An in vivo study on rat tibiae.J. Clin. Periodontol.201643219320310.1111/jcpe.1250626725944
    [Google Scholar]
  64. ChrcanovicB.R. KischJ. AlbrektssonT. WennerbergA. Intake of proton pump inhibitors is associated with an increased risk of dental implant failure.Int. J. Oral Maxillofac. Implants20173251097110210.11607/jomi.566228632255
    [Google Scholar]
  65. JungRE Al-NawasB AraujoM Group 1 ITI consensus report: The influence of implant length and design and medications on clinical and patient-reported outcomes.Clin Oral ImplantsSuppl. 16697710.1111/clr.1334230328189
    [Google Scholar]
  66. ChengL.L. Systemic intake of proton pump inhibitors and selective serotonin reuptake inhibitors may be associated with implant failure.J. Evid. Based Dent. Pract.202020310146610.1016/j.jebdp.2020.10146632921386
    [Google Scholar]
  67. Marković A, Đinić A, Calvo GJL, Tahmaseb A, Šćepanović M, Janjić BRandomized clinical study of the peri-implant healing to hydrophilic and hydrophobic implant surfaces in patients receiving anticoagulants.Clin. Oral Implants Res.201728101241124710.1111/clr.1294827539149
    [Google Scholar]
  68. KapetanouA.G. SavvidisM.S. PotoupnisM.E. (Rivaroxaban) on implants pull-out strength. An experimental study in rats.J Frailty Sarcopenia Falls2017211
    [Google Scholar]
  69. CallahanB.C. LiseckiE.J. BanksR.E. DaltonJ.E. CookS.D. WolffJ.D. The effect of warfarin on the attachment of bone to hydroxyapatite-coated and uncoated porous implants.J. Bone Joint Surg. Am.199577222523010.2106/00004623‑199502000‑000087844128
    [Google Scholar]
  70. Takahashi-YanagaF. Activator or inhibitor? GSK-3 as a new drug target.Biochem. Pharmacol.201386219119910.1016/j.bcp.2013.04.02223643839
    [Google Scholar]
  71. AlshahraniN.S. Abu-NadaL. Ramirez Garcia-LunaJ.L. Ranitidine impairs bone healing and implant osseointegration in rats’ tibiae.J. Oral Maxillofac. Surg.202078111943195210.1016/j.joms.2020.06.02732687794
    [Google Scholar]
  72. ParsonsM.E. GanellinC.R. Histamine and its receptors.Br. J. Pharmacol.2006147Suppl. 1S127S13510.1038/sj.bjp.070644016402096
    [Google Scholar]
  73. SkeelR.T. KhleifS.N. Handbook of cancer chemotherapy.Lippincott Williams & Wilkins: Philadelphia2011
    [Google Scholar]
  74. DantasM.V.M. VerzolaM.H.A. Sanitá PV, Dovigo LN, Cerri PS, Gabrielli MAC. The influence of Cisplatin-based chemotherapy on the osseointegration of dental implants: An in vivo mechanical and histometrical study.Clin. Oral Implants Res.201930760361610.1111/clr.1344531022308
    [Google Scholar]
  75. Al-MahalawyH. MareiH.F. AbuohashishH. AlhawajH. AlrefaeeM. Al-JandanB. Effects of cisplatin chemotherapy on the osseointegration of titanium implants.J. Craniomaxillofac. Surg.201644433734610.1016/j.jcms.2016.01.01226895777
    [Google Scholar]
  76. MatheusH.R. ErvolinoE. FaleirosP.L. Cisplatin chemotherapy impairs the peri-implant bone repair around titanium implants: An in vivo study in rats.J. Clin. Periodontol.201845224125210.1111/jcpe.1282428965362
    [Google Scholar]
  77. SteeleC.M. AlsaneiW.A. AyanikalathS. The influence of food texture and liquid consistency modification on swallowing physiology and function: A systematic review.Dysphagia201530122610.1007/s00455‑014‑9578‑x25343878
    [Google Scholar]
  78. Al-JandanB. MareiH.F. AbuohashishH. ZakariaO. Al-MahalawyH. Effects of sunitinib targeted chemotherapy on the osseointegration of titanium implants.Biomed. Pharmacother.201810043344010.1016/j.biopha.2018.02.05629471246
    [Google Scholar]
  79. Al-JandanB. Effect of antiangiogenic targeted chemotherapy on the osseointegration of titanium implants in rabbits.Br. J. Oral Maxillofac. Surg.201957215716310.1016/j.bjoms.2019.01.00330678991
    [Google Scholar]
  80. ChrcanovicB.R. AlbrektssonT. WennerbergA. Dental implants in patients receiving chemotherapy: A meta-analysis.Implant Dent.201625226127110.1097/ID.000000000000038826910184
    [Google Scholar]
  81. HadrowiczP. HadrowiczJ. KozakiewiczM. GesingA. Assessment of parathyroid hormone serum level as a predictor for bone condition around dental implants.Int. J. Oral Maxillofac. Implants2017324e207e21210.11607/jomi.568628708916
    [Google Scholar]
  82. AggarwalP. ZavrasA. Parathyroid hormone and its effects on dental tissues.Oral Dis.2012181485410.1111/j.1601‑0825.2011.01850.x21895887
    [Google Scholar]
  83. TaoZ.S. ZhouW.S. QiangZ. Intermittent administration of human parathyroid hormone (1-34) increases fixation of strontium-doped hydroxyapatite coating titanium implants via electrochemical deposition in ovariectomized rat femur.J. Biomater. Appl.201630795296010.1177/088532821561089826482573
    [Google Scholar]
  84. ParkS. HeoH.A. KimK.W. MinJ.S. PyoS.W. Intermittent parathyroid hormone improves bone formation around titanium implants in osteoporotic rat maxillae.Int. J. Oral Maxillofac. Implants201732120420910.11607/jomi.503727706266
    [Google Scholar]
  85. OkiY. DoiK. MakiharaY. KobatakeR. KuboT. TsugaK. Effects of continual intermittent administration of parathyroid hormone on implant stability in the presence of osteoporosis: An in vivo study using resonance frequency analysis in a rabbit model.J. Appl. Oral Sci.201725549850510.1590/1678‑7757‑2016‑056129069147
    [Google Scholar]
  86. OkiY. DoiK. MakiharaY. KuboT. OueH. TsugaK. Intermittent administration of parathyroid hormone enhances primary stability of dental implants in a bone-reduced rabbit model.J. Oral Sci.201658224124610.2334/josnusd.15‑071727349546
    [Google Scholar]
  87. NeerR.M. ArnaudC.D. ZanchettaJ.R. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis.N. Engl. J. Med.2001344191434144110.1056/NEJM20010510344190411346808
    [Google Scholar]
  88. RubinM.R. BilezikianJ.P. New anabolic therapies in osteoporosis.Curr. Opin. Rheumatol.200214443344010.1097/00002281‑200207000‑0001812118181
    [Google Scholar]
  89. ShirotaT. TashiroM. OhnoK. YamaguchiA. Effect of intermittent parathyroid hormone (1-34) treatment on the bone response after placement of titanium implants into the tibia of ovariectomized rats.J. Oral Maxillofac. Surg.200361447148010.1053/joms.2003.5009312684966
    [Google Scholar]
  90. ZhangL. EndoN. YamamotoN. TanizawaT. TakahashiH.E. Effects of single and concurrent intermittent administration of human PTH (1-34) and incadronate on cancellous and cortical bone of femoral neck in ovariectomized rats.Tohoku J. Exp. Med.1998186213114110.1620/tjem.186.13110223616
    [Google Scholar]
  91. OhkawaY. TokunagaK. EndoN. Intermittent administration of human parathyroid hormone (1-34) increases new bone formation on the interface of hydroxyapatitecoated titanium rods implanted into ovariectomized rat femora.J. Orthop. Sci.200813653354210.1007/s00776‑008‑1275‑x19089541
    [Google Scholar]
  92. AlmagroM.I. Roman-BlasJ.A. BellidoM. Castañeda S, Cortez R, Herrero-Beaumont G. PTH [1-34] enhances bone response around titanium implants in a rabbit model of osteoporosis.Clin. Oral Implants Res.20132491027103422626278
    [Google Scholar]
  93. HeoH.A. ParkS.H. JeonY.S. PyoS.W. Enhancing effect of intermittent parathyroid hormone administration on bone formation after titanium implant placement in an ovariectomized rat maxilla.Implant Dent.201625222723110.1097/ID.000000000000035226513040
    [Google Scholar]
  94. UchidaY. KuroshimaS. UtoY. Intermittent administration of parathyroid hormone improves bone quality and quantity around implants in rat tibiae.J. Oral Biosci./JAOB, Jpn. Assoc. Oral Biol.202062213914610.1016/j.job.2020.03.00132272187
    [Google Scholar]
  95. JiangL. ZhangW. WeiL. Early effects of parathyroid hormone on vascularized bone regeneration and implant osseointegration in aged rats.Biomaterials2018179152810.1016/j.biomaterials.2018.06.03529960821
    [Google Scholar]
  96. CorsiniM.S. FaracoF.N. CastroA.A. OnumaT. SendykW.R. ShibliJ.A. Effect of systemic intermittent administration of human parathyroid hormone (rhPTH[1-34]) on the resistance to reverse torque in rabbit tibiae.J. Oral Implantol.200834629830210.1563/1548‑1336‑34.6.29819133483
    [Google Scholar]
  97. MafraC.E.S. SirolliM. CavalcantiM.C. Effect of different doses of synthetic parathyroid hormone (1-34) on bone around implants: A preclinical rat model.Braz. Dent. J.2019301434610.1590/0103‑644020190219930864646
    [Google Scholar]
  98. ParkJ.Y. HeoH.A. ParkS. PyoS.W. Enhancement of peri-implant bone formation via parathyroid hormone administration in a rat model at risk for medication-related osteonecrosis of the jaw.J. Periodontal Implant Sci.202050212113110.5051/jpis.2020.50.2.12132395390
    [Google Scholar]
  99. ShibamotoA. OgawaT. DuyckJ. VandammeK. NaertI. SasakiK. Effect of high-frequency loading and parathyroid hormone administration on peri-implant bone healing and osseointegration.Int. J. Oral Sci.2018101610.1038/s41368‑018‑0009‑y29531334
    [Google Scholar]
  100. HayashiK. FotovatiA. AliS.A. OdaK. OidaH. NaitoM. Prostaglandin EP4 receptor agonist augments fixation of hydroxyapatite-coated implants in a rat model of osteoporosis.J. Bone Joint Surg. Br.20058781150115610.1302/0301‑620X.87B8.1588616049256
    [Google Scholar]
  101. NasuT. TakemotoM. AkiyamaN. FujibayashiS. NeoM. NakamuraT. EP4 agonist accelerates osteoinduction and degradation of β-tricalcium phosphate by stimulating osteoclastogenesis.J. Biomed. Mater. Res. A200989360160810.1002/jbm.a.3198418437696
    [Google Scholar]
  102. OnishiE. FujibayashiS. TakemotoM. Enhancement of bone-bonding ability of bioactive titanium by prostaglandin E2 receptor selective agonist.Biomaterials200829787788310.1016/j.biomaterials.2007.10.02818045684
    [Google Scholar]
  103. MasuzawaM. BeppuM. IshiiS. OyakeY. AokiH. TakagiM. Experimental study of bone formation around a titanium rod with β-tricalcium phosphate and prostaglandin E2 receptor agonists.J. Orthop. Sci.200510330831410.1007/s00776‑005‑0890‑z15928895
    [Google Scholar]
  104. HayashiK. FotovatiA. AliS.A. Effect of a prostaglandin EP4 receptor agonist on early fixation of hydroxyapatite/titanium implants in ovariectomized rats.J. Biomed. Mater. Res. A20099231202120910.1002/jbm.a.3244419322876
    [Google Scholar]
  105. NaitoY. JimboR. BryingtonM.S. The influence of 1α.25-dihydroxyvitamin d3 coating on implant osseointegration in the rabbit tibia.J. Oral Maxillofac. Res.201453e325386230
    [Google Scholar]
  106. Salomó-Coll O, Maté-Sánchez de Val JE, Ramírez-Fernandez MP, Hernández-Alfaro F, Gargallo-Albiol J, Calvo-Guirado JLTopical applications of vitamin D on implant surface for bone-to-implant contact enhance: A pilot study in dogs part II.Clin. Oral Implants Res.201627789690310.1111/clr.1270726419393
    [Google Scholar]
  107. ManganoF. Is low serum vitamin D associated with early dental implant failure? A retrospective evaluation on 1625 implants placed in 822 patients.Mediators Inflamm.20162016710.1155/2016/5319718
    [Google Scholar]
  108. JavedF. MalmstromH. KellesarianS.V. Al-KheraifA.A. VohraF. RomanosG.E. Efficacy of vitamin D3 supplementation on osseointegration of implants.Implant Dent.201625228128710.1097/ID.000000000000039026886807
    [Google Scholar]
  109. GuidoM.F. GhertasiO.S. PazA. ManganoN. ManganoC. Low serum vitamin D and early dental implant failure: Is there a connection? A retrospective clinical study on 1740 implants placed in 885 patients.J. Dent. Res. Dent. Clin. Dent. Prospect.201812317418210.15171/joddd.2018.02730443302
    [Google Scholar]
  110. Salomó-Coll O, de Maté-Sánchez JEV, Ramírez-Fernandez MP, Hernández-Alfaro F, Gargallo-Albiol J, Calvo-Guirado JLOsseoinductive elements around immediate implants for better osteointegration: A pilot study in foxhound dogs.Clin. Oral Implants Res.201829111061106910.1111/clr.1280926923181
    [Google Scholar]
  111. KwiatekJ. Jaroń A, Trybek G. Impact of the 25-hydroxycholecalciferol concentration and vitamin D deficiency treatment on changes in the bone level at the implant site during the process of osseointegration: A prospective, randomized, controlled clinical trial.J. Clin. Med.202110352610.3390/jcm1003052633540512
    [Google Scholar]
  112. LiX. GrisantiM. FanW. Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury.J. Bone Miner. Res.201126112610262110.1002/jbmr.47221773994
    [Google Scholar]
  113. LiuM. KurimotoP. ZhangJ. Sclerostin and DKK1 inhibition preserves and augments alveolar bone volume and architecture in rats with alveolar bone loss.J. Dent. Res.20189791031103810.1177/002203451876687429617179
    [Google Scholar]
  114. FlorioM. GunasekaranK. StolinaM. A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair.Nat. Commun.2016711150510.1038/ncomms1150527230681
    [Google Scholar]
  115. GlantschnigH. ScottK. HamptonR. A rate-limiting role for Dickkopf-1 in bone formation and the remediation of bone loss in mouse and primate models of postmenopausal osteoporosis by an experimental therapeutic antibody.J. Pharmacol. Exp. Ther.2011338256857810.1124/jpet.111.18140421531794
    [Google Scholar]
  116. AgholmeF. IsakssonH. KuhstossS. AspenbergP. The effects of Dickkopf-1 antibody on metaphyseal bone and implant fixation under different loading conditions.Bone201148598899610.1016/j.bone.2011.02.00821329773
    [Google Scholar]
  117. KeH.Z. RichardsW.G. LiX. OminskyM.S. Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases.Endocr. Rev.201233574778310.1210/er.2011‑106022723594
    [Google Scholar]
  118. McClungM.R. GrauerA. BoonenS. Romosozumab in postmenopausal women with low bone mineral density.N. Engl. J. Med.2014370541242010.1056/NEJMoa130522424382002
    [Google Scholar]
  119. LiuS. VirdiA.S. SenaK. SumnerD.R. Sclerostin antibody prevents particle-induced implant loosening by stimulating bone formation and inhibiting bone resorption in a rat model.Arthritis Rheum.201264124012402010.1002/art.3769723192793
    [Google Scholar]
  120. YuS.H. HaoJ. FretwurstT. Sclerostin-neutralizing antibody enhances bone regeneration around oral implants.Tissue Eng. Part A20182421-221672167910.1089/ten.tea.2018.001329921173
    [Google Scholar]
  121. da SilvaF.L. AlvesM.C.A. PeruzzoD.C. MontalliV.A. DuarteP.M. NapimogaM.H. Preliminary findings on the role of sclerostin in the osseointegration process around titanium implants.Int. J. Oral Maxillofac. Implants20163161298130210.11607/jomi.509327861654
    [Google Scholar]
  122. VirdiA.S. IrishJ. SenaK. Sclerostin antibody treatment improves implant fixation in a model of severe osteoporosis.J. Bone Joint Surg. Am.201597213314010.2106/JBJS.N.0065425609440
    [Google Scholar]
  123. VirdiA.S. LiuM. SenaK. Sclerostin antibody increases bone volume and enhances implant fixation in a rat model.J. Bone Joint Surg. Am.201294181670168010.2106/JBJS.K.0034422992878
    [Google Scholar]
  124. HardelandR. Pandi-PerumalS.R. CardinaliD.P. Melatonin.Int. J. Biochem. Cell Biol.200638331331610.1016/j.biocel.2005.08.02016219483
    [Google Scholar]
  125. RothJ.A. KimB.G. LinW.L. ChoM.I. Melatonin promotes osteoblast differentiation and bone formation.J. Biol. Chem.199927431220412204710.1074/jbc.274.31.2204110419530
    [Google Scholar]
  126. Garcia-Mauriño S, Gonzalez-Haba MG, Calvo JR, et alMelatonin enhances IL-2, IL-6, and IFN-gamma production by human circulating CD4+ cells: A possible nuclear receptor-mediated mechanism involving T helper type 1 lymphocytes and monocytes.J Immunol19971592574819218571
    [Google Scholar]
  127. SlominskiR.M. ReiterR.J. Schlabritz-LoutsevitchN. OstromR.S. SlominskiA.T. Melatonin membrane receptors in peripheral tissues: Distribution and functions.Mol. Cell. Endocrinol.2012351215216610.1016/j.mce.2012.01.00422245784
    [Google Scholar]
  128. Abdel-DayemH. Abdel-AlimH. BanasrF. Topical application of melatonin around immediate implants.Am. J. Res. Commun.201423112
    [Google Scholar]
  129. RostomD ElaA AbdallaM Effect of melatonin on osseointegration of immediate loading implant supported mandibular over denture: Randomized clinical trail.Int dent med201620151510.15713/ins.idmjar.55
    [Google Scholar]
  130. El-GammalM.Y. SalemA.S. AneesM.M. TawfikM.A. Clinical and radiographic evaluation of immediate loaded dental implants with local application of melatonin: A preliminary randomized controlled clinical trial.J. Oral Implantol.201642211912510.1563/aaid‑joi‑D‑14‑0027726103559
    [Google Scholar]
  131. NajeebS. KhurshidZ. ZohaibS. ZafarM.S. Therapeutic potential of melatonin in oral medicine and periodontology.Kaohsiung J. Med. Sci.201632839139610.1016/j.kjms.2016.06.00527523451
    [Google Scholar]
  132. PermuyM. López-Peña M, González-Cantalapiedra A, Muñoz FMelatonin: A review of its potential functions and effects on dental diseases.Int. J. Mol. Sci.2017184E86510.3390/ijms1804086528422058
    [Google Scholar]
  133. Gómez-Moreno G, Aguilar-Salvatierra A, Boquete-Castro A, et alOutcomes of topical applications of melatonin in implant dentistry: A systematic review.Implant Dent2015241253010.1097/ID.000000000000018625621548
    [Google Scholar]
  134. PoschA.T. de Avellar-PintoJ.F. MaltaF.S. Lithium chloride improves bone filling around implants placed in estrogen-deficient rats.Arch. Oral Biol.202011110464410.1016/j.archoralbio.2019.10464431896027
    [Google Scholar]
  135. KimJ.B. LeuchtP. LamK. Bone regeneration is regulated by WNT signaling.J. Bone Miner. Res.200722121913192310.1359/jbmr.07080217696762
    [Google Scholar]
  136. NaotD. CornishJ. The role of peptides and receptors of the calcitonin family in the regulation of bone metabolism.Bone200843581381810.1016/j.bone.2008.07.00318687416
    [Google Scholar]
  137. RosenfeldM.G. MermodJ.J. AmaraS.G. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing.Nature1983304592212913510.1038/304129a06346105
    [Google Scholar]
  138. OgawaA. HarrisV. McCorkleS.K. UngerR.H. LuskeyK.L. Amylin secretion from the rat pancreas and its selective loss after streptozotocin treatment.J. Clin. Invest.199085397397610.1172/JCI1145282179271
    [Google Scholar]
  139. CankayaD. TabakY. OzturkA.M. GunayM.C. Perioperative alendronate, risedronate, calcitonin and indomethacin treatment alters femoral stem fixation and periprosthetic bone mineral density in ovariectomized rats.J. Orthop. Sci.201520472873310.1007/s00776‑015‑0717‑525804375
    [Google Scholar]
  140. ChenB.L. XieD.H. ZhengZ.M. Comparison of the effects of alendronate sodium and calcitonin on bone-prosthesis osseointegration in osteoporotic rats.Osteoporos. Int.201122126527010.1007/s00198‑010‑1186‑520204600
    [Google Scholar]
  141. MaoY. LuW.Q. Effect of calcitonin on biomechanical characteristics of osteoporotic bone with implant.J Tongji University201202
    [Google Scholar]
  142. Januário AL, Sallum EA, de Toledo S, Sallum AW, Nociti JF Jr. Effect of calcitonin on bone formation around titanium implant. A histometric study in rabbits.Braz. Dent. J.200112315816211696910
    [Google Scholar]
  143. Bai-lingC. Deng-huiX. Wei-jiaL. Calcitonin promotes implant osteointegration in osteoporosis condition.J. Clin. Rehabil. Tissue Eng. Res.2011152649274930
    [Google Scholar]
  144. BartlR. FrischB. TresckowE. BartlC. Bisphosphonates in medical practice: Actions-side effects-indications-strategies.Springer Science & Business Media: Berlin200710.1007/978‑3‑540‑69870‑8
    [Google Scholar]
  145. FleishH. NeumanW.F. Mechanisms of calcification: Role of collagen, polyphosphates, and phosphatase.Am. J. Physiol.196120061296130010.1152/ajplegacy.1961.200.6.129613700202
    [Google Scholar]
  146. NajeebS. ZafarM.S. KhurshidZ. ZohaibS. HasanS.M. KhanR.S. Bisphosphonate releasing dental implant surface coatings and osseointegration: A systematic review.J. Taibah Univ. Med. Sci.201712536937510.1016/j.jtumed.2017.05.00731435266
    [Google Scholar]
  147. LehenkariPP KellinsalmiM Näpänkangas JP, et alFurther insight into mechanism of action of clodronate: Inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite.Mol. Pharmacol.20026151255126210.1124/mol.61.5.125511961144
    [Google Scholar]
  148. GongL. AltmanR.B. KleinT.E. Bisphosphonates pathway.Pharmacogenet. Genomics2011211505310.1097/FPC.0b013e328335729c20023594
    [Google Scholar]
  149. QayoomI RainaDB Širka A, et alAnabolic and antiresorptive actions of locally delivered bisphosphonates for bone repair: A review.Bone Joint Res.201871054856010.1302/2046‑3758.710.BJR‑2018‑0015.R230464835
    [Google Scholar]
  150. Guimarães MB, Antes TH, Dolacio MB, Pereira DD, Marquezan M. Does local delivery of bisphosphonates influence the osseointegration of titanium implants? A systematic review.Int. J. Oral Maxillofac. Implants201746111429143610.1016/j.ijom.2017.04.01428521963
    [Google Scholar]
  151. KellesarianS.V. AbduljabbarT. VohraF. Role of local alendronate delivery on the osseointegration of implants: A systematic review and meta-analysis.Int. J. Oral Maxillofac. Implants201746791292110.1016/j.ijom.2017.03.00928366449
    [Google Scholar]
  152. AbtahiJ. HenefalkG. AspenbergP. Randomised trial of bisphosphonate-coated dental implants: Radiographic follow-up after five years of loading.Int. J. Oral Maxillofac. Implants201645121564156910.1016/j.ijom.2016.09.00127688166
    [Google Scholar]
  153. AbtahiJ. HenefalkG. AspenbergP. Impact of a zoledronate coating on early post-surgical implant stability and marginal bone resorption in the maxilla-A split-mouth randomized clinical trial.Clin. Oral Implants Res.2019301495810.1111/clr.1339130565741
    [Google Scholar]
  154. KhamisA.K. ElsharkawyS. The influence of local delivery of bisphosphonate on osseointegration of dental implants.Evid. Based Dent.2018193828310.1038/sj.ebd.640132630361658
    [Google Scholar]
  155. StavropoulosA. BertlK. PietschmannP. PandisN. Schiødt M, Klinge B. The effect of antiresorptive drugs on implant therapy: Systematic review and meta-analysis.Clin. Oral Implants Res.201829Suppl. 18549210.1111/clr.1328230306695
    [Google Scholar]
  156. SchmittC.M. BuchbenderM. LutzR. NeukamF.W. Oral implant survival in patients with bisphosphonate (BP)/antiresorptive and radiation therapy and their impact on osteonecrosis of the jaws. A systematic review.Eur. J. Oral Implantology2018111Suppl. 1S93S11130109302
    [Google Scholar]
  157. GelaziusR. PoskeviciusL. SakaviciusD. GrimutaV. JuodzbalysG. Dental implant placement in patients on bisphosphonate therapy: A systematic review.J. Oral Maxillofac. Res.201893e210.5037/jomr.2018.930230429962
    [Google Scholar]
  158. YajimaN. MunakataM. FuchigamiK. SandaM. KasugaiS. Influence of bisphosphonates on implant failure rates and characteristics of postmenopausal woman mandibular jawbone.J. Oral Implantol.201743534534910.1563/aaid‑joi‑D‑17‑0001528873023
    [Google Scholar]
  159. de-FreitasN-R. LimaL.B. de-MouraM.B. Veloso-GuedesC.C. Simamoto-Júnior PC, de-Magalhães D. Bisphosphonate treatment and dental implants: A systematic review.Med. Oral Patol. Oral Cir. Bucal2016215e644e65110.4317/medoral.2092027475681
    [Google Scholar]
  160. MendesV. Dos SantosG.O. Calasans-MaiaM.D. GranjeiroJ.M. MoraschiniV. Impact of bisphosphonate therapy on dental implant outcomes: An overview of systematic review evidence.Int. J. Oral Maxillofac. Implants201948337338110.1016/j.ijom.2018.09.00630314708
    [Google Scholar]
  161. KapasaE.R. GiannoudisP.V. JiaX. HattonP.V. YangX.B. The effect of RANKL/OPG balance on reducing implant complications.J. Funct. Biomater.2017844210.3390/jfb804004228937598
    [Google Scholar]
  162. BoyceB.F. XingL. Biology of RANK, RANKL, and osteoprotegerin.Arthritis Res. Ther.20079Suppl 1S110.1186/ar2165
    [Google Scholar]
  163. TheoleyreS. WittrantY. TatS.K. FortunY. RediniF. HeymannD. The molecular triad OPG/RANK/RANKL: Involvement in the orchestration of pathophysiological bone remodeling.Cytokine Growth Factor Rev.200415645747510.1016/j.cytogfr.2004.06.00415561602
    [Google Scholar]
  164. KostenuikP.J. Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength.Curr. Opin. Pharmacol.20055661862510.1016/j.coph.2005.06.00516188502
    [Google Scholar]
  165. LiuY. HuJ. LiuB. JiangX. LiY. The effect of osteoprotegerin on implant osseointegration in ovariectomized rats.Arch. Med. Sci.201713248949510.5114/aoms.2017.6546828261305
    [Google Scholar]
  166. VerborgtO. GibsonG.J. SchafflerM.B. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo.J. Bone Miner. Res.2000151606710.1359/jbmr.2000.15.1.6010646115
    [Google Scholar]
  167. ColopyS.A. Benz-DeanJ. BarrettJ.G. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading.Bone200435488189110.1016/j.bone.2004.05.02415454095
    [Google Scholar]
  168. FazzalariN.L. Bone fracture and bone fracture repair.Osteoporos. Int.20112262003200610.1007/s00198‑011‑1611‑421523400
    [Google Scholar]
  169. WeitzmannM.N. The role of inflammatory cytokines, the rankl/opg axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis.Scientifica2013201312570510.1155/2013/12570524278766
    [Google Scholar]
  170. AubinJ.E. BonnelyeE. Osteoprotegerin and its ligand: A new paradigm for regulation of osteoclastogenesis and bone resorption.Osteoporos. Int.2000111190591310.1007/s00198007002811193242
    [Google Scholar]
  171. HaynesD.R. CrottiT.N. PotterA.E. The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis.J. Bone Joint Surg. Br.200183690291110.1302/0301‑620X.83B6.083090211521937
    [Google Scholar]
  172. BernhardssonM. SandbergO. AspenbergP. Anti-RANKL treatment improves screw fixation in cancellous bone in rats.Injury201546699099510.1016/j.injury.2015.02.01125744169
    [Google Scholar]
  173. BaronR. FerrariS. RussellR.G. Denosumab and bisphosphonates: Different mechanisms of action and effects.Bone201148467769210.1016/j.bone.2010.11.02021145999
    [Google Scholar]
  174. KearnsA.E. KhoslaS. KostenuikP.J. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease.Endocr. Rev.200829215519210.1210/er.2007‑001418057140
    [Google Scholar]
  175. MaximovP.Y. LeeT.M. JordanV.C. The discovery and development of Selective Estrogen Receptor Modulators (SERMs) for clinical practice.Curr. Clin. Pharmacol.20138213515510.2174/157488471130802000623062036
    [Google Scholar]
  176. HeoH.A. ParkS. JeonY.S. PyoS.W. Effect of raloxifene administration on bone response around implant in the maxilla of osteoporotic rats.Implant Dent.201928327227810.1097/ID.000000000000088131124824
    [Google Scholar]
  177. FaveraniL.P. PoloT.O.B. Ramalho-FerreiraG. Raloxifene but not alendronate can compensate the impaired osseointegration in osteoporotic rats.Clin. Oral Investig.201822125526510.1007/s00784‑017‑2106‑228357643
    [Google Scholar]
  178. MuC. HuY. HuangL. Sustained raloxifene release from hyaluronan-alendronate-functionalized titanium nanotube arrays capable of enhancing osseointegration in osteoporotic rabbits.Mater. Sci. Eng. C20188234535310.1016/j.msec.2017.08.05629025668
    [Google Scholar]
  179. LeibleinM. HenrichD. FerversF. Do antiosteoporotic drugs improve bone regeneration in vivo?Eur. J. Trauma Emerg. Surg.201931028428
    [Google Scholar]
  180. SendykD.I. DeboniM.C. PannutiC.M. Naclério-HomemM.G. WennerbergA. The influence of statins on osseointegration: A systematic review of animal model studies.J. Oral Rehabil.2016431187388210.1111/joor.1243827611923
    [Google Scholar]
  181. KellesarianS.V. Al AmriM.D. Al-KheraifA.A. GhanemA. MalmstromH. JavedF. Efficacy of local and systemic statin delivery on the osseointegration of implants: A systematic review.Int. J. Oral Maxillofac. Implants201732349750610.11607/jomi.495528494034
    [Google Scholar]
  182. MoraschiniV. AlmeidaD.C.F. Calasans-MaiaJ.A. Diuana Calasans-MaiaM. The ability of topical and systemic statins to increase osteogenesis around dental implants: A systematic review of histomorphometric outcomes in animal studies.Int. J. Oral Maxillofac. Implants20184781070107810.1016/j.ijom.2017.12.00929352637
    [Google Scholar]
  183. MoriyamaY. AyukawaY. OginoY. Local application of fluvastatin improves peri-implant bone quantity and mechanical properties: A rodent study.Acta Biomater.2010641610161810.1016/j.actbio.2009.10.04519887121
    [Google Scholar]
  184. LiX. WuF. ZhangY. YangJ. ShinoharaA. KagamiH. Discontinuation of simvastatin leads to a rebound phenomenon and results in immediate peri-implant bone loss.Clin. Exp. Dent. Res.201621657210.1002/cre2.2329744151
    [Google Scholar]
  185. MoriyamaY. AyukawaY. OginoY. AtsutaI. KoyanoK. Topical application of statin affects bone healing around implants.Clin. Oral Implants Res.200819660060510.1111/j.1600‑0501.2007.01508.x18422989
    [Google Scholar]
  186. TanJ. YangN. FuX. Single-dose local simvastatin injection improves implant fixation via increased angiogenesis and bone formation in an ovariectomized rat model.Med. Sci. Monit.2015211428143910.12659/MSM.89224725982481
    [Google Scholar]
  187. DingX. WangS. JinW. LiuX. ChenJ. ChenS. Encapsulation of a nanoporous simvastatin-chitosan composite to enhance osteointegration of hydroxyapatite-coated polyethylene terephthalate ligaments.Int. J. Nanomedicine2019144881489310.2147/IJN.S21068731308664
    [Google Scholar]
  188. JunJ.H. OhK.C. ParkK.H. JungN. LiJ. MoonH.S. Improvement of osseointegration by ultraviolet and/or simvastatin treatment on titanium implants with or without bone graft materials.Materials20211413370710.3390/ma1413370734279277
    [Google Scholar]
  189. CoburnJ. CarrB. BoggessW.J. Peri-implantitis risk in patients taking statins and antihypertensives.J. Oral Maxillofac. Surg.20207810e62e6310.1016/j.joms.2020.07.126
    [Google Scholar]
  190. GutierrezG.E. LalkaD. GarrettI.R. RossiniG. MundyG.R. Transdermal application of lovastatin to rats causes profound increases in bone formation and plasma concentrations.Osteoporos. Int.20061771033104210.1007/s00198‑006‑0079‑016758140
    [Google Scholar]
  191. MundyG. GarrettR. HarrisS. Stimulation of bone formation in vitro and in rodents by statins.Science199928654461946194910.1126/science.286.5446.194610583956
    [Google Scholar]
  192. DundarS. BozoglanA. Evaluation of the effects of topically applied simvastatin on titanium implant osseointegration.J. Oral Biol. Craniofac. Res.202010214915210.1016/j.jobcr.2020.04.00432322477
    [Google Scholar]
  193. OsmanM.A. Abd El-AkberM.O. AntarM.M. The effect of simvastatin drug on osteogenesis around titanium implant (radiographic and histomorphometric analysis).Al-Azhar J. Dent. Sci.201821327528310.21608/ajdsm.2018.71571
    [Google Scholar]
  194. ApostuD. LucaciuO. MesterA. Oltean-DanD. GhebanD. Ciprian BeneaH.R. Tibolone, alendronate, and simvastatin enhance implant osseointegration in a preclinical in vivo model.Clin. Oral Implants Res.202031765566810.1111/clr.1360232279374
    [Google Scholar]
  195. MohammedA.H. Al KayatA. Effect of systemic administration of simvastatin on dental implant stability: A random clinical study.Iraqi Dent. J.201638211912310.26477/idj.v38i2.89
    [Google Scholar]
  196. BasudanA.M. ShaheenM.Y. NiazyA.A. van den BeuckenJ.J.J.P. JansenJ.A. AlghamdiH.S. Biological effect of single or combined pharmacological therapy using alendronate and simvastatin on implant osseointegration: An in vivo study in healthy and osteoporotic rat models.Appl. Sci.20201012429810.3390/app10124298
    [Google Scholar]
  197. XuR. ShiG. XuL. Simvastatin improves oral implant osseointegration via enhanced autophagy and osteogenesis of BMSCs and inhibited osteoclast activity.J. Tissue Eng. Regen. Med.20181251209121910.1002/term.265229498229
    [Google Scholar]
  198. FangW. ZhaoS. HeF. Influence of simvastatin-loaded implants on osseointegration in an ovariectomized animal model.BioMed Res. Inter.20152015710.1155/2015/831504
    [Google Scholar]
  199. ZhaoB. LiX. XuH. JiangY. WangD. LiuR. Influence of simvastatin-strontium-hydroxyapatite coated implant formed by micro-arc oxidation and immersion method on osteointegration in osteoporotic rabbits.Int. J. Nanomedicine2020151797180710.2147/IJN.S24481532214812
    [Google Scholar]
  200. PaulyS. BackD.A. KaepplerK. HaasN.P. SchmidmaierG. WildemannB. Influence of statins locally applied from orthopedic implants on osseous integration.BMC Musculoskelet. Disord.201213120810.1186/1471‑2474‑13‑20823102098
    [Google Scholar]
  201. ScardueliC.R. Bizelli-SilveiraC. MarcantonioR.A.C. MarcantonioE.Jr StavropoulosA. Spin-NetoR. Systemic administration of strontium ranelate to enhance the osseointegration of implants: systematic review of animal studies.Int. J. Implant Dent.2018412110.1186/s40729‑018‑0132‑830014305
    [Google Scholar]
  202. MeunierP.J. RouxC. SeemanE. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis.N. Engl. J. Med.2004350545946810.1056/NEJMoa02243614749454
    [Google Scholar]
  203. BarbaraA. DelannoyP. DenisB.G. MarieP.J. Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells.Metabolism200453453253710.1016/j.metabol.2003.10.02215045704
    [Google Scholar]
  204. Sila-AsnaM. BunyaratvejA. MaedaS. KitaguchiH. BunyaratavejN. Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell.Kobe J. Med. Sci.2007531-2253517579299
    [Google Scholar]
  205. MarxD. RahimnejadY.A. PapiniM. TowlerM. A review of the latest insights into the mechanism of action of strontium in bone.Bone Rep.20201210027310.1016/j.bonr.2020.10027332395571
    [Google Scholar]
  206. LiY. FengG. GaoY. LuoE. LiuX. HuJ. Strontium ranelate treatment enhances hydroxyapatite-coated titanium screws fixation in osteoporotic rats.J. Orthop. Res.201028557858210.1002/jor.2105020014319
    [Google Scholar]
  207. ChenB. LiY. YangX. XuH. XieD. Zoledronic acid enhances bone-implant osseointegration more than alendronate and strontium ranelate in ovariectomized rats.Osteoporos. Int.20132472115212110.1007/s00198‑013‑2288‑723389695
    [Google Scholar]
  208. Linderbäck P, Agholme F, Wermelin K, Närhi T, Tengvall P, Aspenberg PWeak effect of strontium on early implant fixation in rat tibia.Bone201250135035610.1016/j.bone.2011.10.03422108138
    [Google Scholar]
  209. AleneziA. GalliS. AtefyektaS. AnderssonM. WennerbergA. Osseointegration effects of local release of strontium ranelate from implant surfaces in rats.J. Mater. Sci. Mater. Med.2019301011610.1007/s10856‑019‑6314‑y31606798
    [Google Scholar]
/content/journals/crcep/10.2174/2772432817666220607114559
Loading
/content/journals/crcep/10.2174/2772432817666220607114559
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test