Skip to content
2000
Volume 20, Issue 2
  • ISSN: 2772-4328
  • E-ISSN: 2772-4336

Abstract

Diabetic is a metabolic disorder that is concerning for people worldwide, caused by a lack of insulin or ineffective production of insulin in the pancreas. Diabetic retinopathy, nephropathy, and neuropathy are significant microvascular complications of diabetes mellitus, contributing to substantial morbidity and mortality worldwide. Several synthetic medications have been developed. However, none of the compounds provides complete recovery. Long-term use of some synthetic medications might have serious negative effects, thus, there is a need for safe, affordable, and effective medications. Throughout human history, traditional ailments have been much respected as a source of treatment. Their widespread usage across the globe suggests that herbs/spices are becoming an increasingly important component of cutting-edge, contemporary medications. Therefore, the objective of this review is mainly based on the beneficial effect of Indian spices in managing diabetes. We review the current primary and clinical evidence about the potential of Indian spices, including curcumin, ginger, coriander, cumin seed, garlic, clove, cinnamon, curry leaves, and fenugreek seed with mainly their hypoglycemic and antioxidant properties, for treating diabetes mellitus, also managing diabetic-associated complications, such as neuropathy, retinopathy, and nephropathy. Here, we present the pre-clinical and clinical studies demonstrating how these spices can improve glucose metabolism, enhance insulin secretion, and mitigate oxidative stress, potentially alleviating diabetic complications.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328331153240918093157
2024-09-20
2025-04-21
Loading full text...

Full text loading...

References

  1. BekeleF. KelifaF. SeferaB. A male's foot is being shot by an ulcer, not a gunshot! The magnitude and associated factors of diabetic foot ulcer among diabetes mellitus patients on chronic care follow-up of southwestern Ethiopian hospital: A cross-sectional study.Ann Med Surg (Lond)20227910400310.1016/j.amsu.2022.104003.
    [Google Scholar]
  2. GochhiM. KarB. PradhanD. HalderJ. DashP. DasC. RaiV.K. GhoshG. RathG. A comprehensive review of edible mushrooms for the management of diabetes.Bioact. Carbohydr. Diet. Fibre.20243110040510.1016/j.bcdf.2024.100405
    [Google Scholar]
  3. DashJ.R. PattnaikG. GhoshG. RathG. KarB. An overview of the therapeutic efficacy of (-)-epicatechin in the management of diabetes mellitus.Nat. Prod. J.2024143e31082322057610.2174/2210315514666230831151545
    [Google Scholar]
  4. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  5. SaeediP. PetersohnI. SalpeaP. MalandaB. KarurangaS. UnwinN. ColagiuriS. GuariguataL. MotalaA.A. OgurtsovaK. ShawJ.E. BrightD. WilliamsR. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition.Diabetes Res. Clin. Pract.201915710784310.1016/j.diabres.2019.10784331518657
    [Google Scholar]
  6. RituM. NandiniJ. Nutritional composition of Stevia rebaudiana, a sweet herb, and its hypoglycaemic and hypolipidaemic effect on patients with non-insulin dependent diabetes mellitus.J. Sci. Food Agric.201696124231423410.1002/jsfa.762726781312
    [Google Scholar]
  7. RathD. KarB. PattnaikG. BhuktaP. Synergistic effect of naringin and glimepiride in streptozotocin-induced diabetic rats.Curr. Diabetes Rev.2024204e17082321993810.2174/157339982066623081715483537592777
    [Google Scholar]
  8. SarkarP. BasakP. GhoshS. KunduM. SilP.C. Prophylactic role of taurine and its derivatives against diabetes mellitus and its related complications.Food Chem Toxicol201711010912110.1016/j.fct.2017.10.022.
    [Google Scholar]
  9. Di GregorioF. BattagliaS. Advances in EEG-based functional connectivity approaches to the study of the central nervous system in health and disease.Adv Clin Exp Med202332660761210.17219/acem/166476.
    [Google Scholar]
  10. TanakaM. BattagliaS. Giménez-LlortL. ChenC. HepsomaliP. AvenantiA. VécseiL. Innovation at the intersection: Emerging translational research in neurology and psychiatry.Cells2024131079010.3390/cells1310079038786014
    [Google Scholar]
  11. BattagliaM.R. Di FazioC. BattagliaS. Activated tryptophan-kynurenine metabolic system in the human brain is associated with learned fear.Front. Mol. Neurosci.202316121709010.3389/fnmol.2023.121709037575966
    [Google Scholar]
  12. YashinA. YashinY. XiaX. NemzerB. Antioxidant activity of spices and their impact on human health: A review.Antioxidants (Basel)2017637010.3390/antiox6030070.
    [Google Scholar]
  13. PagottoG.L.O. SantosL. OsmanN. LamasC.B. LaurindoL.F. PominiK.T. GuissoniL.M. LimaE.P. GoulartR.A. CatharinV. DireitoR. TanakaM. BarbalhoS.M. Ginkgo biloba : A leaf of hope in the fight against Alzheimer's Dementia: Clinical trial systematic review.Antioxidants (Basel)202413665110.3390/antiox13060651.
    [Google Scholar]
  14. NairK. Minor Spices and Condiments.Springer202110.1007/978‑3‑030‑82246‑0
    [Google Scholar]
  15. SanlierN. GencerF. Role of spices in the treatment of diabetes mellitus: A minireview.Trends Food Sci. Technol.20209944144910.1016/j.tifs.2020.03.018
    [Google Scholar]
  16. PundarikakshuduK. PatelM.G. ShahP.A. An overview of some Indian vegetables, fruits, and spices effective in diabetes and metabolic disorders: Current status and future scenarios.Antidiabetic Medicinal Plants. NaeemM. AftabT. Academic Press20247513910.1016/B978‑0‑323‑95719‑9.00004‑5
    [Google Scholar]
  17. GhorbaniA. RashidiR. Shafiee-NickR. Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review.Biomed. Pharmacother.201911194795710.1016/j.biopha.2018.12.12730841474
    [Google Scholar]
  18. AlkhalidyH. WangY. LiuD. Dietary flavonoids in the prevention of T2D: An overview.Nutrients201810443810.3390/nu1004043829614722
    [Google Scholar]
  19. ZhouM. KonigsbergW.H. HaoC. PanY. SunJ. WangX. Bioactivity and mechanisms of flavonoids in decreasing insulin resistance.J. Enzyme Inhib. Med. Chem.2023381219916810.1080/14756366.2023.219916837036026
    [Google Scholar]
  20. BarberE. HoughtonM.J. WilliamsonG. Flavonoids as human intestinal α-glucosidase inhibitors.Foods2021108193910.3390/foods10081939.
    [Google Scholar]
  21. PereiraA.S.P. Banegas-LunaA.J. Peña-GarcíaJ. Pérez-SánchezH. ApostolidesZ. Evaluation of the anti-diabetic activity of some common herbs and spices: Providing new insights with inverse virtual screening.Molecules20192422403010.3390/molecules2422403031703341
    [Google Scholar]
  22. BiX. LimJ. HenryC.J. Spices in the management of diabetes mellitus.Food Chem.201721728129310.1016/j.foodchem.2016.08.11127664636
    [Google Scholar]
  23. DongJ. LiangQ. NiuY. JiangS. ZhouL. WangJ. MaC. KangW. Effects of Nigella sativa seed polysaccharides on type 2 diabetic mice and gut microbiota.Int. J. Biol. Macromol.202015972573810.1016/j.ijbiomac.2020.05.04232437806
    [Google Scholar]
  24. ParsamaneshN. MoossaviM. BahramiA. ButlerA.E. SahebkarA. Therapeutic potential of curcumin in diabetic complications.Pharmacol. Res.201813618119310.1016/j.phrs.2018.09.01230219581
    [Google Scholar]
  25. YangH. SloanG. YeY. WangS. DuanB. TesfayeS. GaoL. New perspective in diabetic neuropathy: From the periphery to the brain, a call for early detection, and precision medicine.Front. Endocrinol. (Lausanne)20201092910.3389/fendo.2019.0092932010062
    [Google Scholar]
  26. PangL. LianX. LiuH. ZhangY. LiQ. CaiY. MaH. YuX. Understanding Diabetic Neuropathy: Focus on oxidative stress.Oxid. Med. Cell. Longev.2020202011310.1155/2020/952463532832011
    [Google Scholar]
  27. PetrashJ.M. All in the family: Aldose reductase and closely related aldo-keto reductases.Cell. Mol. Life Sci.2004617-873774910.1007/s00018‑003‑3402‑315094999
    [Google Scholar]
  28. DashJ.R. PattnaikG. GhoshG. RathG. KarB. Protective effect of epicatechin in diabetic-induced peripheral neuropathy: A review.J Appl Pharm Sci202313105606310.7324/JAPS.2023.130105‑1.
    [Google Scholar]
  29. NiimiN. YakoH. TakakuS. ChungS.K. SangoK. Aldose reductase and the polyol pathway in Schwann cells: Old and new problems.Int. J. Mol. Sci.2021223103110.3390/ijms2203103133494154
    [Google Scholar]
  30. KizubI.V. KlymenkoK.I. SolovievA.I. Protein kinase C in enhanced vascular tone in diabetes mellitus.Int. J. Cardiol.2014174223024210.1016/j.ijcard.2014.04.11724794552
    [Google Scholar]
  31. JellingerK.A. Basic mechanisms of neurodegeneration: A critical update.J. Cell. Mol. Med.201014345748710.1111/j.1582‑4934.2010.01010.x20070435
    [Google Scholar]
  32. KhalidM. PetroianuG. AdemA. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives.Biomolecules202212454210.3390/biom1204054235454131
    [Google Scholar]
  33. GaneshY.V. NegiG. SharmaS.S. KumarA. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy.Redox Biol.20131139439710.1016/j.redox.2013.07.00524024177
    [Google Scholar]
  34. GiriB. DeyS. DasT. SarkarM. BanerjeeJ. DashS.K. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity.Biomed. Pharmacother.201810730632810.1016/j.biopha.2018.07.15730098549
    [Google Scholar]
  35. HosseiniA. AbdollahiM. Diabetic neuropathy and oxidative stress: Therapeutic perspectives.Oxid. Med. Cell. Longev.2013201311510.1155/2013/16803923738033
    [Google Scholar]
  36. GaudetA.D. PopovichP.G. RamerM.S. Wallerian degeneration: Gaining perspective on inflammatory events after peripheral nerve injury.J. Neuroinflammation20118111010.1186/1742‑2094‑8‑11021878126
    [Google Scholar]
  37. FeldmanE.L. CallaghanB.C. Pop-BusuiR. ZochodneD.W. WrightD.E. BennettD.L. BrilV. RussellJ.W. ViswanathanV. Diabetic neuropathy.Nat. Rev. Dis. Primers2019514110.1038/s41572‑019‑0092‑131197183
    [Google Scholar]
  38. FernandesR. VianaS.D. NunesS. ReisF. Diabetic gut microbiota dysbiosis as an inflammaging and immunosenescence condition that fosters progression of retinopathy and nephropathy.Biochim. Biophys. Acta Mol. Basis Dis.2019186571876189710.1016/j.bbadis.2018.09.03230287404
    [Google Scholar]
  39. ElmarakbyA.A. SullivanJ.C. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy.Cardiovasc. Ther.2012301495910.1111/j.1755‑5922.2010.00218.x20718759
    [Google Scholar]
  40. Donate-CorreaJ. Martín-NúñezE. Muros-de-FuentesM. Mora-FernándezC. Navarro-GonzálezJ.F. Inflammatory cytokines in diabetic nephropathy.J. Diabetes Res.201520151910.1155/2015/94841725785280
    [Google Scholar]
  41. TavafiM. Diabetic nephropathy and antioxidants.J. Nephropathol.201321202710.5812/nephropathol.909324475422
    [Google Scholar]
  42. QiC. MaoX. ZhangZ. WuH. Classification and differential diagnosis of diabetic nephropathy.J. Diabetes Res.201720171710.1155/2017/863713828316995
    [Google Scholar]
  43. Sifuentes-FrancoS. Padilla-TejedaD.E. Carrillo-IbarraS. Miranda-DíazA.G. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy.Int. J. Endocrinol.2018201811310.1155/2018/187587029808088
    [Google Scholar]
  44. CaiX. McGinnisJ.F. Diabetic Retinopathy: Animal models, therapies, and perspectives.J. Diabetes Res.201620161910.1155/2016/378921726881246
    [Google Scholar]
  45. CeciliaO.M. José AlbertoC.G. JoséN.P. Ernesto GermánC.M. Ana KarenL.C. Luis MiguelR.P. Ricardo RaúlR.R. Adolfo DanielR.C. Oxidative stress as the main target in diabetic retinopathy pathophysiology.J. Diabetes Res.2019201912110.1155/2019/856240831511825
    [Google Scholar]
  46. FerringtonD.A. SinhaD. KaarnirantaK. Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration.Prog. Retin. Eye Res.201651698910.1016/j.preteyeres.2015.09.00226344735
    [Google Scholar]
  47. CaiC. MengC. HeS. GuC. LhamoT. DragaD. LuoD. QiuQ. DNA methylation in diabetic retinopathy: Pathogenetic role and potential therapeutic targets.Cell Biosci.202212118610.1186/s13578‑022‑00927‑y36397159
    [Google Scholar]
  48. Rivera-MancíaS. TrujilloJ. ChaverriJ.P. Utility of curcumin for the treatment of diabetes mellitus: Evidence from preclinical and clinical studies.J. Nutr. Intermed. Metab.201814294110.1016/j.jnim.2018.05.001
    [Google Scholar]
  49. DailyJ.W. YangM. KimD.S. ParkS. Efficacy of ginger for treating Type 2 diabetes: A systematic review and meta-analysis of randomized clinical trials.J Ethnic Foods201521364310.1016/j.jef.2015.02.007
    [Google Scholar]
  50. SekerU. KayaS. IrtegunK.S. SenerD. UnayD.O. NergizY. Effects of black cumin seed oil on oxidative stress and expression of membrane-cytoskeleton linker proteins, radixin, and moesin in streptozotocin-induced diabetic rat liver.Hepatol Forum202131212610.14744/hf.2021.2021.0035.
    [Google Scholar]
  51. AttaallahA. ElmrazekyA.R. El-BeltagyA.E.F.B.M. AbdelazizK.K. SolimanM.F.M. Modulatory role of Coriandrum sativum (coriander) extract against diabetic complications on the gonads of female rats and their offspring.Tissue Cell20238310212710.1016/j.tice.2023.10212737331322
    [Google Scholar]
  52. HosseiniA. HosseinzadehH. A review on the effects of Allium sativum (Garlic) in metabolic syndrome.J. Endocrinol. Invest.201538111147115710.1007/s40618‑015‑0313‑826036599
    [Google Scholar]
  53. Nait IrahalI. DarifD. GuenaouI. HmimidF. azzahra LahlouF. Ez-zahra OusaidF. Abdou-AllahF. AitsiL. AkaridK. BourhimN. Therapeutic potential of clove essential oil in diabetes: Modulation of pro-inflammatory mediators, oxidative stress and metabolic enzyme activities.Chem. Biodivers.2023203e20220116910.1002/cbdv.20220116936823346
    [Google Scholar]
  54. FaddladdeenK.A. The possible protective and therapeutic effects of ginger and cinnamon on the testis and coda epididymis of streptozotocin-induced-diabetic rats: Histological and biochemical studies.Saudi J. Biol. Sci.2022291210345210.1016/j.sjbs.2022.10345236164289
    [Google Scholar]
  55. YinP. WangY. YangL. SuiJ. LiuY. Hypoglycemic effects in alloxan-induced diabetic rats of the phenolic extract from Mongolian oak cups enriched in ellagic acid, kaempferol and their derivatives.Molecules2018235104610.3390/molecules2305104629710864
    [Google Scholar]
  56. KodumuriP.K. ThomasC. JettiR. PandeyA.K. Fenugreek seed extract ameliorates cognitive deficits in streptozotocin-induced diabetic rats.J. Basic Clin. Physiol. Pharmacol.20193042018014010.1515/jbcpp‑2018‑014031326961
    [Google Scholar]
  57. JungJ.Y. LimY. MoonM.S. KimJ.Y. KwonO. Onion peel extracts ameliorate hyperglycemia and insulin resistance in high fat diet/streptozotocin-induced diabetic rats.Nutr. Metab. (Lond.)2011811810.1186/1743‑7075‑8‑1821439094
    [Google Scholar]
  58. NabiS.A. KasettiR.B. SirasanagandlaS. TilakT.K. KumarM.V.J. RaoC.A. Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats.BMC Complement. Altern. Med.20131313710.1186/1472‑6882‑13‑3723414307
    [Google Scholar]
  59. OtunolaG.A. AfolayanA.J. Antidiabetic effect of combined spices of Allium sativum, Zingiber officinale and Capsicum frutescens in alloxan-induced diabetic rats.Front. Life Sci.20158431432310.1080/21553769.2015.1053628
    [Google Scholar]
  60. NaimiM. VlavcheskiF. ShamshoumH. TsianiE. Rosemary extract as a potential anti-hyperglycemic agent: Current evidence and future perspectives.Nutrients20179996810.3390/nu909096828862678
    [Google Scholar]
  61. ZhangL. LokeshwarB.L. Medicinal properties of the Jamaican pepper plant Pimenta dioica and Allspice.Curr. Drug Targets201213141900190610.2174/13894501280454564123140298
    [Google Scholar]
  62. SarfrazM. KhaliqT. HafizurR.M. RazaS.A. UllahH. Effect of black pepper, turmeric and ajwa date on the endocrine pancreas of the experimentally induced diabetes in wister albino rats: A histological and immunohistochemical study.Endocrine and Metabolic Science2021410009810.1016/j.endmts.2021.100098
    [Google Scholar]
  63. SuryavanshiS.V. BarveK. UtpatS.V. KulkarniY.A. Triphala churna ameliorates retinopathy in diabetic rats.Biomed Pharmacother202214811271110.1016/j.biopha.2022.112711.
    [Google Scholar]
  64. GomaaA.A. MakboulR.M. El-MokhtarM.A. Abdel-RahmanE.A. AhmedI.A. NicolaM.A. Terpenoid-rich Elettaria cardamomum extract prevents Alzheimer-like alterations induced in diabetic rats via inhibition of GSK3β activity, oxidative stress and pro-inflammatory cytokines.Cytokine201911340541610.1016/j.cyto.2018.10.01730539783
    [Google Scholar]
  65. KhanH.N. RasheedS. ChoudharyM.I. AhmedN. AdemA. Anti-glycation properties of Illicium verum Hook. f. fruit in-vitro and in a diabetic rat model.BMC Complement Med Ther.202222110.1186/s12906‑022‑03550‑z.
    [Google Scholar]
  66. RachidA.P. MoncadaM. MesquitaM.F. BritoJ. BernardoM.A. SilvaM.L. Effect of aqueous cinnamon extract on the postprandial glycemia levels in patients with type 2 Diabetes Mellitus: A randomized controlled trial.Nutrients2022148157610.3390/nu1408157635458138
    [Google Scholar]
  67. HuangF. DengT. MengL. MaX. Dietary ginger as a traditional therapy for blood sugar control in patients with type 2 diabetes mellitus.Medicine (Baltimore)20199813e1505410.1097/MD.000000000001505430921234
    [Google Scholar]
  68. AghasiM. Ghazi-ZahediS. KoohdaniF. SiassiF. Nasli-EsfahaniE. KeshavarzA. QorbaniM. KhoshamalH. Salari-MoghaddamA. SotoudehG. The effects of green cardamom supplementation on blood glucose, lipids profile, oxidative stress, sirtuin-1 and irisin in type 2 diabetic patients: a study protocol for a randomized placebo-controlled clinical trial.BMC Complement. Altern. Med.20181811810.1186/s12906‑017‑2068‑629343256
    [Google Scholar]
  69. KazemiS. YaghooblouF. SiassiF. Rahimi ForoushaniA. GhavipourM. KoohdaniF. SotoudehG. Cardamom supplementation improves inflammatory and oxidative stress biomarkers in hyperlipidemic, overweight, and obese pre-diabetic women: A randomized double-blind clinical trial.J. Sci. Food Agric.201797155296530110.1002/jsfa.841428480505
    [Google Scholar]
  70. AsadiS. GholamiM.S. SiassiF. QorbaniM. KhamoshianK. SotoudehG. Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: A randomized double-blind placebo- controlled clinical trial.Complement. Ther. Med.20194325326010.1016/j.ctim.2019.02.01430935539
    [Google Scholar]
  71. AsadiS. GholamiM.S. SiassiF. QorbaniM. SotoudehG. Beneficial effects of nano-curcumin supplement on depression and anxiety in diabetic patients with peripheral neuropathy: A randomized, double-blind, placebo-controlled clinical trial.Phytother. Res.202034489690310.1002/ptr.657131788880
    [Google Scholar]
  72. CarvalhoG.C.N. Lira-NetoJ.C.G. AraújoM.F.M. FreitasR.W.J.F. ZanettiM.L. DamascenoM.M.C. Effectiveness of ginger in reducing metabolic levels in people with diabetes: A randomized clinical trial.Rev. Lat. Am. Enfermagem202028e336910.1590/1518‑8345.3870.336933053078
    [Google Scholar]
  73. AshrafR. KhanR.A. AshrafI. Garlic (Allium sativum ) supplementation with standard antidiabetic agent provides better diabetic control in type 2 diabetes patients.Pak. J. Pharm. Sci.201124456557021959822
    [Google Scholar]
  74. Taj EldinI.M. AhmedE.M. Elwahab H MA. Preliminary study of the clinical hypoglycemic effects of Allium cepa (Red onion) in Type 1 and Type 2 Diabetic patients.Environ. Health Insights20104717721079693
    [Google Scholar]
  75. PelegrinS. GaltierF. ChalançonA. GagnolJ.P. BarbanelA.M. PélissierY. LarroqueM. LepapeS. FaucaniéM. GabillaudI. PetitP. ChevassusH. Effects of Nigella sativa seeds (black cumin) on insulin secretion and lipid profile: A pilot study in healthy volunteers.Br. J. Clin. Pharmacol.20198571607161110.1111/bcp.1392230875097
    [Google Scholar]
  76. AnsariZ.M. NasiruddinM. KhanR.A. HaqueS.F. Protective role of Nigella sativa in diabetic nephropathy: A randomized clinical trial.Saudi J Kidney Dis Transpl201728191410.4103/1319‑2442.198093.
    [Google Scholar]
  77. VermaN. UsmanK. PatelN. JainA. DhakreS. SwaroopA. BagchiM. KumarP. PreussH.G. BagchiD. A multicenter clinical study to determine the efficacy of a novel fenugreek seed ( Trigonella foenum-graecum ) extract (Fenfuro™) in patients with type 2 diabetes.Food Nutr. Res.20166013238210.3402/fnr.v60.3238227733237
    [Google Scholar]
  78. ChenW. BalanP. PopovichD.G. Review of ginseng anti-diabetic studies.Molecules20192424450110.3390/molecules2424450131835292
    [Google Scholar]
  79. JamshidiN. Da CostaC. CohenM. Holybasil (tulsi) lowers fasting glucose and improves lipid profile in adults with metabolic disease: A meta-analysis of randomized clinical trials.J. Funct. Foods201845475710.1016/j.jff.2018.03.030
    [Google Scholar]
  80. KocaadamB. ŞanlierN. Curcumin, an active component of turmeric ( Curcuma longa ), and its effects on health.Crit. Rev. Food Sci. Nutr.201757132889289510.1080/10408398.2015.107719526528921
    [Google Scholar]
  81. HewlingsS.J. KalmanD.S. Curcumin: A review of its effects on human health.Foods20176109210.3390/foods6100092.
    [Google Scholar]
  82. Karlowicz-BodalskaK. HanS. FreierJ. SmolenskiM. BodalskaA. Curcuma longa as medicinal herb in the treatment of diabetic complications.Acta Pol. Pharm.201774260561029624265
    [Google Scholar]
  83. MartonL.T. Pescinini-e-SalzedasL.M. CamargoM.E.C. BarbalhoS.M. HaberJ.F.S. SinatoraR.V. DetregiachiC.R.P. GirioR.J.S. BuchaimD.V. Cincotto dos Santos BuenoP. The effects of curcumin on Diabetes Mellitus: A systematic review.Front. Endocrinol. (Lausanne)20211266944810.3389/fendo.2021.66944834012421
    [Google Scholar]
  84. ZhaoW.C. ZhangB. LiaoM.J. ZhangW.X. HeW.Y. WangH.B. YangC.X. Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord.Neurosci. Lett.2014560818510.1016/j.neulet.2013.12.01924370596
    [Google Scholar]
  85. JhaJ.C. BanalC. ChowB.S.M. CooperM.E. Jandeleit-DahmK. Diabetes and kidney disease: Role of oxidative stress.Antioxid. Redox Signal.2016251265768410.1089/ars.2016.666426906673
    [Google Scholar]
  86. TrujilloJ. ChirinoY.I. Molina-JijónE. Andérica-RomeroA.C. TapiaE. Pedraza-ChaverríJ. Renoprotective effect of the antioxidant curcumin: Recent findings.Redox Biol.20131144845610.1016/j.redox.2013.09.00324191240
    [Google Scholar]
  87. HuangJ. HuangK. LanT. XieX. ShenX. LiuP. HuangH. Curcumin ameliorates diabetic nephropathy by inhibiting the activation of the SphK1-S1P signaling pathway.Mol. Cell. Endocrinol.2013365223124010.1016/j.mce.2012.10.02423127801
    [Google Scholar]
  88. MaugeriA. MazzoneM.G. GiulianoF. VinciguerraM. BasileG. BarchittaM. AgodiA. Curcumin modulates DNA methyltransferase functions in a cellular model of diabetic retinopathy.Oxid. Med. Cell. Longev.201820181540748210.1155/2018/540748230057682
    [Google Scholar]
  89. ReyesgordilloK. SegoviaJ. ShibayamaM. VergaraP. MorenoM. MurielP. Curcumin protects against acute liver damage in the rat by inhibiting NF-κB, proinflammatory cytokines production and oxidative stress.Biochim. Biophys. Acta, Gen. Subj.20071770698999610.1016/j.bbagen.2007.02.00417383825
    [Google Scholar]
  90. RavindranJ. SubbarajuG.V. RamaniM.V. SungB. AggarwalB.B. Bisdemethylcurcumin and structurally related hispolon analogues of curcumin exhibit enhanced prooxidant, anti-proliferative and anti-inflammatory activities in vitro .Biochem. Pharmacol.201079111658166610.1016/j.bcp.2010.01.03320138025
    [Google Scholar]
  91. ZenkerJ. ZieglerD. ChrastR. Novel pathogenic pathways in diabetic neuropathy.Trends Neurosci.201336843944910.1016/j.tins.2013.04.00823725712
    [Google Scholar]
  92. ChuengsamarnS. RattanamongkolgulS. PhonratB. TungtrongchitrR. JirawatnotaiS. Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: A randomized controlled trial.J. Nutr. Biochem.201425214415010.1016/j.jnutbio.2013.09.01324445038
    [Google Scholar]
  93. NaL.X. LiY. PanH.Z. ZhouX.L. SunD.J. MengM. LiX.X. SunC.H. Curcuminoids exert glucose-lowering effect in type 2 diabetes by decreasing serum free fatty acids: A double-blind, placebo-controlled trial.Mol. Nutr. Food Res.20135791569157710.1002/mnfr.20120013122930403
    [Google Scholar]
  94. ShahrajabianM.H. SunW. ChengQ. Clinical aspects and health benefits of ginger ( Zingiber officinale ) in both traditional Chinese medicine and modern industry.Acta Agric. Scand. B Soil Plant Sci.201969654655610.1080/09064710.2019.1606930
    [Google Scholar]
  95. KiyamaR. Nutritional implications of ginger: chemistry, biological activities and signaling pathways.J. Nutr. Biochem.20208610848610.1016/j.jnutbio.2020.10848632827666
    [Google Scholar]
  96. AlshathlyM. Efficacy of Ginger (Zingiber officinale) in ameliorating streptozotocin-induced diabetic liver injury in rats: Histological and biochemical studies.J. Microsc. Ultrastruct.2019729110110.4103/JMAU.JMAU_16_1931293891
    [Google Scholar]
  97. MaS. GuoZ. LiuF. HasanS.G. YangD. TangN. AnP. WangM. WuH. YangZ. FanD. TangQ. 6-Gingerol protects against cardiac remodeling by inhibiting the p38 mitogen-activated protein kinase pathway.Acta Pharmacol. Sin.202142101575158610.1038/s41401‑020‑00587‑z33462378
    [Google Scholar]
  98. FajrinF.A. NugrohoA.E. NurrochmadA. SusilowatiR. Ginger extract and its compound, 6-shogaol, attenuates painful diabetic neuropathy in mice via reducing TRPV1 and NMDAR2B expressions in the spinal cord.J. Ethnopharmacol.202024911239610.1016/j.jep.2019.11239631743763
    [Google Scholar]
  99. Al HroobA.M. AbukhalilM.H. AlghonmeenR.D. MahmoudA.M. Ginger alleviates hyperglycemia-induced oxidative stress, inflammation and apoptosis and protects rats against diabetic nephropathy.Biomed Pharmacother201810638138910.1016/j.biopha.2018.06.148.
    [Google Scholar]
  100. MaH. LiJ. The ginger extract could improve diabetic retinopathy by inhibiting the expression of e/iNOS and G6PDH, apoptosis, inflammation, and angiogenesis.J. Food Biochem.2022465e1408410.1111/jfbc.1408435060143
    [Google Scholar]
  101. KhandouziN. ShidfarF. RajabA. RahidehT. HosseiniP. Mir TaheriM. The effects of ginger on fasting blood sugar, hemoglobin a1c, apolipoprotein B, apolipoprotein a-I and malondialdehyde in type 2 diabetic patients.Iran. J. Pharm. Res.201514113114025561919
    [Google Scholar]
  102. RahmanM.M. DharP.S. SumaiaF. Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review.Biomed Pharmacother202215211321710.1016/j.biopha.2022.113217.
    [Google Scholar]
  103. NaderiF.M. HoseinifarS.H. RashidianG. Ghafari FarsaniH. AshouriG. Van DoanH. Dietary effects of Coriandrum sativum extract on growth performance, physiological and innate immune responses and resistance of rainbow trout (Oncorhynchus mykiss) against Yersinia ruckeri.Fish Shellfish Immunol.20199123324010.1016/j.fsi.2019.05.03131102711
    [Google Scholar]
  104. MechchateH. Es-SafiI. AmaghnoujeA. BoukhiraS. AlotaibiA. Al-ZharaniM. NasrF. ConteR. AmalE.H.E.Y. BekkariH. BoustaD. NomanO. Antioxidant, anti-inflammatory and antidiabetic proprieties of LC-MS/MS identified polyphenols from coriander seeds.MoleculesMolecules202126248710.3390/molecules26020487.
    [Google Scholar]
  105. SreelathaS. InbavalliR. Antioxidant, antihyperglycemic, and antihyperlipidemic effects of Coriandrum sativum leaf and stem in alloxan-induced diabetic rats.J. Food Sci.2012777T119T12310.1111/j.1750‑3841.2012.02755.x22671941
    [Google Scholar]
  106. KajalA. SinghR. Coriandrum sativum improve neuronal function via inhibition of oxidative/nitrosative stress and TNF-α in diabetic neuropathic rats.J. Ethnopharmacol.202026311295910.1016/j.jep.2020.11295932413574
    [Google Scholar]
  107. KajalA. SinghR. Coriandrum sativum seeds extract mitigate progression of diabetic nephropathy in experimental rats via AGEs inhibition.PLoS One2019143e021314710.1371/journal.pone.021314730845182
    [Google Scholar]
  108. BrindisF. González-AndradeM. González-TrujanoM.E. Estrada-SotoS. Villalobos-MolinaR. Postprandial glycaemia and inhibition of α-glucosidase activity by aqueous extract from Coriandrum sativum.Nat. Prod. Res.201428222021202510.1080/14786419.2014.91741424836119
    [Google Scholar]
  109. MnifS. AifaS. Cumin (Cuminum cyminum L.) from traditional uses to potential biomedical applications.Chem. Biodivers.201512573374210.1002/cbdv.20140030526010662
    [Google Scholar]
  110. JagtapA.G. PatilP.B. Antihyperglycemic activity and inhibition of advanced glycation end product formation by Cuminum cyminum in streptozotocin induced diabetic rats.Food Chem Toxicol2010488-92030610.1016/j.fct.2010.04.048.
    [Google Scholar]
  111. PatilS.B. TakalikarS.S. JoglekarM.M. HaldavnekarV.S. ArvindekarA.U. Insulinotropic and β-cell protective action of cuminaldehyde, cuminol and an inhibitor isolated from Cuminum cyminum in streptozotocin-induced diabetic rats.Br. J. Nutr.201311081434144310.1017/S000711451300062723507295
    [Google Scholar]
  112. JafariS. SattariR. GhavamzadehS. Evaluation the effect of 50 and 100 mg doses of Cuminum cyminum essential oil on glycemic indices, insulin resistance and serum inflammatory factors on patients with diabetes type II: A double-blind randomized placebo-controlled clinical trial.J. Tradit. Complement. Med.20177333233810.1016/j.jtcme.2016.08.00428725629
    [Google Scholar]
  113. YudhistiraB. PunthiF. LinJ.A. SulaimanaA.S. ChangC.K. HsiehC.W. S-Allyl cysteine in garlic ( Allium sativum ): Formation, biofunction, and resistance to food processing for value-added product development.Compr. Rev. Food Sci. Food Saf.20222132665268710.1111/1541‑4337.1293735355410
    [Google Scholar]
  114. MannaP. DasJ. SilP.C. Role of sulfur containing amino acids as an adjuvant therapy in the prevention of diabetes and its associated complications.Curr. Diabetes Rev.20139323724810.2174/157339981130903000523547683
    [Google Scholar]
  115. KaurG. PadiyaR. AdelaR. PutchaU.K. ReddyG.S. ReddyB.R. KumarK.P. ChakravartyS. BanerjeeS.K. Garlic and resveratrol attenuate diabetic complications, loss of β-cells, pancreatic and hepatic oxidative stress in streptozotocin-induced diabetic rats.Front. Pharmacol.2016736010.3389/fphar.2016.0036027790139
    [Google Scholar]
  116. SaikatA.S.M. HossainR. MinaF.B. DasS. KhanI.N. MubarakM.S. IslamM.T. Antidiabetic effect of garlic.Rev. Bras. Farmacogn.202232111110.1007/s43450‑021‑00193‑y
    [Google Scholar]
  117. Sanie-JahromiF. ZiaZ. AfaridM. A review on the effect of garlic on diabetes, BDNF, and VEGF as a potential treatment for diabetic retinopathy.Chin. Med.20231811810.1186/s13020‑023‑00725‑936803536
    [Google Scholar]
  118. MansourM.H. Al-QattanK. ThomsonM. AliM. Garlic (Allium sativum) down-regulates the expression of angiotensin II AT1 receptor in adrenal and renal tissues of streptozotocin-induced diabetic rats.Inflammopharmacology201321214715910.1007/s10787‑012‑0139‑322644380
    [Google Scholar]
  119. Al-QattanK. ThomsonM. AliM. Garlic (Allium sativum ) and ginger (Zingiber officinale ) attenuate structural nephropathy progression in streptozotocin-induced diabetic rats.e-SPEN, European e-J Clin Nutr Metabol200832e62e7110.1016/j.eclnm.2007.12.001.
    [Google Scholar]
  120. AfaridM. SadeghiE. JohariM. NamvarE. Sanie-JahromiF. Evaluation of the effect of garlic tablet as a complementary treatment for patients with diabetic retinopathy.J. Diabetes Res.202220221710.1155/2022/662066135875346
    [Google Scholar]
  121. Cortés-RojasD.F. de SouzaC.R.F. OliveiraW.P. Clove (Syzygium aromaticu m): A precious spice.Asian Pac. J. Trop. Biomed.201442909610.1016/S2221‑1691(14)60215‑X25182278
    [Google Scholar]
  122. KurodaM. MimakiY. OhtomoT. YamadaJ. NishiyamaT. MaeT. KishidaH. KawadaT. Hypoglycemic effects of clove (Syzygium aromaticum flower buds) on genetically diabetic KK-Ay mice and identification of the active ingredients.J. Nat. Med.201266239439910.1007/s11418‑011‑0593‑z21987283
    [Google Scholar]
  123. AdefeghaS.A. ObohG. OyeleyeS.I. OsunmoK. Alteration of starch hydrolyzing enzyme inhibitory properties, antioxidant activities, and phenolic profile of clove buds (Syzygium aromaticum L.) by cooking duration.Food Sci. Nutr.20164225026010.1002/fsn3.28427004114
    [Google Scholar]
  124. ObohG. AkinbolaI.A. AdemosunA.O. SanniD.M. OdubanjoO.V. OlasehindeT.A. OyeleyeS.I. Essential oil from clove bud (Eugenia aromatica Kuntze) inhibit key enzymes relevant to the management of type-2 diabetes and some pro-oxidant induced lipid peroxidation in rats pancreas in vitro .J. Oleo Sci.201564777578210.5650/jos.ess1427425994557
    [Google Scholar]
  125. IrahalI.N. GuenaouI. LahlouF.A. HmimidF. BourhimN. Syzygium aromaticum bud (clove) essential oil is a novel and safe aldose reductase inhibitor: In silico, in vitro, and in vivo evidence.Hormones (Athens)202221222924010.1007/s42000‑021‑00347‑635212917
    [Google Scholar]
  126. AbdulazeezA.T. AlabiM.A. KareemF.A. AdeegbeJ.F. BelloK.H. Regeneration of pancreas B-Cells in alloxan-induced diabetes rats treated with aqueous seed extract of Syzygium aromaticum : A preliminary study.Asian J Res Biochem2021131521
    [Google Scholar]
  127. MohanR. JoseS. MulakkalJ. Karpinsky-SemperD. SwickA.G. KrishnakumarI.M. Water-soluble polyphenol-rich clove extract lowers pre- and post-prandial blood glucose levels in healthy and prediabetic volunteers: An open label pilot study.BMC Complement. Altern. Med.20191919910.1186/s12906‑019‑2507‑731064377
    [Google Scholar]
  128. Ribeiro-SantosR. AndradeM. MadellaD. MartinazzoA.P. de Aquino Garcia MouraL. de MeloN.R. Sanches-SilvaA. Revisiting an ancient spice with medicinal purposes: Cinnamon.Trends Food Sci. Technol.20176215416910.1016/j.tifs.2017.02.011
    [Google Scholar]
  129. ChengD.M. KuhnP. PoulevA. RojoL.E. LilaM.A. RaskinI. In vivo and in vitro antidiabetic effects of aqueous cinnamon extract and cinnamon polyphenol-enhanced food matrix.Food Chem.201213542994300210.1016/j.foodchem.2012.06.11722980902
    [Google Scholar]
  130. AlizadehB.B. FalahF. Lavi ArabF. VasieeM. Tabatabaee YazdiF. Chemical composition and antioxidant, antimicrobial, and antiproliferative activities of Cinnamomum zeylanicum bark essential oil.Evid Based Complement Alternat Med20202020519060310.1155/2020/5190603.
    [Google Scholar]
  131. PingH. ZhangG. RenG. Antidiabetic effects of cinnamon oil in diabetic KK-Ay mice.Food Chem Toxicol2010488-92344910.1016/j.fct.2010.05.069.
    [Google Scholar]
  132. MohamedS.S.H. HansiP.D. ThirumuruganK. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats.Nutr. Metab. (Lond.)2011814610.1186/1743‑7075‑8‑4621711570
    [Google Scholar]
  133. RanasingheP. JayawardanaR. GalappaththyP. ConstantineG.R. de Vas GunawardanaN. KatulandaP. Efficacy and safety of ‘true’ cinnamon ( Cinnamomum zeylanicum ) as a pharmaceutical agent in diabetes: A systematic review and meta-analysis.Diabet. Med.201229121480149210.1111/j.1464‑5491.2012.03718.x22671971
    [Google Scholar]
  134. DavisP.A. YokoyamaW. Cinnamon intake lowers fasting blood glucose: Meta-analysis.J. Med. Food201114988488910.1089/jmf.2010.018021480806
    [Google Scholar]
  135. DesaiS.N. PatelD.K. DevkarR.V. PatelP.V. RamachandranA.V. Hepatoprotective potential of polyphenol rich extract of Murraya koenigii L.: An in vivo study.Food Chem Toxicol2012502310410.1016/j.fct.2011.10.063.
    [Google Scholar]
  136. RajendranM.P. PallaiyanB.B. SelvarajN. Chemical composition, antibacterial and antioxidant profile of essential oil from Murraya koenigii (L.) leaves.Avicenna J. Phytomed.20144320021425050318
    [Google Scholar]
  137. SalehiB. AtaA. Anil KumarN. KobarfardF. Abdulmajid AyatollahiS. Ramírez-AlarcónK. Ruiz-OrtegaA. Tsouh FokouP.V. SharopovF. IritiM. Antidiabetic potential of medicinal plants and their active components.Biomolecules201991055110.3390/biom9100551
    [Google Scholar]
  138. TembhurneS.V. SakarkarD.M. Influence of Murraya koenigii on experimental model of diabetes and progression of neuropathic pain.Res. Pharm. Sci.201051414721589767
    [Google Scholar]
  139. YankuzoH. AhmedQ.U. SantosaR.I. AkterS.F.U. TalibN.A. Beneficial effect of the leaves of Murraya koenigii (Linn.) Spreng (Rutaceae) on diabetes-induced renal damage in vivo .J. Ethnopharmacol.20111351889410.1016/j.jep.2011.02.02021354289
    [Google Scholar]
  140. VisuvanathanT. ThanL.T.L. StanslasJ. ChewS.Y. VellasamyS. Revisiting Trigonella foenum-graecum L.: Pharmacology and therapeutic potentialities.Plants (Basel)20221111145010.3390/plants11111450.
    [Google Scholar]
  141. SinghS. ChaurasiaP.K. BharatiS.L. Hypoglycemic and hypocholesterolemic properties of Fenugreek: A comprehensive assessment.Appl Food Res20233210031110.1016/j.afres.2023.100311
    [Google Scholar]
  142. GeberemeskelG.A. DebebeY.G. NguseN.A. Antidiabetic effect of fenugreek seed powder solution ( Trigonella foenum-graecum L. ) on hyperlipidemia in Diabetic patients.J. Diabetes Res.201920191810.1155/2019/850745331583253
    [Google Scholar]
  143. RajuJ. GuptaD. RaoA.R. YadavaP.K. BaquerN.Z. Trigonellafoenum graecum (fenugreek) seed powder improves glucose homeostasis in alloxan diabetic rat tissues by reversing the altered glycolytic, gluconeogenic and lipogenic enzymes.Mol. Cell. Biochem.20012241/2455110.1023/A:101197463082811693199
    [Google Scholar]
  144. EidiA. EidiM. SokhtehM. Effect of fenugreek (Trigonella foenum-graecum L) seeds on serum parameters in normal and streptozotocin-induced diabetic rats.Nutr. Res.2007271172873310.1016/j.nutres.2007.09.006
    [Google Scholar]
  145. KassaianN. AzadbakhtL. ForghaniB. AminiM. Effect of fenugreek seeds on blood glucose and lipid profiles in type 2 diabetic patients.Int J Vitam Nutr Res200979134910.1024/0300‑9831.79.
    [Google Scholar]
  146. GhorbaniA. ZarvandiM. RakhshandehH. A randomized controlled trial of a herbal compound for improving metabolic parameters in diabetic patients with uncontrolled dyslipidemia.Endocr. Metab. Immune Disord. Drug Targets20191971075108210.2174/187153031966619020621342030727929
    [Google Scholar]
  147. NatesanV. KimS.J. The trend of organic based nanoparticles in the treatment of diabetes and its perspectives.Biomol. Ther. (Seoul)2023311162610.4062/biomolther.2022.08036122910
    [Google Scholar]
  148. SolimanM.K.Y. SalemS.S. Abu-ElghaitM. AzabM.S. Biosynthesis of silver and gold nanoparticles and their efficacy towards antibacterial, antibiofilm, cytotoxicity, and antioxidant activities.Appl. Biochem. Biotechnol.202319521158118310.1007/s12010‑022‑04199‑736342621
    [Google Scholar]
  149. ShakeelM. JabeenF. IqbalR. ChaudhryA.S. ZafarS. AliM. KhanM.S. KhalidA. ShabbirS. AsgharM.S. Assessment of Titanium Dioxide Nanoparticles (TiO2-NPs) induced hepatotoxicity and ameliorative effects of Cinnamomum cassia in sprague-dawley rats.Biol. Trace Elem. Res.20181821576910.1007/s12011‑017‑1074‑328631137
    [Google Scholar]
  150. TagdeP. TagdeP. IslamF. TagdeS. RahmanM.H. NajdaA. AlanaziI.S. GermoushM.O. ShahM. HussainZ.D. MohamedH.R.H. AlgandabyM.M. Nasrullah KotN. Abdel-DaimM.M. The multifaceted role of curcumin in advanced nanocurcumin form in the treatment and management of chronic disorders.Molecules (Basel, Switzerland)20212623710910.3390/molecules26237109.
    [Google Scholar]
  151. AldabaanN.A. TurakaniB. MahnashiM.H. ShaikhI.A. AlhazmiA.Y. AlmasoudiH.H. AbdulazizO. KhuwajaG. KhanA.A. BasavegowdaN. DafallaS.E. MuddapurU.M. IqubalS.M.S. Evaluation of antimicrobial, anticancer, antidiabetic, antioxidant activities and silver nanoparticles synthesized from Indian Clove- Syzygium aromaticum leaf extract.J. King Saud Univ. Sci.202436410314210.1016/j.jksus.2024.103142
    [Google Scholar]
  152. XueQ. LinY. In vitro and functional investigation reveals the curative effect of thymoquinone from black cumin-loaded chitosan nanoparticles on streptozotocin induced paediatric diabetes.Regen. Ther.20242519420210.1016/j.reth.2023.12.01238234678
    [Google Scholar]
  153. MishraV. BansalK.K. VermaA. YadavN. ThakurS. SudhakarK. RosenholmJ.M. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems.Pharmaceutics201810419110.3390/pharmaceutics1004019130340327
    [Google Scholar]
  154. SachdevA. GopinathP. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents.Analyst (Lond.)2015140124260426910.1039/C5AN00454C25927267
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328331153240918093157
Loading
/content/journals/crcep/10.2174/0127724328331153240918093157
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test