Skip to content
2000
Volume 20, Issue 2
  • ISSN: 2772-4328
  • E-ISSN: 2772-4336

Abstract

Therapy with exogenous interferon and human conditions that feature endogenous interferon upregulation may be associated with endothelial damage that primarily involves small blood vessels. Endothelial injury associated with interferon may display different clinical expression, including thrombotic microangiopathy, Raynaud’s phenomenon, vasculopathy of dermatomyositis and atrophic papulosis, interferon-associated skin angiopathy, systemic capillary leak syndrome, collapsing glomerulopathy, interstitial lung disease, pulmonary hypertension, and retinopathy. Interferon-induced endothelial damage involves complement-mediated injury, although pathogenic mechanisms by which interferon promote abnormal complement activation on endothelial cells are not fully understood. Human interferon-γ (type II interferon) binds to heparan sulfate on the endothelial surface, suggesting that overproduction of interferon-γ may hinder factor H attachment to the same location. Absence of factor H on self surfaces promotes activation of the alternative pathway of complement and complement-mediated endothelial damage. Type I interferon typically induces the generation of antibodies. Type I interferon upregulation may elicit the formation of autoantibodies against factor H. These autoantibodies block factor H binding to endothelial surfaces, abolishing the protective effect of factor H on complement-mediated damage. In addition, interferon induces insulin resistance which is associated with reduced heparan sulfate in the extracellular matrix, including the endothelial surface. Decreased amount of heparan sulfate suppresses factor H attachment, promoting activation of the alternative pathway of complement. Complement blockade with eculizumab (a monoclonal antibody against C5) improves endothelial damage in patients with thrombotic microangiopathy and other situations associated with interferon upregulation and interferon-induced endothelial injury, suggesting that complement-mediated injury is clinically relevant under conditions that feature interferon overproduction.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328322183240922153629
2024-10-07
2025-04-03
Loading full text...

Full text loading...

References

  1. LiuY. JesusA.A. MarreroB. YangD. RamseyS.E. SanchezG.A.M. TenbrockK. WittkowskiH. JonesO.Y. KuehnH.S. LeeC.R. DiMattiaM.A. CowenE.W. GonzalezB. PalmerI. DiGiovannaJ.J. BiancottoA. KimH. TsaiW.L. TrierA.M. HuangY. StoneD.L. HillS. KimH.J. St HilaireC. GurprasadS. PlassN. ChapelleD. Horkayne-SzakalyI. FoellD. BarysenkaA. CandottiF. HollandS.M. HughesJ.D. MehmetH. IssekutzA.C. RaffeldM. McElweeJ. FontanaJ.R. MinnitiC.P. MoirS. KastnerD.L. GadinaM. StevenA.C. WingfieldP.T. BrooksS.R. RosenzweigS.D. FleisherT.A. DengZ. BoehmM. PallerA.S. Goldbach-ManskyR. Activated STING in a vascular and pulmonary syndrome.N. Engl. J. Med.2014371650751810.1056/NEJMoa131262525029335
    [Google Scholar]
  2. AbidQ. Best RochaA. LarsenC.P. SchulertG. MarshR. YasinS. Patty-ReskC. ValentiniR.P. AdamsM. BaraccoR. APOL1-associated collapsing focal segmental glomerulosclerosis in a patient with stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI).Am. J. Kidney Dis.202075228729010.1053/j.ajkd.2019.07.01031601430
    [Google Scholar]
  3. BursztejnA.C. BriggsT.A. del Toro DuanyY. AndersonB.H. O’SullivanJ. WilliamsS.G. BodemerC. FraitagS. GebhardF. LeheupB. LemelleI. OojageerA. RaffoE. SchmittE. RiceG.I. HurS. CrowY.J. Unusual cutaneous features associated with a heterozygous gain-of-function mutation in IFIH1 : Overlap between Aicardi-Goutières and Singleton-Merten syndromes.Br. J. Dermatol.201517361505151310.1111/bjd.1407326284909
    [Google Scholar]
  4. PrendivilleJ.S. CrowY.J. Blue (or purple) toes: Chilblains or chilblain lupus-like lesions are a manifestation of Aicardi–Goutières syndrome and familial chilblain lupus.J. Am. Acad. Dermatol.200961472772810.1016/j.jaad.2009.05.00219751886
    [Google Scholar]
  5. JodeleS. MedvedovicM. LuebberingN. ChenJ. DandoyC.E. LaskinB.L. DaviesS.M. Interferon-complement loop in transplant-associated thrombotic microangiopathy.Blood Adv.2020461166117710.1182/bloodadvances.202000151532208488
    [Google Scholar]
  6. YanB. FreiwaldT. ChaussD. WangL. WestE. MirabelliC. ZhangC.J. NicholsE.M. MalikN. GregoryR. BantscheffM. Ghidelli-DisseS. KolevM. FrumT. SpenceJ.R. SextonJ.Z. AlysandratosK.D. KottonD.N. PittalugaS. BibbyJ. NiyonzimaN. OlsonM.R. KordastiS. PortillaD. WobusC.E. LaurenceA. LionakisM.S. KemperC. AfzaliB. KazemianM. SARS-CoV-2 drives JAK1/2-dependent local complement hyperactivation.Sci. Immunol.2021658eabg083310.1126/sciimmunol.abg083333827897
    [Google Scholar]
  7. WongD. KeaB. PesichR. HiggsB.W. ZhuW. BrownP. YaoY. FiorentinoD. Interferon and biologic signatures in dermatomyositis skin: Specificity and heterogeneity across diseases.PLoS One201271e2916110.1371/journal.pone.002916122235269
    [Google Scholar]
  8. SuganoS. YanagimotoM. SuzukiT. SatoM. OnmuraH. AizawaH. MakinoH. Retinal complications with elevated circulating plasma C5a associated with interferon-alpha therapy for chronic active hepatitis C.Am. J. Gastroenterol.19948911205420567942735
    [Google Scholar]
  9. MyhrK.M. SadallahS. MollnesT.E. MeriS. NylandH.I. SchifferliJ. VedelerC.A. Interferon-α2a effects on complement activation and regulation in MS patients.Acta Neurol. Scand.20001011303510.1034/j.1600‑0404.2000.00013.x10660149
    [Google Scholar]
  10. KaulM. LoosM. Expression of membrane C1q in human monocyte-derived macrophages is developmentally regulated and enhanced by interferon-γ.FEBS Lett.20015001-2919810.1016/S0014‑5793(01)02592‑311434933
    [Google Scholar]
  11. UdsenM. TagmoseC. GarredP. NissenM.H. FaberC. Complement activation by RPE cells preexposed to TNFα and IFNγ.Exp. Eye Res.202221810898210.1016/j.exer.2022.10898235183540
    [Google Scholar]
  12. LoevenM.A. RopsA.L.W.M.M. BerdenJ.H.M. DahaM.R. RabelinkT.J. van der VlagJ. The role of heparan sulfate as determining pathogenic factor in complement factor H-associated diseases.Mol. Immunol.201563220320810.1016/j.molimm.2014.08.00525246018
    [Google Scholar]
  13. Lortat-JacobH. GrimaudJ.A. Interferon-γ binds to heparan sulfate by a cluster of amino acids located in the C-terminal part of the molecule.FEBS Lett.1991280115215410.1016/0014‑5793(91)80225‑R1901275
    [Google Scholar]
  14. RigothierC. DelmasY. RoumeninaL.T. Contin-BordesC. LepreuxS. BridouxF. GoujonJ.M. BacheletT. TouchardG. Frémeaux-BacchiV. CombeC. Distal angiopathy and atypical hemolytic uremic syndrome: Clinical and functional properties of an anti–factor H IgAλ antibody.Am. J. Kidney Dis.201566233133610.1053/j.ajkd.2015.03.03926015278
    [Google Scholar]
  15. Adeva-AndanyM.M. Carneiro-FreireN. Castro-QuintelaE. Ameneiros-RodriguezE. Adeva-ContrerasL. Fernandez-FernandezC. Interferon upregulation associates with insulin resistance in humans.Curr. Diabetes Rev.20242010.2174/011573399829402224030910511238500280
    [Google Scholar]
  16. BeisswengerP.J. SpiroR.G. Human glomerular basement membrane: Chemical alteration in diabetes mellitus.Science1970168393159659810.1126/science.168.3931.5965436594
    [Google Scholar]
  17. LabouxT. MaanaouiM. AllainF. BoulangerE. DenysA. GibierJ.B. GlowackiF. GrolauxG. GrunenwaldA. HowsamM. LancelS. LebasC. LopezB. RoumeninaL. ProvôtF. GnemmiV. FrimatM. Hemolysis is associated with altered heparan sulfate of the endothelial glycocalyx and with local complement activation in thrombotic microangiopathies.Kidney Int.2023104235336610.1016/j.kint.2023.03.03937164260
    [Google Scholar]
  18. JodeleS. ZhangK. ZouF. LaskinB. DandoyC.E. MyersK.C. LaneA. MellerJ. MedvedovicM. ChenJ. DaviesS.M. The genetic fingerprint of susceptibility for transplant-associated thrombotic microangiopathy.Blood2016127898999610.1182/blood‑2015‑08‑66343526603840
    [Google Scholar]
  19. TeohC.W. Riedl KhursigaraM. Ortiz-SandovalC.G. ParkJ.W. LiJ. Bohorquez-HernandezA. BrunoV. BowenE.E. FreemanS.A. RobinsonL.A. LichtC. The loss of glycocalyx integrity impairs complement factor H binding and contributes to cyclosporine-induced endothelial cell injury.Front. Med.20231089151310.3389/fmed.2023.89151336860338
    [Google Scholar]
  20. SpillmannD. Heparan sulfate: Anchor for viral intruders?Biochimie200183881181710.1016/S0300‑9084(01)01290‑111530214
    [Google Scholar]
  21. LoM.W. AmarillaA.A. LeeJ.D. AlbornozE.A. ModhiranN. ClarkR.J. FerroV. ChhabraM. KhromykhA.A. WattersonD. WoodruffT.M. SARS-CoV -2 triggers complement activation through interactions with heparan sulfate.Clin. Transl. Immunology2022118e141310.1002/cti2.141335999893
    [Google Scholar]
  22. BuobD. DecambronM. GnemmiV. FrimatM. HoffmannM. AzarR. GheerbrantJ.D. GuincestreT. NoëlC. CopinM.C. GlowackiF. Collapsing glomerulopathy is common in the setting of thrombotic microangiopathy of the native kidney.Kidney Int.20169061321133110.1016/j.kint.2016.07.02127650730
    [Google Scholar]
  23. GougeonF. SinghH.K. NickeleitV. Renal comorbidities in collapsing variant focal segmental glomerulosclerosis: More than a coincidence?Nephrol. Dial. Transplant.202237231131710.1093/ndt/gfaa32733370435
    [Google Scholar]
  24. MaM. MazumderS. KwakH. AdamsM. GregoryM. Case report: Acute thrombotic microangiopathy in a patient with sting-associated vasculopathy with onset in infancy (SAVI).J. Clin. Immunol.20204081111111510.1007/s10875‑020‑00850‑232860170
    [Google Scholar]
  25. SugimotoT. HajiroT. FujimotoT. KojyoN. HorieM. KashiwagiA. Letter to the Editor: Thrombotic microangiopathy in an adult patient with clinically amyopathic dermatomyositis complicated with interstitial lung disease.Lupus200716121004100510.1177/096120330708238218042598
    [Google Scholar]
  26. KawamotoS. AbeT. NagahoriK. YoshinoA. FujiiA. OnoY. UedaY. TakedaT. Anti-MDA5 antibody-positive dermatomyositis with rapidly progressive interstitial pneumonia presenting with nephrotic syndrome during treatment with corticosteroids and cyclosporine.Intern. Med.202261132007201210.2169/internalmedicine.8311‑2134776485
    [Google Scholar]
  27. MouriM. KanamoriT. TanakaE. HiratokoK. OkuboM. InoueM. MorioT. ShimizuM. NishinoI. OkiyamaN. MoriM. Hepatic veno-occlusive disease accompanied by thrombotic microangiopathy developed during treatment of juvenile dermatomyositis and macrophage activation syndrome: A case report.Mod. Rheumatol. Case Rep.20237240440910.1093/mrcr/rxac08636416547
    [Google Scholar]
  28. ThaunatO. DelahousseM. FakhouriF. MartinezF. StephanJ.L. NoëlL.H. KarrasA. Nephrotic syndrome associated with hemophagocytic syndrome.Kidney Int.200669101892189810.1038/sj.ki.500035216557222
    [Google Scholar]
  29. OmotoS. UtsumiT. MatsunoH. TerasawaY. IguchiY. Thrombotic microangiopathy presenting with intestinal involvement following long-term interferon-β1b treatment for multiple sclerosis.Intern. Med.201857574174410.2169/internalmedicine.9326‑1729151517
    [Google Scholar]
  30. GloudeN.J. DandoyC.E. DaviesS.M. MyersK.C. JordanM.B. MarshR.A. KumarA. BleesingJ. Teusink-CrossA. JodeleS. Thinking beyond HLH: Clinical features of patients with concurrent presentation of hemophagocytic lymphohistiocytosis and thrombotic microangiopathy.J. Clin. Immunol.202040569970710.1007/s10875‑020‑00789‑432447592
    [Google Scholar]
  31. MooreG.W. VetrH. BinderN.B. ADAMTS13 antibody and inhibitor assays.Methods Mol. Biol.2023266354956510.1007/978‑1‑0716‑3175‑1_3637204736
    [Google Scholar]
  32. KimY.J. A new pathological perspective on thrombotic microangiopathy.Kidney Res. Clin. Pract.202241552453210.23876/j.krcp.22.01035791743
    [Google Scholar]
  33. HondaK. AndoA. EndoM. ShimizuK. HigashiharaM. NittaK. NiheiH. Thrombotic microangiopathy associated with alpha-interferon therapy for chronic myelocytic leukemia.Am. J. Kidney Dis.199730112313010.1016/S0272‑6386(97)90575‑89214412
    [Google Scholar]
  34. RichardsonS.E. KarmaliM.A. BeckerL.E. SmithC.R. The histopathology of the hemolytic uremic syndrome associated with verocytotoxin-producing Escherichia coli infections.Hum. Pathol.19881991102110810.1016/S0046‑8177(88)80093‑53047052
    [Google Scholar]
  35. KundraA. WangJ.C. Interferon induced thrombotic microangiopathy (TMA): Analysis and concise review.Crit. Rev. Oncol. Hematol.201711210311210.1016/j.critrevonc.2017.02.01128325251
    [Google Scholar]
  36. Ravandi-KashaniF. CortesJ. TalpazM. KantarjianH.M. Thrombotic microangiopathy associated with interferon therapy for patients with chronic myelogenous leukemia.Cancer199985122583258810.1002/(SICI)1097‑0142(19990615)85:12<2583::AID‑CNCR14>3.0.CO;2‑#10375106
    [Google Scholar]
  37. Al-ZahraniH. GuptaV. MindenM.D. MessnerH.A. LiptonJ.H. Vascular events associated with alpha interferon therapy.Leuk. Lymphoma200344347147510.1080/104281902100005506612688317
    [Google Scholar]
  38. GalesicK. BozicB. RacicI. Scukanec-SpoljarM. Thrombotic microangiopathy associated with α-interferon therapy for chronic myeloid leukaemia (Case Report).Nephrology2006111495210.1111/j.1440‑1797.2006.00524.x16509932
    [Google Scholar]
  39. HarveyM. RosenfeldD. DaviesD. HallB.M. Recombinant interferon alpha and hemolytic uremic syndrome: Cause or coincidence?Am. J. Hematol.199446215215310.1002/ajh.28304602208172186
    [Google Scholar]
  40. MeiS. FengY. CuiL. ChenJ. MaoZ. ZhaoX. MeiC. QianY. Thrombotic thrombocytopenic purpura developed after pegylated interferon treatment for hepatitis B infection.BMC Nephrol.202223140010.1186/s12882‑022‑03034‑936513992
    [Google Scholar]
  41. QinC. YinD. LiuF. QiuH. Thrombotic thrombocytopenic purpura in a patient on long-term alpha-interferon therapy for essential thrombocythemia: A case report.BMC Nephrol.202324114310.1186/s12882‑023‑03200‑737221468
    [Google Scholar]
  42. UbaraY. HaraS. TakedatuH. KatoriH. YamadaK. YoshiharaK. MatsushitaY. YokoyamaK. TakemotoF. YamadaA. TakagawaR. EndoY. HaraM. KoidaI. KumadaH. Hemolytic uremic syndrome associated with beta-interferon therapy for chronic hepatitis C.Nephron J.199880110710810.1159/0000451479730725
    [Google Scholar]
  43. DauvergneM. BuobD. RafatC. HenninoM.F. LemoineM. AudardV. ChauveauD. RibesD. Cornec-Le GallE. DaugasE. PilleboutE. VuibletV. BoffaJ.J. BrocheriouI. BuobD. DanielL. DoucetL. FrançoisA. GnemmiV. MoktefiA. VuibletV. French Nephropathology Group Renal diseases secondary to interferon-β treatment: A multicentre clinico-pathological study and systematic literature review.Clin. Kidney J.202114122563257210.1093/ckj/sfab11434950468
    [Google Scholar]
  44. TaghaviM. StordeurP. CollartF. DachyB. PozdzikA. MesquitaM.D.C.F. NortierJ. Interferon-β1a-induced thrombotic microangiopathy: Possible implication of the alternative pathway of the complement.Kidney Int. Rep.2022781917192110.1016/j.ekir.2022.05.00235967109
    [Google Scholar]
  45. PlesaC.F. ChitimusD.M. SirbuC.A. ȚânțuM.M. GhinescuM.C. AnghelD. Ionita-RaduF. Thrombotic thrombocytopenic purpura in interferon beta-1a-treated patient diagnosed with relapsing-remitting multiple sclerosis: A case report.Life20221218010.3390/life1201008035054473
    [Google Scholar]
  46. MrabetS. DahmaneR. RajaB. FradiA. AichaN.B. SahtoutW. AzzabiA. GuedriY. ZellamaD. AchourA. SfarI. GouchaR. AbdessayedN. MokniM. Thrombotic microangiopathy due to acquired complement factor I deficiency in a male receiving interferon-beta treatment for multiple sclerosis.Br. J. Clin. Pharmacol.20238951682168510.1111/bcp.1563136480744
    [Google Scholar]
  47. RasmussenM. SkullerudK. BakkeS.J. LebonP. JahnsenF.L. Cerebral thrombotic microangiopathy and antiphospholipid antibodies in Aicardi-Goutieres syndrome--report of two sisters.Neuropediatrics2005361404410.1055/s‑2004‑83053215776321
    [Google Scholar]
  48. MalgajV.M. AlešR.A. Večerić-HalerŽ. Coronavirus disease 2019-associated thrombotic microangiopathy: Literature review.Int. J. Mol. Sci.202223191130710.3390/ijms23191130736232608
    [Google Scholar]
  49. VolbedaM. Jou-ValenciaD. van den HeuvelM.C. ZijlstraJ.G. FranssenC.F.M. van der VoortP.H.J. MoserJ. van MeursM. Acute and chronic histopathological findings in renal biopsies in COVID-19.Clin. Exp. Med.20222341003101410.1007/s10238‑022‑00941‑x36396750
    [Google Scholar]
  50. YamaguchiM. MizunoM. KitamuraF. IwagaitsuS. NobataH. KinashiH. BannoS. AsaiA. IshimotoT. KatsunoT. ItoY. Case report: Thrombotic microangiopathy concomitant with macrophage activation syndrome in systemic lupus erythematosus refractory to conventional treatment successfully treated with eculizumab.Front. Med.20239109752810.3389/fmed.2022.109752836698804
    [Google Scholar]
  51. StrufaldiF.L. Menezes NevesP.D.M.M. DiasC.B. YuL. WoronikV. CavalcanteL.B. MalheirosD.M.A.C. JorgeL.B. Renal thrombotic microangiopathy associated to worse renal prognosis in Lupus Nephritis.J. Nephrol.20213441147115610.1007/s40620‑020‑00938‑333570723
    [Google Scholar]
  52. MutohT. OhashiK. NagaiT. SugiuraA. KudoM. FujiiH. Upfront rituximab therapy for thrombotic thrombocytopenic purpura in systemic lupus erythematosus: A case-based review.Rheumatol. Int.202243237338110.1007/s00296‑022‑05182‑535962219
    [Google Scholar]
  53. OnoM. OhashiN. NamikawaA. KatahashiN. IshigakiS. TsujiN. IsobeS. IwakuraT. SakaoY. TsujiT. KatoA. FujigakiY. ShimizuA. YasudaH. A rare case of lupus nephritis presenting as thrombotic microangiopathy with diffuse pseudotubulization possibly caused by atypical hemolytic uremic syndrome.Intern. Med.201857111617162310.2169/internalmedicine.0228‑1729434134
    [Google Scholar]
  54. PalliE. KravvaritiE. TektonidouM.G. Type I interferon signature in primary antiphospholipid syndrome: Clinical and laboratory associations.Front. Immunol.20191048710.3389/fimmu.2019.0048730930907
    [Google Scholar]
  55. SkoczynskaM. CrowtherM.A. ChowaniecM. PonikowskaM. ChaturvediS. LegaultK. Thrombotic microangiopathy in the course of catastrophic antiphospholipid syndrome successfully treated with eculizumab: Case report and systematic review of the literature.Lupus202029663163910.1177/096120332091746032252584
    [Google Scholar]
  56. HughsonM.D. NadasdyT. McCartyG.A. SholerC. MinK-W. SilvaF. Renal thrombotic microangiopathy in patients with systemic lupus erythematosus and the antiphospholipid syndrome.Am. J. Kidney Dis.199220215015810.1016/S0272‑6386(12)80543‑91496968
    [Google Scholar]
  57. KomisarofJ. FormanJ. GoldmanB. SypossC. PasseroF. GarbadeE. A rare case of renal thrombotic microangiopathy and focal segmental glomerulosclerosis secondary to plasma cell leukemia.Case Rep. Hematol.202320231410.1155/2023/780370436852298
    [Google Scholar]
  58. CataneseL. LinkK. RupprechtH. Microangiopathy in multiple myeloma: A case of carfilzomib-induced secondary thrombotic microangiopathy successfully treated with plasma exchange and complement inhibition.BMC Nephrol.202324117910.1186/s12882‑023‑03228‑937337151
    [Google Scholar]
  59. MoscvinM. LiacosC.I. ChenT. TheodorakakouF. FotiouD. HossainS. RowellS. LeblebjianH. ReganE. CzarneckiP. BagnoliF. BolliN. RichardsonP. RennkeH.G. DimopoulosM.A. KastritisE. BianchiG. Mutations in the alternative complement pathway in multiple myeloma patients with carfilzomib-induced thrombotic microangiopathy.Blood Cancer J.20231313110.1038/s41408‑023‑00802‑036849497
    [Google Scholar]
  60. HenterJ.I. ElinderG. SöderO. HanssonM. AnderssonB. AnderssonU. Hypercytokinemia in familial hemophagocytic lymphohistiocytosis.Blood199178112918292210.1182/blood.V78.11.2918.29181954380
    [Google Scholar]
  61. AkashiK. HayashiS. GondoH. MizunoS. HaradaM. TamuraK. YamasakiK. ShibuyaT. UikeN. OkamuraT. MiyamotoT. NihoY. Involvement of interferon-γ and macrophage colony-stimulating factor in pathogenesis of haemophagocytic lymphohistiocytosis in adults.Br. J. Haematol.199487224325010.1111/j.1365‑2141.1994.tb04905.x7947264
    [Google Scholar]
  62. PascarellaA. BracagliaC. CaielloI. ArduiniA. MonetaG.M. RossiM.N. MatteoV. PardeoM. De BenedettiF. PrencipeG. Monocytes from patients with macrophage activation syndrome and secondary hemophagocytic lymphohistiocytosis are hyperresponsive to interferon gamma.Front. Immunol.20211266332910.3389/fimmu.2021.66332933815425
    [Google Scholar]
  63. NoboaM.E.R. Lopez-ArevaloH. PatelA.R. AroraS. ManadanA.M. Nationwide analysis of adult hospitalizations with hemophagocytic lymphohistiocytosis and systemic lupus erythematosus.Clin. Rheumatol.20234282091209510.1007/s10067‑023‑06594‑937081184
    [Google Scholar]
  64. NiizatoD. IsodaT. MitsuikiN. KanekoS. TomomasaD. KamiyaT. TakagiM. ImaiK. KajiwaraM. ShimizuM. MorioT. KaneganeH. Case report: Optimized ruxolitinib-based therapy in an infant with familial hemophagocytic lymphohistiocytosis type 3.Front. Immunol.20221397746310.3389/fimmu.2022.97746336505485
    [Google Scholar]
  65. IrinoK. JinnouchiF. NakanoS. SawabeT. A case of hemophagocytic lymphohistiocytosis with a significant response to baricitinib: A first report with review of literature.Clin. Rheumatol.20234271959196310.1007/s10067‑023‑06579‑836947281
    [Google Scholar]
  66. LiY. LiW. LiZ. MaF. XuB. A case report: Hemophagocytic lymphohistiocytosis and thrombotic thrombocytopenic purpura in an otherwise healthy woman.Medicine202310220e3380310.1097/MD.000000000003380337335695
    [Google Scholar]
  67. LeavittT.J. MeriganT.C. FreemanJ.M. Hemolytic-uremic-like syndrome following polycarboxylate interferon induction. Treatment of Dawson’s inclusion-body encephalitis.Am. J. Dis. Child.19711211434710.1001/archpedi.1971.021001200790105539813
    [Google Scholar]
  68. KitanoK. GiboY. KamijoA. FurutaK. OguchiS. JoshitaS. TakahashiY. IshidaF. MatsumotoM. UemuraM. FujimuraY. Thrombotic thrombocytopenic purpura associated with pegylated-interferon alpha-2a by an ADAMTS13 inhibitor in a patient with chronic hepatitis C.Haematologica2006918ECR3416923518
    [Google Scholar]
  69. CrowsonA.N. MagroC.M. The role of microvascular injury in the pathogenesis of cutaneous lesions of dermatomyositis.Hum. Pathol.1996271151910.1016/S0046‑8177(96)90132‑X8543305
    [Google Scholar]
  70. PestronkA. SchmidtR.E. ChoksiR. Vascular pathology in dermatomyositis and anatomic relations to myopathology.Muscle Nerve2010421536110.1002/mus.2165120544925
    [Google Scholar]
  71. JagerB.V. GrossmanL.A. Dermatomyositis.Arch. Intern. Med.194473427128510.1001/archinte.1944.00210160003001
    [Google Scholar]
  72. DayW. GabrielC. KellyR.E.Jr MagroC.M. WilliamsJ.V. WernerA. GiffordL. LapsiaS.P. AguiarC.L. Juvenile dermatomyositis resembling late-stage Degos disease with gastrointestinal perforations successfully treated with combination of cyclophosphamide and rituximab: Case-based review.Rheumatol. Int.202040111883189010.1007/s00296‑019‑04495‑231900501
    [Google Scholar]
  73. TonuttiA. MottaF. CeribelliA. IsailovicN. SelmiC. De SantisM. Anti-MDA5 antibody linking COVID-19, type I interferon, and autoimmunity: A case report and systematic literature review.Front. Immunol.20221393766710.3389/fimmu.2022.93766735833112
    [Google Scholar]
  74. GreenbergS.A. PinkusJ.L. PinkusG.S. BurlesonT. SanoudouD. TawilR. BarohnR.J. SapersteinD.S. BriembergH.R. EricssonM. ParkP. AmatoA.A. Interferon-α/β-mediated innate immune mechanisms in dermatomyositis.Ann. Neurol.200557566467810.1002/ana.2046415852401
    [Google Scholar]
  75. HuardC. GullàS.V. BennettD.V. CoyleA.J. VleugelsR.A. GreenbergS.A. Correlation of cutaneous disease activity with type 1 interferon gene signature and interferon β in dermatomyositis.Br. J. Dermatol.201717651224123010.1111/bjd.1500627564228
    [Google Scholar]
  76. ZhangS.H. ZhaoY. XieQ.B. JiangY. WuY.K. YanB. Aberrant activation of the type I interferon system may contribute to the pathogenesis of anti-melanoma differentiation-associated gene 5 dermatomyositis.Br. J. Dermatol.201918051090109810.1111/bjd.1691729947075
    [Google Scholar]
  77. OnoN. KaiK. MaruyamaA. SakaiM. SadanagaY. KoaradaS. InoueT. TadaY. The relationship between type 1 IFN and vasculopathy in anti-MDA5 antibody-positive dermatomyositis patients.Rheumatology201958578679110.1093/rheumatology/key38630541137
    [Google Scholar]
  78. TabataM.M. HodgkinsonL.M. WuT.T. LiS. HuardC. ZhaoS. BennettD. JohnsonJ. TierneyC. HeW. BuhlmannJ.E. PageK.M. JohnsonK. Casciola-RosenL. ChungL. SarinK.Y. FiorentinoD. The type I interferon signature reflects multiple phenotypic and activity measures in dermatomyositis.Arthritis Rheumatol.202375101842184910.1002/art.4252637096447
    [Google Scholar]
  79. QianJ. LiR. ChenZ. CaoZ. LuL. FuQ. Type I interferon score is associated with the severity and poor prognosis in anti-MDA5 antibody-positive dermatomyositis patients.Front. Immunol.202314115169510.3389/fimmu.2023.115169537006269
    [Google Scholar]
  80. O’ConnorK.A. AbbottK.A. SabinB. KurodaM. PachmanL.M. MxA gene expression in juvenile dermatomyositis peripheral blood mononuclear cells: Association with muscle involvement.Clin. Immunol.2006120331932510.1016/j.clim.2006.05.01116859997
    [Google Scholar]
  81. LiaoA.P. SalajeghehM. NazarenoR. KaganJ.C. JubinR.G. GreenbergS.A. Interferon is associated with type 1 interferon-inducible gene expression in dermatomyositis.Ann. Rheum. Dis.201170583183610.1136/ard.2010.13994921177291
    [Google Scholar]
  82. MonetaG.M. Pires MarafonD. MarascoE. RosinaS. VerardoM. FiorilloC. MinettiC. Bracci-LaudieroL. RavelliA. De BenedettiF. NicolaiR. Muscle expression of type I and type II interferons is increased in juvenile dermatomyositis and related to clinical and histologic features.Arthritis Rheumatol.20197161011102110.1002/art.4080030552836
    [Google Scholar]
  83. HoraiY. KogaT. FujikawaK. TakataniA. NishinoA. NakashimaY. SuzukiT. KawashiriS. IwamotoN. IchinoseK. TamaiM. NakamuraH. IdaH. KakugawaT. SakamotoN. IshimatsuY. MukaeH. HamaguchiY. FujimotoM. KuwanaM. OriguchiT. KohnoS. KawakamiA. Serum interferon-α is a useful biomarker in patients with anti-melanoma differentiation-associated gene 5 (MDA5) antibody-positive dermatomyositis.Mod. Rheumatol.2015251858910.3109/14397595.2014.90084324716595
    [Google Scholar]
  84. DietrichL.L. BridgesA.J. AlbertiniM.R. Dermatomyositis after interferon alpha treatment.Med. Oncol.2000171646910.1007/BF0282621910713663
    [Google Scholar]
  85. NishiokaA. TsunodaS. AbeT. YoshikawaT. TakataM. KitanoM. MatsuiK. NakashimaR. HosonoY. OhmuraK. MimoriT. SanoH. Serum neopterin as well as ferritin, soluble interleukin-2 receptor, KL-6 and anti-MDA5 antibody titer provide markers of the response to therapy in patients with interstitial lung disease complicating anti-MDA5 antibody- positive dermatomyositis.Mod. Rheumatol.201929581482010.1080/14397595.2018.154891830449228
    [Google Scholar]
  86. KokuzawaA. NakamuraJ. KamataY. SatoK. Potential role of type I interferon/IP-10 axis in the pathogenesis of anti-MDA5 antibody-positive dermatomyositis.Clin. Exp. Rheumatol.202341227528436622131
    [Google Scholar]
  87. IshikawaY. IwataS. HanamiK. NawataA. ZhangM. YamagataK. HirataS. SakataK. TodorokiY. NakanoK. NakayamadaS. SatohM. TanakaY. Relevance of interferon-gamma in pathogenesis of life-threatening rapidly progressive interstitial lung disease in patients with dermatomyositis.Arthritis Res. Ther.201820124010.1186/s13075‑018‑1737‑230367666
    [Google Scholar]
  88. KisselJ.T. MendellJ.R. RammohanK.W. Microvascular deposition of complement membrane attack complex in dermatomyositis.N. Engl. J. Med.1986314632933410.1056/NEJM1986020631406013945256
    [Google Scholar]
  89. LahoriaR. SelcenD. EngelA.G. Microvascular alterations and the role of complement in dermatomyositis.Brain201613971891190310.1093/brain/aww12227190020
    [Google Scholar]
  90. TheodoridisA. KonstantinidouA. MakrantonakiE. ZouboulisC.C. Malignant and benign forms of atrophic papulosis (Köhlmeier-Degos disease): Systemic involvement determines the prognosis.Br. J. Dermatol.2014170111011510.1111/bjd.1264224116834
    [Google Scholar]
  91. MagroC.M. PoeJ.C. KimC. ShapiroL. NuovoG. CrowM.K. CrowY.J. Degos disease.Am. J. Clin. Pathol.2011135459961010.1309/AJCP66QIMFARLZKI21411783
    [Google Scholar]
  92. HondaK.Y. OtsukaA. KogameT. ItoH. UsuiS. FujimotoM. JinnouchiK. HirataM. SugiuraK. KabashimaK. Increased type I interferon expression from T cells in lesional skin of Degos disease.J. Dermatol.202350572072210.1111/1346‑8138.1672736708104
    [Google Scholar]
  93. ZahariaD. TruchotF. Ronger-SavleS. BalmeB. ThomasL. Benign form of atrophic papulosis developed at injection sites of pegylated-alpha-interferon: is there a pathophysiological link?Br. J. Dermatol.2014170499299410.1111/bjd.1277324641169
    [Google Scholar]
  94. BeckerL.L. EbsteinF. HornD. ZouboulisC.C. KrügerE. KaindlA.M. TietzeA. EgerA. KallinichT. BiskupS. SchmidS. StenzelW. MünzfeldH. Blume-PeytaviU. IFNAR1 Research Group Interferon receptor dysfunction in a child with malignant atrophic papulosis and CNS involvement.Lancet Neurol.202221868268610.1016/S1474‑4422(22)00167‑335841902
    [Google Scholar]
  95. HuangY.C. WangJ.D. LeeF.Y. FuL.S. Pediatric malignant atrophic papulosis.Pediatrics2018141Suppl. 5S481S48410.1542/peds.2016‑420629610176
    [Google Scholar]
  96. ClarksonB. ThompsonD. HorwithM. LuckeyE.H. Cyclical edema and shock due to increased capillary permeability.Am. J. Med.196029219321610.1016/0002‑9343(60)90018‑813693909
    [Google Scholar]
  97. WangD.X. ShuX.M. TianX.L. ChenF. ZuN. MaL. WangG.C. Intravenous immunoglobulin therapy in adult patients with polymyositis/dermatomyositis: A systematic literature review.Clin. Rheumatol.201231580180610.1007/s10067‑012‑1940‑522274797
    [Google Scholar]
  98. LingS.K. FongN.M. ChanM.S. A case of recurrent systemic capillary leak syndrome triggered by influenza A infection associated with cardiogenic shock supported by veno-arterial extracorporeal membrane oxygenation.Perfusion202338242843110.1177/0267659121105751034963400
    [Google Scholar]
  99. YounusS. MaqsoodH. An unusual presentation of recurrent COVID-19 associated systemic capillary leak syndrome in a patient with multi-system inflammatory syndrome in adults (MIS-A) due to prior COVID-19 infection: Case report and literature review.Ann. Med. Surg.20228110430910.1016/j.amsu.2022.10430935945973
    [Google Scholar]
  100. AtkinsonJ.P. WaldmannT.A. SteinS.F. GelfandJ.A. MacdonaldW.J. HeckL.W. CohenE.L. KaplanA.P. FrankM.M. Systemic capillary leak syndrome and monoclonal IgG gammopathy; studies in a sixth patient and a review of the literature.Medicine197756322523910.1097/00005792‑197705000‑00004870792
    [Google Scholar]
  101. HiraokaE. MatsushimaY. Inomoto-NaribayashiY. NakataH. NakamuraA. KawanamiC. KinoshitaY. IsobeT. ChibaT. Systemic capillary leak syndrome associated with multiple myeloma of IgG kappa type.Intern. Med.199534121220122410.2169/internalmedicine.34.12208929655
    [Google Scholar]
  102. SchmidtS. HertfelderH.J. von SpiegelT. HeringR. HarzheimM. LassmannH. Deckert-SchlüterM. SchlegelU. Lethal capillary leak syndrome after a single administration of interferon beta-1b.Neurology199953122022210.1212/WNL.53.1.22010408566
    [Google Scholar]
  103. YamamotoK. MizunoM. TsujiT. AmanoT. Capillary leak syndrome after interferon treatment for chronic hepatitis C.Arch. Intern. Med.2002162448148210.1001/archinte.162.4.48111863486
    [Google Scholar]
  104. DrueyK.M. EischA.R. Cunningham-RundlesC. Autologous hematopoietic stem cell transplantation in Clarkson disease.J. Allergy Clin. Immunol. Pract.202311134734910.1016/j.jaip.2022.10.02336309188
    [Google Scholar]
  105. XieZ. ChanE. YinY. GhoshC.C. WischL. NelsonC. YoungM. ParikhS.M. DrueyK.M. Inflammatory markers of the systemic capillary leak syndrome (Clarkson disease).J. Clin. Cell. Immunol.20145100021325405070
    [Google Scholar]
  106. MagroC.M. MoJ.H. PeckerM.S. Idiopathic systemic capillary leak syndrome, a unique complement and interferon mediated endotheliopathy syndrome: The role of the normal skin biopsy in establishing the diagnosis and elucidating pathogenetic mechanisms.Ann. Diagn. Pathol.20226115202810.1016/j.anndiagpath.2022.15202836055005
    [Google Scholar]
  107. SalatC. HollerE. SchleuningM. EiseleB. ReinhardtB. KolbH. PihuschR. DomrathR. HillerE. Levels of the terminal complement complex, C3a-desArg and C1-inhibitor in adult patients with capillary leak syndrome following bone marrow transplantation.Ann. Hematol.199571627127410.1007/BF016979788534757
    [Google Scholar]
  108. CreutzigA. CasparyL. FreundM. The Raynaud phenomenon and interferon therapy.Ann. Intern. Med.1996125542310.7326/0003‑4819‑125‑5‑199609010‑000258702103
    [Google Scholar]
  109. Husein-ElAhmedH. Callejas-RubioJ.L. Del OlmoR.O. Ríos-FernandezR. Ortego-CentenoN. Severe Raynaud syndrome induced by adjuvant interferon alfa in metastatic melanoma.Curr. Oncol.201017412212310.3747/co.v17i4.51920697523
    [Google Scholar]
  110. DaiY. LiuX. ZhaoZ. HeJ. YinQ. Stimulator of interferon genes-associated vasculopathy with onset in infancy: A systematic review of case reports.Front Pediatr.2020857791810.3389/fped.2020.57791833425809
    [Google Scholar]
  111. GüntherC. BerndtN. WolfC. Lee-KirschM.A. Familial chilblain lupus due to a novel mutation in the exonuclease III domain of 3′ repair exonuclease 1 (TREX1).JAMA Dermatol.2015151442643110.1001/jamadermatol.2014.343825517357
    [Google Scholar]
  112. BattestiG. El KhalifaJ. AbdelhediN. FerreV. BouscaratF. Picard-DahanC. Brunet-PossentiF. CollinG. LavaudJ. Le BozecP. RousselotM. TournierA. LheureC. CouvelardA. Hacein-Bey-AbinaS. AbinaA.M. CharpentierC. MignotS. NicaiseP. DescampsD. DeschampsL. DescampsV. New insights in COVID-19–associated chilblains: A comparative study with chilblain lupus erythematosus.J. Am. Acad. Dermatol.20208341219122210.1016/j.jaad.2020.06.101832622895
    [Google Scholar]
  113. BlauK. LehrS. AschoffR. Al GburiS. BrückN. ChapsaM. SchnabelA. AbrahamS. JöhrensK. BeissertS. GüntherC. Course and outcome of chilblain-like acral lesions during COVID -19 pandemic.J. Eur. Acad. Dermatol. Venereol.2023371e29e3110.1111/jdv.1858236149533
    [Google Scholar]
  114. StarkeyS.Y. MarK. KashetskyN. LamJ.M. DutzJ. MukovozovI. Chilblain-like lesions coinciding with the SARS-CoV-2 pandemic.Clin. Dermatol.202341122322910.1016/j.clindermatol.2022.09.01036228990
    [Google Scholar]
  115. AschoffR. ZimmermannN. BeissertS. GüntherC. Type I interferon signature in chilblain-like lesions associated with the COVID-19 pandemic.Dermatopathology202073576310.3390/dermatopathology703001033291622
    [Google Scholar]
  116. MagroC.M. MulveyJ.J. LaurenceJ. SandersS. CrowsonA.N. GrossmanM. HarpJ. NuovoG. The differing pathophysiologies that underlie COVID-19-associated perniosis and thrombotic retiform purpura: A case series.Br. J. Dermatol.2021184114115010.1111/bjd.1941532779733
    [Google Scholar]
  117. HubicheT. Cardot-LecciaN. Le DuffF. Seitz-PolskiB. GiordanaP. ChiaveriniC. GiordanengoV. GonfrierG. RaimondiV. BaussetO. AdjtoutahZ. GarnierM. Burel-VandenbosF. Dadone-MontaudiéB. FassbenderV. PalladiniA. CourjonJ. MondainV. ContentiJ. DellamonicaJ. LeftheriotisG. PasseronT. Clinical, laboratory, and interferon-alpha response characteristics of patients with chilblain-like lesions during the COVID-19 pandemic.JAMA Dermatol.2021157220220610.1001/jamadermatol.2020.432433237291
    [Google Scholar]
  118. FrumholtzL. BouazizJ.D. BattistellaM. HadjadjJ. ChocronR. BengoufaD. Le BuanecH. BarnabeiL. MeynierS. SchwartzO. GrzelakL. SmithN. CharbitB. DuffyD. YatimN. CalugareanuA. PhilippeA. GuerinC.L. JolyB. SiguretV. JaumeL. BachelezH. BagotM. Rieux-LaucatF. MaylinS. LegoffJ. DelaugerreC. GendronN. SmadjaD.M. CassiusC. Saint-Louis CORE (COvid REsearch) Type I interferon response and vascular alteration in chilblain-like lesions during the COVID-19 outbreak.Br. J. Dermatol.202118561176118510.1111/bjd.2070734611893
    [Google Scholar]
  119. EugsterA. MüllerD. GompfA. ReinhardtS. LindnerA. AshtonM. ZimmermannN. BeissertS. BonifacioE. GüntherC. A novel type I interferon primed dendritic cell subpopulation in TREX1 mutant chilblain lupus patients.Front. Immunol.20221389750010.3389/fimmu.2022.89750035911727
    [Google Scholar]
  120. MunozJ. RodièreM. JeremiahN. Rieux-LaucatF. OojageerA. RiceG.I. RozenbergF. CrowY.J. BessisD. Stimulator of interferon genes–associated vasculopathy with onset in infancy.JAMA Dermatol.2015151887287710.1001/jamadermatol.2015.025125992765
    [Google Scholar]
  121. WeissM.A. DaquioagE. MargolinE.G. PollakV.E. Nephrotic syndrome, progressive irreversible renal failure, and glomerular “collapse”: A new clinicopathologic entity?Am. J. Kidney Dis.198671202810.1016/S0272‑6386(86)80052‑X3510532
    [Google Scholar]
  122. SharmaY. NasrS.H. LarsenC.P. KemperA. OrmsbyA.H. WilliamsonS.R. COVID-19–associated collapsing focal segmental glomerulosclerosis: A report of 2 cases.Kidney Med.20202449349710.1016/j.xkme.2020.05.00532775990
    [Google Scholar]
  123. SteinD.F. AhmedA. SunkharaV. KhalbussW. Collapsing focal segmental glomerulosclerosis with recovery of renal function: An uncommon complication of interferon therapy for hepatitis C.Dig. Dis. Sci.200146353053510.1023/A:100563891348711318527
    [Google Scholar]
  124. KanungoS. TamirisaS. GopalakrishnanR. Salinas-MadrigalL. BastaniB. Collapsing glomerulopathy as a complication of interferon therapy for hepatitis C infection.Int. Urol. Nephrol.201042121922210.1007/s11255‑009‑9594‑119496019
    [Google Scholar]
  125. BerdichevskiR.H. De CarvalhoE.M. EdelweissM.I. GonçalvesL.F. ManfroR.C. Collapsing glomerulopathy after hepatitis C pegylated interferon treatment. Recovery of renal function with high-dose steroid treatment.NDT Plus20103656456625949468
    [Google Scholar]
  126. MarkowitzG.S. NasrS.H. StokesM.B. D’AgatiV.D. Treatment with IFN-alpha, -beta, or -gamma is associated with collapsing focal segmental glomerulosclerosis.Clin. J. Am. Soc. Nephrol.20105460761510.2215/CJN.0731100920203164
    [Google Scholar]
  127. NicholsB. JogP. LeeJ.H. BlacklerD. WilmotM. D’AgatiV. MarkowitzG. KoppJ.B. AlperS.L. PollakM.R. FriedmanD.J. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1.Kidney Int.201587233234210.1038/ki.2014.27025100047
    [Google Scholar]
  128. FenaroliP. RossiG.M. AngelottiM.L. AntonelliG. VolpiS. GrossiA. DelsanteM. LodiL. LandiniS. RomagnaniP. VaglioA. Collapsing glomerulopathy as a complication of type I interferon–mediated glomerulopathy in a patient with RNASEH2B-related aicardi-goutières syndrome.Am. J. Kidney Dis.202178575075410.1053/j.ajkd.2021.02.33033872687
    [Google Scholar]
  129. MarquesL.P. PachecoG.G. RiojaL.S. NunesS.N. VeloneS.T. SantosO.R. Can systemic lupus erythematosus be the cause of collapsing glomerulopathy?Lupus2005141085385510.1191/0961203305lu2162cr16302682
    [Google Scholar]
  130. ChokshiB. D’AgatiV. BizzocchiL. JohnsonB. MendezB. JimB. Haemophagocytic lymphohistiocytosis with collapsing lupus podocytopathy as an unusual manifestation of systemic lupus erythematosus with APOL1 double-risk alleles.BMJ Case Rep.2019121bcr-2018-22786010.1136/bcr‑2018‑22786030642866
    [Google Scholar]
  131. VanoodA. OwenR. MaraskineM. SchreiberA. PokharelR. CohenL. Collapsing FSGS with concurrent class 2 and 3 lupus nephritis: A case report and review of the literature.Case Rep. Nephrol. Dial.2021111162510.1159/00051084033708796
    [Google Scholar]
  132. WinstonJ. KlotmanP.E. HIV-associated nephropathy.Mt. Sinai J. Med.199865127329458681
    [Google Scholar]
  133. GandhiP. DowlingC.S. SatoskarA. ShahA. Successful treatment of COVID-19-associated collapsing glomerulopathy: 22 months of follow-up.Clin. Nephrol. Case Stud.202311111011310.5414/CNCS11111237485073
    [Google Scholar]
  134. WigginsB. DeliwalaS. BannoF. KnightK. MinaudoM. Acute renal failure and nephrotic syndrome secondary to collapsing glomerulopathy associated with hepatitis C.Cureus2022143e2317510.7759/cureus.2317535444880
    [Google Scholar]
  135. MoudgilA. NastC.C. BaggaA. WeiL. NurmametA. CohenA.H. JordanS.C. ToyodaM. Association of parvovirus B19 infection with idiopathic collapsing glomerulopathy.Kidney Int.20015962126213310.1046/j.1523‑1755.2001.00727.x11380814
    [Google Scholar]
  136. JoshiA. AroraA. CimbalukD. DuneaG. HartP. Acute epstein-barr virus infection-associated collapsing glomerulopathy.Clin. Kidney J.20125432032210.1093/ckj/sfs05925874088
    [Google Scholar]
  137. GroverV. GaikiM.R. DeVitaM.V. SchwimmerJ.A. Cytomegalovirus-induced collapsing focal segmental glomerulosclerosis.Clin. Kidney J.201361717310.1093/ckj/sfs09727818753
    [Google Scholar]
  138. ZhuX. LiuH. YuanS. XuX. DongZ. LiuF. Collapsing glomerulopathy with rare associated coxsackie virus infection: A case report.Exp. Ther. Med.20161151871187410.3892/etm.2016.316127168819
    [Google Scholar]
  139. AraújoS.A. CordeiroT.M. BelisárioA.R. AraújoR.F.A. MarinhoP.E.S. KroonE.G. de OliveiraD.B. TeixeiraM.M. Simões e SilvaA.C. First report of collapsing variant of focal segmental glomerulosclerosis triggered by arbovirus: Dengue and Zika virus infection.Clin. Kidney J.201912335536110.1093/ckj/sfy10431198534
    [Google Scholar]
  140. CoventryS. ShoemakerL.R. Collapsing glomerulopathy in a 16-year-old girl with pulmonary tuberculosis: the role of systemic inflammatory mediators.Pediatr. Dev. Pathol.20047216617010.1007/s10024‑003‑3027‑415022071
    [Google Scholar]
  141. AmouraA. MoktefiA. HalfonM. KarrasA. RafatC. GibierJ.B. GleesonP.J. ServaisA. ArgyN. MailléP. BelenfantX. GueutinV. DelpierreA. TricotL. El KarouiK. Jourde-ChicheN. HouzeS. SahaliD. AudardV. Malaria, collapsing glomerulopathy, and focal and segmental glomerulosclerosis.Clin. J. Am. Soc. Nephrol.202015796497210.2215/CJN.0059012032444394
    [Google Scholar]
  142. NevesP.D. BridiR.A. RamalhoJ.A. JorgeL.B. WatanabeE.H. WatanabeA. YuL. WoronikV. PinheiroR.B. TestagrossaL.A. CavalcanteL.B. MalheirosD.M. DiasC.B. OnuchicL.F. Schistosoma mansoni infection as a trigger to collapsing glomerulopathy in a patient with high-risk APOL1 genotype.PLoS Negl. Trop. Dis.20201410e000858210.1371/journal.pntd.000858233119586
    [Google Scholar]
  143. KudoseS. SantorielloD. BombackA.S. SekulicM. BatalI. StokesM.B. GhavamiI.A. KimJ.S. MarasaM. XuK. PelegY. BaraschJ. CanettaP. RasoulyH.M. GharaviA.G. MarkowitzG.S. D’AgatiV.D. Longitudinal outcomes of COVID-19–associated collapsing glomerulopathy and other podocytopathies.J. Am. Soc. Nephrol.202132112958296910.1681/ASN.202107093134670811
    [Google Scholar]
  144. LohaniS. SadasivamM. RabbH. AttaM.G. Persistent interferon production by double negative T cells and collapsing focal segmental glomerulosclerosis.Nephron J.20211451859010.1159/00051075933059348
    [Google Scholar]
  145. PapaniR. DuarteA.G. LinY. KuoY.F. SharmaG. Pulmonary arterial hypertension associated with interferon therapy: A population-based study.Multidiscip. Respir. Med.2017121110.1186/s40248‑016‑0082‑z28105332
    [Google Scholar]
  146. FruehaufS. SteigerS. TopalyJ. HoA. Pulmonary artery hypertension during interferon-α therapy for chronic myelogenous leukemia.Ann. Hematol.200180530831010.1007/s00277010029811446736
    [Google Scholar]
  147. TsuchiyaH. KiokaH. OzuK. OhtaniT. YamaguchiO. YazakiY. Yamauchi-TakiharaK. SakataY. Interferon therapy exacerbated pulmonary hypertension in a patient with hepatitis C virus infection: Pathogenic interplay among multiple risk factors.Intern. Med.20175691061106510.2169/internalmedicine.56.782228458313
    [Google Scholar]
  148. LedinekA.H. JazbecS.Š. DrinovecI. RotU. Pulmonary arterial hypertension associated with interferon beta treatment for multiple sclerosis: A case report.Mult. Scler.200915788588610.1177/135245850910459319465452
    [Google Scholar]
  149. RazaF. KozitzaC. ChybowskiA. GossK.N. BereiT. RunoJ. EldridgeM. CheslerN. Interferon-β–induced pulmonary arterial hypertension.JACC. Case Rep.2021371038104310.1016/j.jaccas.2021.02.00534317680
    [Google Scholar]
  150. ZhengS. LeeP.Y. WangJ. WangS. HuangQ. HuangY. LiuY. ZhouQ. LiT. Interstitial lung disease and psoriasis in a child with aicardi-goutières syndrome.Front. Immunol.20201198510.3389/fimmu.2020.0098532508843
    [Google Scholar]
  151. WangH. LvJ. HeJ. WuW. ZhongY. CaoS. CaiY. WangQ. The prevalence and effects of treatments of rapidly progressive interstitial lung disease of dermatomyositis/polymyositis adults: A systematic review and meta-analysis.Autoimmun. Rev.202322810333510.1016/j.autrev.2023.10333537164215
    [Google Scholar]
  152. WuY. LiY. LuoY. ZhouY. LiangX. ChengL. WuT. WenJ. TanC. LiuY. Proteomics: Potential techniques for discovering the pathogenesis of connective tissue diseases-interstitial lung disease.Front. Immunol.202314114690410.3389/fimmu.2023.114690437063894
    [Google Scholar]
  153. LewisC. SandersonR. VasilottosN. ZheutlinA. VisovattiS. Pulmonary arterial hypertension in connective tissue diseases beyond systemic sclerosis.Heart Fail. Clin.2023191455410.1016/j.hfc.2022.08.01636435572
    [Google Scholar]
  154. WangX. TuY. HuangB. LiY. LiY. ZhangS. LinY. HuangL. ZhangW. LuoH. Pulmonary vascular endothelial injury and acute pulmonary hypertension caused by COVID-19: The fundamental cause of refractory hypoxemia?Cardiovasc. Diagn. Ther.202010489289710.21037/cdt‑20‑42932968645
    [Google Scholar]
  155. FraserE. DenneyL. AntanaviciuteA. BlirandoK. VuppusettyC. ZhengY. RepapiE. IotchkovaV. TaylorS. AshleyN. St NobleV. BenamoreR. HoylesR. ClellandC. RastrickJ.M.D. HardmanC.S. AlhamN.K. RigbyR.E. SimmonsA. RehwinkelJ. HoL.P. Multi-modal characterization of monocytes in idiopathic pulmonary fibrosis reveals a primed type I interferon immune phenotype.Front. Immunol.20211262343010.3389/fimmu.2021.62343033746960
    [Google Scholar]
  156. AkinboteA. Beltran-SastreV. CherubiniM. VisoneR. HajalC. CobanogluD. HaaseK. Classical and non-classical fibrosis phenotypes are revealed by lung and cardiac like microvascular tissues on-chip.Front. Physiol.20211273591510.3389/fphys.2021.73591534690810
    [Google Scholar]
  157. GuyerD.R. TiedemanJ. YannuzziL.A. SlakterJ.S. ParkeD. KelleyJ. TangR.A. MarmorM. AbramsG. MillerJ.W. Interferon-associated retinopathy.Arch. Ophthalmol.1993111335035610.1001/archopht.1993.010900300680418447745
    [Google Scholar]
  158. HayasakaS. FujiiM. YamamotoY. NodaS. KuromeH. SasakiM. Retinopathy and subconjunctival haemorrhage in patients with chronic viral hepatitis receiving interferon alfa.Br. J. Ophthalmol.199579215015210.1136/bjo.79.2.1507696235
    [Google Scholar]
  159. KawanoT. ShigehiraM. UtoH. NakamaT. KatoJ. HayashiK. MaruyamaT. KuribayashiT. ChumanT. FutamiT. TsubouchiH. Retinal complications during interferon therapy for chronic hepatitis C.Am. J. Gastroenterol.19969123093138607498
    [Google Scholar]
  160. SuganoS. SuzukiT. WatanabeM. OheK. IshiiK. OkajimaT. Retinal complications and plasma C5a levels during interferon alpha therapy for chronic hepatitis C.Am. J. Gastroenterol.199893122441244410.1111/j.1572‑0241.1998.00701.x9860406
    [Google Scholar]
  161. HejnyC. SternbergP.Jr LawsonD.H. GreinerK. AabergT.M.Jr Retinopathy associated with high-dose interferon alfa-2b therapy.Am. J. Ophthalmol.2001131678278710.1016/S0002‑9394(01)00836‑411384576
    [Google Scholar]
  162. Martinez de AragonJ.S. PulidoJ.S. HaupertC.L. BlodiC.F. NielsenJ.S. JampolL.M. Interferon-β–associated retinopathy.Retin. Cases Brief Rep.200931242610.1097/ICB.0b013e31814b160d25390831
    [Google Scholar]
  163. GaetaniL. MendunoP.S. CometaF. Di GregorioM. SarchielliP. CaginiC. CalabresiP. Di FilippoM. Retinopathy during interferon-β treatment for multiple sclerosis: case report and review of the literature.J. Neurol.2016263342242710.1007/s00415‑015‑7879‑026292794
    [Google Scholar]
  164. SaitoH. EbinumaH. NagataH. InagakiY. SaitoY. WakabayashiK. TakagiT. NakamuraM. KatsuraH. OguchiY. IshiiH. Interferon-associated retinopathy in a uniform regimen of natural interferon-α therapy for chronic hepatitis C.Liver200121319219710.1034/j.1600‑0676.2001.021003192.x11422782
    [Google Scholar]
  165. KimE.T. KimL.H. LeeJ.I. ChinH.S. Retinopathy in hepatitis C patients due to combination therapy with pegylated interferon and ribavirin.Jpn. J. Ophthalmol.200953659860210.1007/s10384‑009‑0738‑820020238
    [Google Scholar]
  166. RazaA. MittalS. SoodG.K. Interferon-associated retinopathy during the treatment of chronic hepatitis C: A systematic review.J. Viral Hepat.201320959359910.1111/jvh.1213523910642
    [Google Scholar]
  167. LanS. CuiZ. YinQ. LiuZ. LiangL. HeH. LiuH. GuoZ. YuY. WuD. Prospective study of clinical characteristics of melanoma patients with retinopathy caused by a high-dose interferon α-2b.Melanoma Res.202131655055410.1097/CMR.000000000000076934524220
    [Google Scholar]
  168. OkuseC. YotsuyanagiH. NagaseY. KobayashiY. YasudaK. KoikeK. IinoS. SuzukiM. ItohF. Risk factors for retinopathy associated with interferon α-2b and ribavirin combination therapy in patients with chronic hepatitis C.World J. Gastroenterol.200612233756375910.3748/wjg.v12.i23.375616773695
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328322183240922153629
Loading
/content/journals/crcep/10.2174/0127724328322183240922153629
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test