Skip to content
2000
image of Interferon Causes Endothelial Injury in Humans

Abstract

Therapy with exogenous interferon and human conditions that feature endogenous interferon upregulation may be associated with endothelial damage that primarily involves small blood vessels. Endothelial injury associated with interferon may display different clinical expression, including thrombotic microangiopathy, Raynaud’s phenomenon, vasculopathy of dermatomyositis and atrophic papulosis, interferon-associated skin angiopathy, systemic capillary leak syndrome, collapsing glomerulopathy, interstitial lung disease, pulmonary hypertension, and retinopathy. Interferon-induced endothelial damage involves complement-mediated injury, although pathogenic mechanisms by which interferon promote abnormal complement activation on endothelial cells are not fully understood. Human interferon-γ (type II interferon) binds to heparan sulfate on the endothelial surface, suggesting that overproduction of interferon-γ may hinder factor H attachment to the same location. Absence of factor H on self surfaces promotes activation of the alternative pathway of complement and complement-mediated endothelial damage. Type I interferon typically induces the generation of antibodies. Type I interferon upregulation may elicit the formation of autoantibodies against factor H. These autoantibodies block factor H binding to endothelial surfaces, abolishing the protective effect of factor H on complement-mediated damage. In addition, interferon induces insulin resistance which is associated with reduced heparan sulfate in the extracellular matrix, including the endothelial surface. Decreased amount of heparan sulfate suppresses factor H attachment, promoting activation of the alternative pathway of complement. Complement blockade with eculizumab (a monoclonal antibody against C5) improves endothelial damage in patients with thrombotic microangiopathy and other situations associated with interferon upregulation and interferon-induced endothelial injury, suggesting that complement-mediated injury is clinically relevant under conditions that feature interferon overproduction.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328322183240922153629
2024-10-07
2025-01-19
Loading full text...

Full text loading...

References

  1. Liu Y. Jesus A.A. Marrero B. Yang D. Ramsey S.E. Sanchez G.A.M. Tenbrock K. Wittkowski H. Jones O.Y. Kuehn H.S. Lee C.R. DiMattia M.A. Cowen E.W. Gonzalez B. Palmer I. DiGiovanna J.J. Biancotto A. Kim H. Tsai W.L. Trier A.M. Huang Y. Stone D.L. Hill S. Kim H.J. St Hilaire C. Gurprasad S. Plass N. Chapelle D. Horkayne-Szakaly I. Foell D. Barysenka A. Candotti F. Holland S.M. Hughes J.D. Mehmet H. Issekutz A.C. Raffeld M. McElwee J. Fontana J.R. Minniti C.P. Moir S. Kastner D.L. Gadina M. Steven A.C. Wingfield P.T. Brooks S.R. Rosenzweig S.D. Fleisher T.A. Deng Z. Boehm M. Paller A.S. Goldbach-Mansky R. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 2014 371 6 507 518 10.1056/NEJMoa1312625 25029335
    [Google Scholar]
  2. Abid Q. Best Rocha A. Larsen C.P. Schulert G. Marsh R. Yasin S. Patty-Resk C. Valentini R.P. Adams M. Baracco R. APOL1-associated collapsing focal segmental glomerulosclerosis in a patient with stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI). Am. J. Kidney Dis. 2020 75 2 287 290 10.1053/j.ajkd.2019.07.010 31601430
    [Google Scholar]
  3. Bursztejn A.C. Briggs T.A. del Toro Duany Y. Anderson B.H. O’Sullivan J. Williams S.G. Bodemer C. Fraitag S. Gebhard F. Leheup B. Lemelle I. Oojageer A. Raffo E. Schmitt E. Rice G.I. Hur S. Crow Y.J. Unusual cutaneous features associated with a heterozygous gain-of-function mutation in IFIH1 : Overlap between Aicardi-Goutières and Singleton-Merten syndromes. Br. J. Dermatol. 2015 173 6 1505 1513 10.1111/bjd.14073 26284909
    [Google Scholar]
  4. Prendiville J.S. Crow Y.J. Blue (or purple) toes: Chilblains or chilblain lupus-like lesions are a manifestation of Aicardi–Goutières syndrome and familial chilblain lupus. J. Am. Acad. Dermatol. 2009 61 4 727 728 10.1016/j.jaad.2009.05.002 19751886
    [Google Scholar]
  5. Jodele S. Medvedovic M. Luebbering N. Chen J. Dandoy C.E. Laskin B.L. Davies S.M. Interferon-complement loop in transplant-associated thrombotic microangiopathy. Blood Adv. 2020 4 6 1166 1177 10.1182/bloodadvances.2020001515 32208488
    [Google Scholar]
  6. Yan B. Freiwald T. Chauss D. Wang L. West E. Mirabelli C. Zhang C.J. Nichols E.M. Malik N. Gregory R. Bantscheff M. Ghidelli-Disse S. Kolev M. Frum T. Spence J.R. Sexton J.Z. Alysandratos K.D. Kotton D.N. Pittaluga S. Bibby J. Niyonzima N. Olson M.R. Kordasti S. Portilla D. Wobus C.E. Laurence A. Lionakis M.S. Kemper C. Afzali B. Kazemian M. SARS-CoV-2 drives JAK1/2-dependent local complement hyperactivation. Sci. Immunol. 2021 6 58 eabg0833 10.1126/sciimmunol.abg0833 33827897
    [Google Scholar]
  7. Wong D. Kea B. Pesich R. Higgs B.W. Zhu W. Brown P. Yao Y. Fiorentino D. Interferon and biologic signatures in dermatomyositis skin: Specificity and heterogeneity across diseases. PLoS One 2012 7 1 e29161 10.1371/journal.pone.0029161 22235269
    [Google Scholar]
  8. Sugano S. Yanagimoto M. Suzuki T. Sato M. Onmura H. Aizawa H. Makino H. Retinal complications with elevated circulating plasma C5a associated with interferon-alpha therapy for chronic active hepatitis C. Am. J. Gastroenterol. 1994 89 11 2054 2056 7942735
    [Google Scholar]
  9. Myhr K.M. Sadallah S. Mollnes T.E. Meri S. Nyland H.I. Schifferli J. Vedeler C.A. Interferon-α2a effects on complement activation and regulation in MS patients. Acta Neurol. Scand. 2000 101 1 30 35 10.1034/j.1600‑0404.2000.00013.x 10660149
    [Google Scholar]
  10. Kaul M. Loos M. Expression of membrane C1q in human monocyte‐derived macrophages is developmentally regulated and enhanced by interferon‐γ. FEBS Lett. 2001 500 1-2 91 98 10.1016/S0014‑5793(01)02592‑3 11434933
    [Google Scholar]
  11. Udsen M. Tagmose C. Garred P. Nissen M.H. Faber C. Complement activation by RPE cells preexposed to TNFα and IFNγ. Exp. Eye Res. 2022 218 108982 10.1016/j.exer.2022.108982 35183540
    [Google Scholar]
  12. Loeven M.A. Rops A.L.W.M.M. Berden J.H.M. Daha M.R. Rabelink T.J. van der Vlag J. The role of heparan sulfate as determining pathogenic factor in complement factor H-associated diseases. Mol. Immunol. 2015 63 2 203 208 10.1016/j.molimm.2014.08.005 25246018
    [Google Scholar]
  13. Lortat-Jacob H. Grimaud J.A. Interferon‐γ binds to heparan sulfate by a cluster of amino acids located in the C‐terminal part of the molecule. FEBS Lett. 1991 280 1 152 154 10.1016/0014‑5793(91)80225‑R 1901275
    [Google Scholar]
  14. Rigothier C. Delmas Y. Roumenina L.T. Contin-Bordes C. Lepreux S. Bridoux F. Goujon J.M. Bachelet T. Touchard G. Frémeaux-Bacchi V. Combe C. Distal angiopathy and atypical hemolytic uremic syndrome: Clinical and functional properties of an anti–factor H IgAλ antibody. Am. J. Kidney Dis. 2015 66 2 331 336 10.1053/j.ajkd.2015.03.039 26015278
    [Google Scholar]
  15. Adeva-Andany M.M. Carneiro-Freire N. Castro-Quintela E. Ameneiros-Rodriguez E. Adeva-Contreras L. Fernandez-Fernandez C. Interferon upregulation associates with insulin resistance in humans. Curr. Diabetes Rev. 2024 20 10.2174/0115733998294022240309105112 38500280
    [Google Scholar]
  16. Beisswenger P.J. Spiro R.G. Human glomerular basement membrane: Chemical alteration in diabetes mellitus. Science 1970 168 3931 596 598 10.1126/science.168.3931.596 5436594
    [Google Scholar]
  17. Laboux T. Maanaoui M. Allain F. Boulanger E. Denys A. Gibier J.B. Glowacki F. Grolaux G. Grunenwald A. Howsam M. Lancel S. Lebas C. Lopez B. Roumenina L. Provôt F. Gnemmi V. Frimat M. Hemolysis is associated with altered heparan sulfate of the endothelial glycocalyx and with local complement activation in thrombotic microangiopathies. Kidney Int. 2023 104 2 353 366 10.1016/j.kint.2023.03.039 37164260
    [Google Scholar]
  18. Jodele S. Zhang K. Zou F. Laskin B. Dandoy C.E. Myers K.C. Lane A. Meller J. Medvedovic M. Chen J. Davies S.M. The genetic fingerprint of susceptibility for transplant-associated thrombotic microangiopathy. Blood 2016 127 8 989 996 10.1182/blood‑2015‑08‑663435 26603840
    [Google Scholar]
  19. Teoh C.W. Riedl Khursigara M. Ortiz-Sandoval C.G. Park J.W. Li J. Bohorquez-Hernandez A. Bruno V. Bowen E.E. Freeman S.A. Robinson L.A. Licht C. The loss of glycocalyx integrity impairs complement factor H binding and contributes to cyclosporine-induced endothelial cell injury. Front. Med. 2023 10 891513 10.3389/fmed.2023.891513 36860338
    [Google Scholar]
  20. Spillmann D. Heparan sulfate: Anchor for viral intruders? Biochimie 2001 83 8 811 817 10.1016/S0300‑9084(01)01290‑1 11530214
    [Google Scholar]
  21. Lo M.W. Amarilla A.A. Lee J.D. Albornoz E.A. Modhiran N. Clark R.J. Ferro V. Chhabra M. Khromykh A.A. Watterson D. Woodruff T.M. SARS‐CoV ‐2 triggers complement activation through interactions with heparan sulfate. Clin. Transl. Immunology 2022 11 8 e1413 10.1002/cti2.1413 35999893
    [Google Scholar]
  22. Buob D. Decambron M. Gnemmi V. Frimat M. Hoffmann M. Azar R. Gheerbrant J.D. Guincestre T. Noël C. Copin M.C. Glowacki F. Collapsing glomerulopathy is common in the setting of thrombotic microangiopathy of the native kidney. Kidney Int. 2016 90 6 1321 1331 10.1016/j.kint.2016.07.021 27650730
    [Google Scholar]
  23. Gougeon F. Singh H.K. Nickeleit V. Renal comorbidities in collapsing variant focal segmental glomerulosclerosis: More than a coincidence? Nephrol. Dial. Transplant. 2022 37 2 311 317 10.1093/ndt/gfaa327 33370435
    [Google Scholar]
  24. Ma M. Mazumder S. Kwak H. Adams M. Gregory M. Case report: Acute thrombotic microangiopathy in a patient with sting-associated vasculopathy with onset in infancy (SAVI). J. Clin. Immunol. 2020 40 8 1111 1115 10.1007/s10875‑020‑00850‑2 32860170
    [Google Scholar]
  25. Sugimoto T. Hajiro T. Fujimoto T. Kojyo N. Horie M. Kashiwagi A. Letter to the Editor: Thrombotic microangiopathy in an adult patient with clinically amyopathic dermatomyositis complicated with interstitial lung disease. Lupus 2007 16 12 1004 1005 10.1177/0961203307082382 18042598
    [Google Scholar]
  26. Kawamoto S. Abe T. Nagahori K. Yoshino A. Fujii A. Ono Y. Ueda Y. Takeda T. Anti-MDA5 antibody-positive dermatomyositis with rapidly progressive interstitial pneumonia presenting with nephrotic syndrome during treatment with corticosteroids and cyclosporine. Intern. Med. 2022 61 13 2007 2012 10.2169/internalmedicine.8311‑21 34776485
    [Google Scholar]
  27. Mouri M. Kanamori T. Tanaka E. Hiratoko K. Okubo M. Inoue M. Morio T. Shimizu M. Nishino I. Okiyama N. Mori M. Hepatic veno-occlusive disease accompanied by thrombotic microangiopathy developed during treatment of juvenile dermatomyositis and macrophage activation syndrome: A case report. Mod. Rheumatol. Case Rep. 2023 7 2 404 409 10.1093/mrcr/rxac086 36416547
    [Google Scholar]
  28. Thaunat O. Delahousse M. Fakhouri F. Martinez F. Stephan J.L. Noël L.H. Karras A. Nephrotic syndrome associated with hemophagocytic syndrome. Kidney Int. 2006 69 10 1892 1898 10.1038/sj.ki.5000352 16557222
    [Google Scholar]
  29. Omoto S. Utsumi T. Matsuno H. Terasawa Y. Iguchi Y. Thrombotic microangiopathy presenting with intestinal involvement following long-term interferon-β1b treatment for multiple sclerosis. Intern. Med. 2018 57 5 741 744 10.2169/internalmedicine.9326‑17 29151517
    [Google Scholar]
  30. Gloude N.J. Dandoy C.E. Davies S.M. Myers K.C. Jordan M.B. Marsh R.A. Kumar A. Bleesing J. Teusink-Cross A. Jodele S. Thinking beyond HLH: Clinical features of patients with concurrent presentation of hemophagocytic lymphohistiocytosis and thrombotic microangiopathy. J. Clin. Immunol. 2020 40 5 699 707 10.1007/s10875‑020‑00789‑4 32447592
    [Google Scholar]
  31. Moore G.W. Vetr H. Binder N.B. ADAMTS13 antibody and inhibitor assays. Methods Mol. Biol. 2023 2663 549 565 10.1007/978‑1‑0716‑3175‑1_36 37204736
    [Google Scholar]
  32. Kim Y.J. A new pathological perspective on thrombotic microangiopathy. Kidney Res. Clin. Pract. 2022 41 5 524 532 10.23876/j.krcp.22.010 35791743
    [Google Scholar]
  33. Honda K. Ando A. Endo M. Shimizu K. Higashihara M. Nitta K. Nihei H. Thrombotic microangiopathy associated with alpha-interferon therapy for chronic myelocytic leukemia. Am. J. Kidney Dis. 1997 30 1 123 130 10.1016/S0272‑6386(97)90575‑8 9214412
    [Google Scholar]
  34. Richardson S.E. Karmali M.A. Becker L.E. Smith C.R. The histopathology of the hemolytic uremic syndrome associated with verocytotoxin-producing Escherichia coli infections. Hum. Pathol. 1988 19 9 1102 1108 10.1016/S0046‑8177(88)80093‑5 3047052
    [Google Scholar]
  35. Kundra A. Wang J.C. Interferon induced thrombotic microangiopathy (TMA): Analysis and concise review. Crit. Rev. Oncol. Hematol. 2017 112 103 112 10.1016/j.critrevonc.2017.02.011 28325251
    [Google Scholar]
  36. Ravandi-Kashani F. Cortes J. Talpaz M. Kantarjian H.M. Thrombotic microangiopathy associated with interferon therapy for patients with chronic myelogenous leukemia. Cancer 1999 85 12 2583 2588 10.1002/(SICI)1097‑0142(19990615)85:12<2583::AID‑CNCR14>3.0.CO;2‑# 10375106
    [Google Scholar]
  37. Al-Zahrani H. Gupta V. Minden M.D. Messner H.A. Lipton J.H. Vascular events associated with alpha interferon therapy. Leuk. Lymphoma 2003 44 3 471 475 10.1080/1042819021000055066 12688317
    [Google Scholar]
  38. Galesic K. Bozic B. Racic I. Scukanec-Spoljar M. Thrombotic microangiopathy associated with α‐interferon therapy for chronic myeloid leukaemia (Case Report). Nephrology 2006 11 1 49 52 10.1111/j.1440‑1797.2006.00524.x 16509932
    [Google Scholar]
  39. Harvey M. Rosenfeld D. Davies D. Hall B.M. Recombinant interferon alpha and hemolytic uremic syndrome: Cause or coincidence? Am. J. Hematol. 1994 46 2 152 153 10.1002/ajh.2830460220 8172186
    [Google Scholar]
  40. Mei S. Feng Y. Cui L. Chen J. Mao Z. Zhao X. Mei C. Qian Y. Thrombotic thrombocytopenic purpura developed after pegylated interferon treatment for hepatitis B infection. BMC Nephrol. 2022 23 1 400 10.1186/s12882‑022‑03034‑9 36513992
    [Google Scholar]
  41. Qin C. Yin D. Liu F. Qiu H. Thrombotic thrombocytopenic purpura in a patient on long-term alpha-interferon therapy for essential thrombocythemia: A case report. BMC Nephrol. 2023 24 1 143 10.1186/s12882‑023‑03200‑7 37221468
    [Google Scholar]
  42. Ubara Y. Hara S. Takedatu H. Katori H. Yamada K. Yoshihara K. Matsushita Y. Yokoyama K. Takemoto F. Yamada A. Takagawa R. Endo Y. Hara M. Koida I. Kumada H. Hemolytic uremic syndrome associated with beta-interferon therapy for chronic hepatitis C. Nephron J. 1998 80 1 107 108 10.1159/000045147 9730725
    [Google Scholar]
  43. Dauvergne M. Buob D. Rafat C. Hennino M.F. Lemoine M. Audard V. Chauveau D. Ribes D. Cornec-Le Gall E. Daugas E. Pillebout E. Vuiblet V. Boffa J.J. Brocheriou I. Buob D. Daniel L. Doucet L. François A. Gnemmi V. Moktefi A. Vuiblet V. French Nephropathology Group Renal diseases secondary to interferon-β treatment: A multicentre clinico-pathological study and systematic literature review. Clin. Kidney J. 2021 14 12 2563 2572 10.1093/ckj/sfab114 34950468
    [Google Scholar]
  44. Taghavi M. Stordeur P. Collart F. Dachy B. Pozdzik A. Mesquita M.D.C.F. Nortier J. Interferon-β1a-induced thrombotic microangiopathy: Possible implication of the alternative pathway of the complement. Kidney Int. Rep. 2022 7 8 1917 1921 10.1016/j.ekir.2022.05.002 35967109
    [Google Scholar]
  45. Plesa C.F. Chitimus D.M. Sirbu C.A. Țânțu M.M. Ghinescu M.C. Anghel D. Ionita-Radu F. Thrombotic thrombocytopenic purpura in interferon beta-1a-treated patient diagnosed with relapsing-remitting multiple sclerosis: A case report. Life 2022 12 1 80 10.3390/life12010080 35054473
    [Google Scholar]
  46. Mrabet S. Dahmane R. Raja B. Fradi A. Aicha N.B. Sahtout W. Azzabi A. Guedri Y. Zellama D. Achour A. Sfar I. Goucha R. Abdessayed N. Mokni M. Thrombotic microangiopathy due to acquired complement factor I deficiency in a male receiving interferon‐beta treatment for multiple sclerosis. Br. J. Clin. Pharmacol. 2023 89 5 1682 1685 10.1111/bcp.15631 36480744
    [Google Scholar]
  47. Rasmussen M. Skullerud K. Bakke S.J. Lebon P. Jahnsen F.L. Cerebral thrombotic microangiopathy and antiphospholipid antibodies in Aicardi-Goutieres syndrome--report of two sisters. Neuropediatrics 2005 36 1 40 44 10.1055/s‑2004‑830532 15776321
    [Google Scholar]
  48. Malgaj Vrečko M. Aleš Rigler A. Večerić-Haler Ž. Coronavirus disease 2019-associated thrombotic microangiopathy: Literature review. Int. J. Mol. Sci. 2022 23 19 11307 10.3390/ijms231911307 36232608
    [Google Scholar]
  49. Volbeda M. Jou-Valencia D. van den Heuvel M.C. Zijlstra J.G. Franssen C.F.M. van der Voort P.H.J. Moser J. van Meurs M. Acute and chronic histopathological findings in renal biopsies in COVID-19. Clin. Exp. Med. 2022 23 4 1003 1014 10.1007/s10238‑022‑00941‑x 36396750
    [Google Scholar]
  50. Yamaguchi M. Mizuno M. Kitamura F. Iwagaitsu S. Nobata H. Kinashi H. Banno S. Asai A. Ishimoto T. Katsuno T. Ito Y. Case report: Thrombotic microangiopathy concomitant with macrophage activation syndrome in systemic lupus erythematosus refractory to conventional treatment successfully treated with eculizumab. Front. Med. 2023 9 1097528 10.3389/fmed.2022.1097528 36698804
    [Google Scholar]
  51. Strufaldi F.L. Menezes Neves P.D.M.M. Dias C.B. Yu L. Woronik V. Cavalcante L.B. Malheiros D.M.A.C. Jorge L.B. Renal thrombotic microangiopathy associated to worse renal prognosis in Lupus Nephritis. J. Nephrol. 2021 34 4 1147 1156 10.1007/s40620‑020‑00938‑3 33570723
    [Google Scholar]
  52. Mutoh T. Ohashi K. Nagai T. Sugiura A. Kudo M. Fujii H. Upfront rituximab therapy for thrombotic thrombocytopenic purpura in systemic lupus erythematosus: A case-based review. Rheumatol. Int. 2022 43 2 373 381 10.1007/s00296‑022‑05182‑5 35962219
    [Google Scholar]
  53. Ono M. Ohashi N. Namikawa A. Katahashi N. Ishigaki S. Tsuji N. Isobe S. Iwakura T. Sakao Y. Tsuji T. Kato A. Fujigaki Y. Shimizu A. Yasuda H. A rare case of lupus nephritis presenting as thrombotic microangiopathy with diffuse pseudotubulization possibly caused by atypical hemolytic uremic syndrome. Intern. Med. 2018 57 11 1617 1623 10.2169/internalmedicine.0228‑17 29434134
    [Google Scholar]
  54. Palli E. Kravvariti E. Tektonidou M.G. Type I interferon signature in primary antiphospholipid syndrome: Clinical and laboratory associations. Front. Immunol. 2019 10 487 10.3389/fimmu.2019.00487 30930907
    [Google Scholar]
  55. Skoczynska M. Crowther M.A. Chowaniec M. Ponikowska M. Chaturvedi S. Legault K. Thrombotic microangiopathy in the course of catastrophic antiphospholipid syndrome successfully treated with eculizumab: Case report and systematic review of the literature. Lupus 2020 29 6 631 639 10.1177/0961203320917460 32252584
    [Google Scholar]
  56. Hughson M.D. Nadasdy T. McCarty G.A. Sholer C. Min K-W. Silva F. Renal thrombotic microangiopathy in patients with systemic lupus erythematosus and the antiphospholipid syndrome. Am. J. Kidney Dis. 1992 20 2 150 158 10.1016/S0272‑6386(12)80543‑9 1496968
    [Google Scholar]
  57. Komisarof J. Forman J. Goldman B. Syposs C. Passero F. Garbade E. A rare case of renal thrombotic microangiopathy and focal segmental glomerulosclerosis secondary to plasma cell leukemia. Case Rep. Hematol. 2023 2023 1 4 10.1155/2023/7803704 36852298
    [Google Scholar]
  58. Catanese L. Link K. Rupprecht H. Microangiopathy in multiple myeloma: A case of carfilzomib-induced secondary thrombotic microangiopathy successfully treated with plasma exchange and complement inhibition. BMC Nephrol. 2023 24 1 179 10.1186/s12882‑023‑03228‑9 37337151
    [Google Scholar]
  59. Moscvin M. Liacos C.I. Chen T. Theodorakakou F. Fotiou D. Hossain S. Rowell S. Leblebjian H. Regan E. Czarnecki P. Bagnoli F. Bolli N. Richardson P. Rennke H.G. Dimopoulos M.A. Kastritis E. Bianchi G. Mutations in the alternative complement pathway in multiple myeloma patients with carfilzomib-induced thrombotic microangiopathy. Blood Cancer J. 2023 13 1 31 10.1038/s41408‑023‑00802‑0 36849497
    [Google Scholar]
  60. Henter J.I. Elinder G. Söder O. Hansson M. Andersson B. Andersson U. Hypercytokinemia in familial hemophagocytic lymphohistiocytosis. Blood 1991 78 11 2918 2922 10.1182/blood.V78.11.2918.2918 1954380
    [Google Scholar]
  61. Akashi K. Hayashi S. Gondo H. Mizuno S. Harada M. Tamura K. Yamasaki K. Shibuya T. Uike N. Okamura T. Miyamoto T. Niho Y. Involvement of interferon‐γ and macrophage colony‐stimulating factor in pathogenesis of haemophagocytic lymphohistiocytosis in adults. Br. J. Haematol. 1994 87 2 243 250 10.1111/j.1365‑2141.1994.tb04905.x 7947264
    [Google Scholar]
  62. Pascarella A. Bracaglia C. Caiello I. Arduini A. Moneta G.M. Rossi M.N. Matteo V. Pardeo M. De Benedetti F. Prencipe G. Monocytes from patients with macrophage activation syndrome and secondary hemophagocytic lymphohistiocytosis are hyperresponsive to interferon gamma. Front. Immunol. 2021 12 663329 10.3389/fimmu.2021.663329 33815425
    [Google Scholar]
  63. Noboa M.E.R. Lopez-Arevalo H. Patel A.R. Arora S. Manadan A.M. Nationwide analysis of adult hospitalizations with hemophagocytic lymphohistiocytosis and systemic lupus erythematosus. Clin. Rheumatol. 2023 42 8 2091 2095 10.1007/s10067‑023‑06594‑9 37081184
    [Google Scholar]
  64. Niizato D. Isoda T. Mitsuiki N. Kaneko S. Tomomasa D. Kamiya T. Takagi M. Imai K. Kajiwara M. Shimizu M. Morio T. Kanegane H. Case report: Optimized ruxolitinib-based therapy in an infant with familial hemophagocytic lymphohistiocytosis type 3. Front. Immunol. 2022 13 977463 10.3389/fimmu.2022.977463 36505485
    [Google Scholar]
  65. Irino K. Jinnouchi F. Nakano S. Sawabe T. A case of hemophagocytic lymphohistiocytosis with a significant response to baricitinib: A first report with review of literature. Clin. Rheumatol. 2023 42 7 1959 1963 10.1007/s10067‑023‑06579‑8 36947281
    [Google Scholar]
  66. Li Y. Li W. Li Z. Ma F. Xu B. A case report: Hemophagocytic lymphohistiocytosis and thrombotic thrombocytopenic purpura in an otherwise healthy woman. Medicine 2023 102 20 e33803 10.1097/MD.0000000000033803 37335695
    [Google Scholar]
  67. Leavitt T.J. Merigan T.C. Freeman J.M. Hemolytic-uremic-like syndrome following polycarboxylate interferon induction. Treatment of Dawson’s inclusion-body encephalitis. Am. J. Dis. Child. 1971 121 1 43 47 10.1001/archpedi.1971.02100120079010 5539813
    [Google Scholar]
  68. Kitano K. Gibo Y. Kamijo A. Furuta K. Oguchi S. Joshita S. Takahashi Y. Ishida F. Matsumoto M. Uemura M. Fujimura Y. Thrombotic thrombocytopenic purpura associated with pegylated-interferon alpha-2a by an ADAMTS13 inhibitor in a patient with chronic hepatitis C. Haematologica 2006 91 8 Suppl. ECR34 16923518
    [Google Scholar]
  69. Crowson A.N. Magro C.M. The role of microvascular injury in the pathogenesis of cutaneous lesions of dermatomyositis. Hum. Pathol. 1996 27 1 15 19 10.1016/S0046‑8177(96)90132‑X 8543305
    [Google Scholar]
  70. Pestronk A. Schmidt R.E. Choksi R. Vascular pathology in dermatomyositis and anatomic relations to myopathology. Muscle Nerve 2010 42 1 53 61 10.1002/mus.21651 20544925
    [Google Scholar]
  71. Jager B.V. Grossman L.A. Dermatomyositis. Arch. Intern. Med. 1944 73 4 271 285 10.1001/archinte.1944.00210160003001
    [Google Scholar]
  72. Day W. Gabriel C. Kelly R.E. Jr Magro C.M. Williams J.V. Werner A. Gifford L. Lapsia S.P. Aguiar C.L. Juvenile dermatomyositis resembling late-stage Degos disease with gastrointestinal perforations successfully treated with combination of cyclophosphamide and rituximab: Case-based review. Rheumatol. Int. 2020 40 11 1883 1890 10.1007/s00296‑019‑04495‑2 31900501
    [Google Scholar]
  73. Tonutti A. Motta F. Ceribelli A. Isailovic N. Selmi C. De Santis M. Anti-MDA5 antibody linking COVID-19, type I interferon, and autoimmunity: A case report and systematic literature review. Front. Immunol. 2022 13 937667 10.3389/fimmu.2022.937667 35833112
    [Google Scholar]
  74. Greenberg S.A. Pinkus J.L. Pinkus G.S. Burleson T. Sanoudou D. Tawil R. Barohn R.J. Saperstein D.S. Briemberg H.R. Ericsson M. Park P. Amato A.A. Interferon‐α/β–mediated innate immune mechanisms in dermatomyositis. Ann. Neurol. 2005 57 5 664 678 10.1002/ana.20464 15852401
    [Google Scholar]
  75. Huard C. Gullà S.V. Bennett D.V. Coyle A.J. Vleugels R.A. Greenberg S.A. Correlation of cutaneous disease activity with type 1 interferon gene signature and interferon β in dermatomyositis. Br. J. Dermatol. 2017 176 5 1224 1230 10.1111/bjd.15006 27564228
    [Google Scholar]
  76. Zhang S.H. Zhao Y. Xie Q.B. Jiang Y. Wu Y.K. Yan B. Aberrant activation of the type I interferon system may contribute to the pathogenesis of anti‐melanoma differentiation‐associated gene 5 dermatomyositis. Br. J. Dermatol. 2019 180 5 1090 1098 10.1111/bjd.16917 29947075
    [Google Scholar]
  77. Ono N. Kai K. Maruyama A. Sakai M. Sadanaga Y. Koarada S. Inoue T. Tada Y. The relationship between type 1 IFN and vasculopathy in anti-MDA5 antibody-positive dermatomyositis patients. Rheumatology 2019 58 5 786 791 10.1093/rheumatology/key386 30541137
    [Google Scholar]
  78. Tabata M.M. Hodgkinson L.M. Wu T.T. Li S. Huard C. Zhao S. Bennett D. Johnson J. Tierney C. He W. Buhlmann J.E. Page K.M. Johnson K. Casciola-Rosen L. Chung L. Sarin K.Y. Fiorentino D. The type I interferon signature reflects multiple phenotypic and activity measures in dermatomyositis. Arthritis Rheumatol. 2023 75 10 1842 1849 10.1002/art.42526 37096447
    [Google Scholar]
  79. Qian J. Li R. Chen Z. Cao Z. Lu L. Fu Q. Type I interferon score is associated with the severity and poor prognosis in anti-MDA5 antibody-positive dermatomyositis patients. Front. Immunol. 2023 14 1151695 10.3389/fimmu.2023.1151695 37006269
    [Google Scholar]
  80. O’Connor K.A. Abbott K.A. Sabin B. Kuroda M. Pachman L.M. MxA gene expression in juvenile dermatomyositis peripheral blood mononuclear cells: Association with muscle involvement. Clin. Immunol. 2006 120 3 319 325 10.1016/j.clim.2006.05.011 16859997
    [Google Scholar]
  81. Liao A.P. Salajegheh M. Nazareno R. Kagan J.C. Jubin R.G. Greenberg S.A. Interferon is associated with type 1 interferon-inducible gene expression in dermatomyositis. Ann. Rheum. Dis. 2011 70 5 831 836 10.1136/ard.2010.139949 21177291
    [Google Scholar]
  82. Moneta G.M. Pires Marafon D. Marasco E. Rosina S. Verardo M. Fiorillo C. Minetti C. Bracci-Laudiero L. Ravelli A. De Benedetti F. Nicolai R. Muscle expression of type I and type II interferons is increased in juvenile dermatomyositis and related to clinical and histologic features. Arthritis Rheumatol. 2019 71 6 1011 1021 10.1002/art.40800 30552836
    [Google Scholar]
  83. Horai Y. Koga T. Fujikawa K. Takatani A. Nishino A. Nakashima Y. Suzuki T. Kawashiri S. Iwamoto N. Ichinose K. Tamai M. Nakamura H. Ida H. Kakugawa T. Sakamoto N. Ishimatsu Y. Mukae H. Hamaguchi Y. Fujimoto M. Kuwana M. Origuchi T. Kohno S. Kawakami A. Serum interferon-α is a useful biomarker in patients with anti-melanoma differentiation-associated gene 5 (MDA5) antibody-positive dermatomyositis. Mod. Rheumatol. 2015 25 1 85 89 10.3109/14397595.2014.900843 24716595
    [Google Scholar]
  84. Dietrich L.L. Bridges A.J. Albertini M.R. Dermatomyositis after interferon alpha treatment. Med. Oncol. 2000 17 1 64 69 10.1007/BF02826219 10713663
    [Google Scholar]
  85. Nishioka A. Tsunoda S. Abe T. Yoshikawa T. Takata M. Kitano M. Matsui K. Nakashima R. Hosono Y. Ohmura K. Mimori T. Sano H. Serum neopterin as well as ferritin, soluble interleukin-2 receptor, KL-6 and anti-MDA5 antibody titer provide markers of the response to therapy in patients with interstitial lung disease complicating anti-MDA5 antibody-positive dermatomyositis. Mod. Rheumatol. 2019 29 5 814 820 10.1080/14397595.2018.1548918 30449228
    [Google Scholar]
  86. Kokuzawa A. Nakamura J. Kamata Y. Sato K. Potential role of type I interferon/IP-10 axis in the pathogenesis of anti-MDA5 antibody-positive dermatomyositis. Clin. Exp. Rheumatol. 2023 41 2 275 284 36622131
    [Google Scholar]
  87. Ishikawa Y. Iwata S. Hanami K. Nawata A. Zhang M. Yamagata K. Hirata S. Sakata K. Todoroki Y. Nakano K. Nakayamada S. Satoh M. Tanaka Y. Relevance of interferon-gamma in pathogenesis of life-threatening rapidly progressive interstitial lung disease in patients with dermatomyositis. Arthritis Res. Ther. 2018 20 1 240 10.1186/s13075‑018‑1737‑2 30367666
    [Google Scholar]
  88. Kissel J.T. Mendell J.R. Rammohan K.W. Microvascular deposition of complement membrane attack complex in dermatomyositis. N. Engl. J. Med. 1986 314 6 329 334 10.1056/NEJM198602063140601 3945256
    [Google Scholar]
  89. Lahoria R. Selcen D. Engel A.G. Microvascular alterations and the role of complement in dermatomyositis. Brain 2016 139 7 1891 1903 10.1093/brain/aww122 27190020
    [Google Scholar]
  90. Theodoridis A. Konstantinidou A. Makrantonaki E. Zouboulis C.C. Malignant and benign forms of atrophic papulosis (Köhlmeier-Degos disease): Systemic involvement determines the prognosis. Br. J. Dermatol. 2014 170 1 110 115 10.1111/bjd.12642 24116834
    [Google Scholar]
  91. Magro C.M. Poe J.C. Kim C. Shapiro L. Nuovo G. Crow M.K. Crow Y.J. Degos Disease. Am. J. Clin. Pathol. 2011 135 4 599 610 10.1309/AJCP66QIMFARLZKI 21411783
    [Google Scholar]
  92. Honda Keith Y. Otsuka A. Kogame T. Ito H. Usui S. Fujimoto M. Jinnouchi K. Hirata M. Sugiura K. Kabashima K. Increased type I interferon expression from T cells in lesional skin of Degos disease. J. Dermatol. 2023 50 5 720 722 10.1111/1346‑8138.16727 36708104
    [Google Scholar]
  93. Zaharia D. Truchot F. Ronger-Savle S. Balme B. Thomas L. Benign form of atrophic papulosis developed at injection sites of pegylated-alpha-interferon: is there a pathophysiological link? Br. J. Dermatol. 2014 170 4 992 994 10.1111/bjd.12773 24641169
    [Google Scholar]
  94. Becker L.L. Ebstein F. Horn D. Zouboulis C.C. Krüger E. Kaindl A.M. Tietze A. Eger A. Kallinich T. Biskup S. Schmid S. Stenzel W. Münzfeld H. Blume-Peytavi U. IFNAR1 Research Group Interferon receptor dysfunction in a child with malignant atrophic papulosis and CNS involvement. Lancet Neurol. 2022 21 8 682 686 10.1016/S1474‑4422(22)00167‑3 35841902
    [Google Scholar]
  95. Huang Y.C. Wang J.D. Lee F.Y. Fu L.S. Pediatric malignant atrophic papulosis. Pediatrics 2018 141 Suppl. 5 S481 S484 10.1542/peds.2016‑4206 29610176
    [Google Scholar]
  96. Clarkson B. Thompson D. Horwith M. Luckey E.H. Cyclical edema and shock due to increased capillary permeability. Am. J. Med. 1960 29 2 193 216 10.1016/0002‑9343(60)90018‑8 13693909
    [Google Scholar]
  97. Wang D.X. Shu X.M. Tian X.L. Chen F. Zu N. Ma L. Wang G.C. Intravenous immunoglobulin therapy in adult patients with polymyositis/dermatomyositis: A systematic literature review. Clin. Rheumatol. 2012 31 5 801 806 10.1007/s10067‑012‑1940‑5 22274797
    [Google Scholar]
  98. Ling S.K. Fong N.M. Chan M.S. A case of recurrent systemic capillary leak syndrome triggered by influenza A infection associated with cardiogenic shock supported by veno-arterial extracorporeal membrane oxygenation. Perfusion 2023 38 2 428 431 10.1177/02676591211057510 34963400
    [Google Scholar]
  99. Younus S. Maqsood H. An unusual presentation of recurrent COVID-19 associated systemic capillary leak syndrome in a patient with multi-system inflammatory syndrome in adults (MIS-A) due to prior COVID-19 infection: Case report and literature review. Ann. Med. Surg. 2022 81 104309 10.1016/j.amsu.2022.104309 35945973
    [Google Scholar]
  100. Atkinson J.P. Waldmann T.A. Stein S.F. Gelfand J.A. Macdonald W.J. Heck L.W. Cohen E.L. Kaplan A.P. Frank M.M. Systemic capillary leak syndrome and monoclonal IgG gammopathy; studies in a sixth patient and a review of the literature. Medicine 1977 56 3 225 239 10.1097/00005792‑197705000‑00004 870792
    [Google Scholar]
  101. Hiraoka E. Matsushima Y. Inomoto-Naribayashi Y. Nakata H. Nakamura A. Kawanami C. Kinoshita Y. Isobe T. Chiba T. Systemic capillary leak syndrome associated with multiple myeloma of IgG kappa type. Intern. Med. 1995 34 12 1220 1224 10.2169/internalmedicine.34.1220 8929655
    [Google Scholar]
  102. Schmidt S. Hertfelder H.J. von Spiegel T. Hering R. Harzheim M. Lassmann H. Deckert-Schlüter M. Schlegel U. Lethal capillary leak syndrome after a single administration of interferon beta-1b. Neurology 1999 53 1 220 222 10.1212/WNL.53.1.220 10408566
    [Google Scholar]
  103. Yamamoto K. Mizuno M. Tsuji T. Amano T. Capillary leak syndrome after interferon treatment for chronic hepatitis C. Arch. Intern. Med. 2002 162 4 481 482 10.1001/archinte.162.4.481 11863486
    [Google Scholar]
  104. Druey K.M. Eisch A.R. Cunningham-Rundles C. Autologous hematopoietic stem cell transplantation in Clarkson disease. J. Allergy Clin. Immunol. Pract. 2023 11 1 347 349 10.1016/j.jaip.2022.10.023 36309188
    [Google Scholar]
  105. Xie Z. Chan E. Yin Y. Ghosh C.C. Wisch L. Nelson C. Young M. Parikh S.M. Druey K.M. Inflammatory markers of the systemic capillary leak syndrome (Clarkson Disease). J. Clin. Cell. Immunol. 2014 5 1000213 25405070
    [Google Scholar]
  106. Magro C.M. Mo J.H. Pecker M.S. Idiopathic systemic capillary leak syndrome, a unique complement and interferon mediated endotheliopathy syndrome: The role of the normal skin biopsy in establishing the diagnosis and elucidating pathogenetic mechanisms. Ann. Diagn. Pathol. 2022 61 152028 10.1016/j.anndiagpath.2022.152028 36055005
    [Google Scholar]
  107. Salat C. Holler E. Schleuning M. Eisele B. Reinhardt B. Kolb H. Pihusch R. Domrath R. Hiller E. Levels of the terminal complement complex, C3a-desArg and C1-inhibitor in adult patients with capillary leak syndrome following bone marrow transplantation. Ann. Hematol. 1995 71 6 271 274 10.1007/BF01697978 8534757
    [Google Scholar]
  108. Creutzig A. Caspary L. Freund M. The Raynaud phenomenon and interferon therapy. Ann. Intern. Med. 1996 125 5 423 10.7326/0003‑4819‑125‑5‑199609010‑00025 8702103
    [Google Scholar]
  109. Husein-ElAhmed H. Callejas-Rubio J.L. Del Olmo R.O. Ríos-Fernandez R. Ortego-Centeno N. Severe Raynaud syndrome induced by adjuvant interferon alfa in metastatic melanoma. Curr. Oncol. 2010 17 4 122 123 10.3747/co.v17i4.519 20697523
    [Google Scholar]
  110. Dai Y. Liu X. Zhao Z. He J. Yin Q. Stimulator of interferon genes-associated vasculopathy with onset in infancy: A systematic review of case reports. Front Pediatr. 2020 8 577918 10.3389/fped.2020.577918 33425809
    [Google Scholar]
  111. Günther C. Berndt N. Wolf C. Lee-Kirsch M.A. Familial chilblain lupus due to a novel mutation in the exonuclease III domain of 3′ repair exonuclease 1 (TREX1). JAMA Dermatol. 2015 151 4 426 431 10.1001/jamadermatol.2014.3438 25517357
    [Google Scholar]
  112. Battesti G. El Khalifa J. Abdelhedi N. Ferre V. Bouscarat F. Picard-Dahan C. Brunet-Possenti F. Collin G. Lavaud J. Le Bozec P. Rousselot M. Tournier A. Lheure C. Couvelard A. Hacein-Bey-Abina S. Abina A.M. Charpentier C. Mignot S. Nicaise P. Descamps D. Deschamps L. Descamps V. New insights in COVID-19–associated chilblains: A comparative study with chilblain lupus erythematosus. J. Am. Acad. Dermatol. 2020 83 4 1219 1222 10.1016/j.jaad.2020.06.1018 32622895
    [Google Scholar]
  113. Blau K. Lehr S. Aschoff R. Al Gburi S. Brück N. Chapsa M. Schnabel A. Abraham S. Jöhrens K. Beissert S. Günther C. Course and outcome of chilblain‐like acral lesions during COVID ‐19 pandemic. J. Eur. Acad. Dermatol. Venereol. 2023 37 1 e29 e31 10.1111/jdv.18582 36149533
    [Google Scholar]
  114. Starkey S.Y. Mar K. Kashetsky N. Lam J.M. Dutz J. Mukovozov I. Chilblain-like lesions coinciding with the SARS-CoV-2 pandemic. Clin. Dermatol. 2023 41 1 223 229 10.1016/j.clindermatol.2022.09.010 36228990
    [Google Scholar]
  115. Aschoff R. Zimmermann N. Beissert S. Günther C. Type I interferon signature in chilblain-like lesions associated with the covid-19 pandemic. Dermatopathology 2020 7 3 57 63 10.3390/dermatopathology7030010 33291622
    [Google Scholar]
  116. Magro C.M. Mulvey J.J. Laurence J. Sanders S. Crowson A.N. Grossman M. Harp J. Nuovo G. The differing pathophysiologies that underlie COVID‐19‐associated perniosis and thrombotic retiform purpura: A case series. Br. J. Dermatol. 2021 184 1 141 150 10.1111/bjd.19415 32779733
    [Google Scholar]
  117. Hubiche T. Cardot-Leccia N. Le Duff F. Seitz-Polski B. Giordana P. Chiaverini C. Giordanengo V. Gonfrier G. Raimondi V. Bausset O. Adjtoutah Z. Garnier M. Burel-Vandenbos F. Dadone-Montaudié B. Fassbender V. Palladini A. Courjon J. Mondain V. Contenti J. Dellamonica J. Leftheriotis G. Passeron T. Clinical, laboratory, and interferon-alpha response characteristics of patients with chilblain-like lesions during the covid-19 pandemic. JAMA Dermatol. 2021 157 2 202 206 10.1001/jamadermatol.2020.4324 33237291
    [Google Scholar]
  118. Frumholtz L. Bouaziz J.D. Battistella M. Hadjadj J. Chocron R. Bengoufa D. Le Buanec H. Barnabei L. Meynier S. Schwartz O. Grzelak L. Smith N. Charbit B. Duffy D. Yatim N. Calugareanu A. Philippe A. Guerin C.L. Joly B. Siguret V. Jaume L. Bachelez H. Bagot M. Rieux-Laucat F. Maylin S. Legoff J. Delaugerre C. Gendron N. Smadja D.M. Cassius C. Saint-Louis CORE (COvid REsearch) Type I interferon response and vascular alteration in chilblain‐like lesions during the COVID‐19 outbreak. Br. J. Dermatol. 2021 185 6 1176 1185 10.1111/bjd.20707 34611893
    [Google Scholar]
  119. Eugster A. Müller D. Gompf A. Reinhardt S. Lindner A. Ashton M. Zimmermann N. Beissert S. Bonifacio E. Günther C. A novel type I interferon primed dendritic cell subpopulation in TREX1 mutant chilblain lupus patients. Front. Immunol. 2022 13 897500 10.3389/fimmu.2022.897500 35911727
    [Google Scholar]
  120. Munoz J. Rodière M. Jeremiah N. Rieux-Laucat F. Oojageer A. Rice G.I. Rozenberg F. Crow Y.J. Bessis D. Stimulator of interferon genes–associated vasculopathy with onset in infancy. JAMA Dermatol. 2015 151 8 872 877 10.1001/jamadermatol.2015.0251 25992765
    [Google Scholar]
  121. Weiss M.A. Daquioag E. Margolin E.G. Pollak V.E. Nephrotic syndrome, progressive irreversible renal failure, and glomerular “collapse”: A new clinicopathologic entity? Am. J. Kidney Dis. 1986 7 1 20 28 10.1016/S0272‑6386(86)80052‑X 3510532
    [Google Scholar]
  122. Sharma Y. Nasr S.H. Larsen C.P. Kemper A. Ormsby A.H. Williamson S.R. COVID-19–Associated Collapsing Focal Segmental Glomerulosclerosis: A Report of 2 Cases. Kidney Med. 2020 2 4 493 497 10.1016/j.xkme.2020.05.005 32775990
    [Google Scholar]
  123. Stein D.F. Ahmed A. Sunkhara V. Khalbuss W. Collapsing focal segmental glomerulosclerosis with recovery of renal function: An uncommon complication of interferon therapy for hepatitis C. Dig. Dis. Sci. 2001 46 3 530 535 10.1023/A:1005638913487 11318527
    [Google Scholar]
  124. Kanungo S. Tamirisa S. Gopalakrishnan R. Salinas-Madrigal L. Bastani B. Collapsing glomerulopathy as a complication of interferon therapy for hepatitis C infection. Int. Urol. Nephrol. 2010 42 1 219 222 10.1007/s11255‑009‑9594‑1 19496019
    [Google Scholar]
  125. Berdichevski R.H. De Carvalho E.M. Edelweiss M.I. Gonçalves L.F. Manfro R.C. Collapsing glomerulopathy after hepatitis C pegylated interferon treatment. Recovery of renal function with high-dose steroid treatment. NDT Plus 2010 3 6 564 566 25949468
    [Google Scholar]
  126. Markowitz G.S. Nasr S.H. Stokes M.B. D’Agati V.D. Treatment with IFN-alpha, -beta, or -gamma is associated with collapsing focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2010 5 4 607 615 10.2215/CJN.07311009 20203164
    [Google Scholar]
  127. Nichols B. Jog P. Lee J.H. Blackler D. Wilmot M. D’Agati V. Markowitz G. Kopp J.B. Alper S.L. Pollak M.R. Friedman D.J. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney Int. 2015 87 2 332 342 10.1038/ki.2014.270 25100047
    [Google Scholar]
  128. Fenaroli P. Rossi G.M. Angelotti M.L. Antonelli G. Volpi S. Grossi A. Delsante M. Lodi L. Landini S. Romagnani P. Vaglio A. Collapsing glomerulopathy as a complication of type I interferon–mediated glomerulopathy in a patient with RNASEH2B-related aicardi-goutières syndrome. Am. J. Kidney Dis. 2021 78 5 750 754 10.1053/j.ajkd.2021.02.330 33872687
    [Google Scholar]
  129. Marques L.P. Pacheco G.G. Rioja L.S. Nunes S.N. Velone S.T. Santos O.R. Can systemic lupus erythematosus be the cause of collapsing glomerulopathy? Lupus 2005 14 10 853 855 10.1191/0961203305lu2162cr 16302682
    [Google Scholar]
  130. Chokshi B. D’Agati V. Bizzocchi L. Johnson B. Mendez B. Jim B. Haemophagocytic lymphohistiocytosis with collapsing lupus podocytopathy as an unusual manifestation of systemic lupus erythematosus with APOL1 double-risk alleles. BMJ Case Rep. 2019 12 1 bcr-2018-227860 10.1136/bcr‑2018‑227860 30642866
    [Google Scholar]
  131. Vanood A. Owen R. Maraskine M. Schreiber A. Pokharel R. Cohen L. Collapsing FSGS with concurrent class 2 and 3 lupus nephritis: A case report and review of the literature. Case Rep. Nephrol. Dial. 2021 11 1 16 25 10.1159/000510840 33708796
    [Google Scholar]
  132. Winston J. Klotman P.E. HIV-associated nephropathy. Mt. Sinai J. Med. 1998 65 1 27 32 9458681
    [Google Scholar]
  133. Gandhi P. Dowling C.S. Satoskar A. Shah A. Successful treatment of COVID-19-associated collapsing glomerulopathy: 22 months of follow-up. Clin. Nephrol. Case Stud. 2023 11 1 110 113 10.5414/CNCS111112 37485073
    [Google Scholar]
  134. Wiggins B. Deliwala S. Banno F. Knight K. Minaudo M. Acute renal failure and nephrotic syndrome secondary to collapsing glomerulopathy associated with hepatitis C. Cureus 2022 14 3 e23175 10.7759/cureus.23175 35444880
    [Google Scholar]
  135. Moudgil A. Nast C.C. Bagga A. Wei L. Nurmamet A. Cohen A.H. Jordan S.C. Toyoda M. Association of parvovirus B19 infection with idiopathic collapsing glomerulopathy. Kidney Int. 2001 59 6 2126 2133 10.1046/j.1523‑1755.2001.00727.x 11380814
    [Google Scholar]
  136. Joshi A. Arora A. Cimbaluk D. Dunea G. Hart P. Acute epstein-barr virus infection-associated collapsing glomerulopathy. Clin. Kidney J. 2012 5 4 320 322 10.1093/ckj/sfs059 25874088
    [Google Scholar]
  137. Grover V. Gaiki M.R. DeVita M.V. Schwimmer J.A. Cytomegalovirus-induced collapsing focal segmental glomerulosclerosis. Clin. Kidney J. 2013 6 1 71 73 10.1093/ckj/sfs097 27818753
    [Google Scholar]
  138. Zhu X. Liu H. Yuan S. Xu X. Dong Z. Liu F. Collapsing glomerulopathy with rare associated coxsackie virus infection: A case report. Exp. Ther. Med. 2016 11 5 1871 1874 10.3892/etm.2016.3161 27168819
    [Google Scholar]
  139. Araújo S.A. Cordeiro T.M. Belisário A.R. Araújo R.F.A. Marinho P.E.S. Kroon E.G. de Oliveira D.B. Teixeira M.M. Simões e Silva A.C. First report of collapsing variant of focal segmental glomerulosclerosis triggered by arbovirus: Dengue and Zika virus infection. Clin. Kidney J. 2019 12 3 355 361 10.1093/ckj/sfy104 31198534
    [Google Scholar]
  140. Coventry S. Shoemaker L.R. Collapsing glomerulopathy in a 16-year-old girl with pulmonary tuberculosis: the role of systemic inflammatory mediators. Pediatr. Dev. Pathol. 2004 7 2 166 170 10.1007/s10024‑003‑3027‑4 15022071
    [Google Scholar]
  141. Amoura A. Moktefi A. Halfon M. Karras A. Rafat C. Gibier J.B. Gleeson P.J. Servais A. Argy N. Maillé P. Belenfant X. Gueutin V. Delpierre A. Tricot L. El Karoui K. Jourde-Chiche N. Houze S. Sahali D. Audard V. Malaria, collapsing glomerulopathy, and focal and segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2020 15 7 964 972 10.2215/CJN.00590120 32444394
    [Google Scholar]
  142. Neves P.D. Bridi R.A. Ramalho J.A. Jorge L.B. Watanabe E.H. Watanabe A. Yu L. Woronik V. Pinheiro R.B. Testagrossa L.A. Cavalcante L.B. Malheiros D.M. Dias C.B. Onuchic L.F. Schistosoma mansoni infection as a trigger to collapsing glomerulopathy in a patient with high-risk APOL1 genotype. PLoS Negl. Trop. Dis. 2020 14 10 e0008582 10.1371/journal.pntd.0008582 33119586
    [Google Scholar]
  143. Kudose S. Santoriello D. Bomback A.S. Sekulic M. Batal I. Stokes M.B. Ghavami I.A. Kim J.S. Marasa M. Xu K. Peleg Y. Barasch J. Canetta P. Rasouly H.M. Gharavi A.G. Markowitz G.S. D’Agati V.D. Longitudinal outcomes of covid-19–associated collapsing glomerulopathy and other podocytopathies. J. Am. Soc. Nephrol. 2021 32 11 2958 2969 10.1681/ASN.2021070931 34670811
    [Google Scholar]
  144. Lohani S. Sadasivam M. Rabb H. Atta M.G. Persistent interferon production by double negative T cells and collapsing focal segmental glomerulosclerosis. Nephron J. 2021 145 1 85 90 10.1159/000510759 33059348
    [Google Scholar]
  145. Papani R. Duarte A.G. Lin Y. Kuo Y.F. Sharma G. Pulmonary arterial hypertension associated with interferon therapy: A population-based study. Multidiscip. Respir. Med. 2017 12 1 1 10.1186/s40248‑016‑0082‑z 28105332
    [Google Scholar]
  146. S F. S S. J T. A H. Pulmonary artery hypertension during interferon-α therapy for chronic myelogenous leukemia. Ann. Hematol. 2001 80 5 308 310 10.1007/s002770100298 11446736
    [Google Scholar]
  147. Tsuchiya H. Kioka H. Ozu K. Ohtani T. Yamaguchi O. Yazaki Y. Yamauchi-Takihara K. Sakata Y. Interferon therapy exacerbated pulmonary hypertension in a patient with hepatitis C virus infection: Pathogenic interplay among multiple risk factors. Intern. Med. 2017 56 9 1061 1065 10.2169/internalmedicine.56.7822 28458313
    [Google Scholar]
  148. Ledinek A.H. Jazbec S.Š. Drinovec I. Rot U. Pulmonary arterial hypertension associated with interferon beta treatment for multiple sclerosis: A case report. Mult. Scler. 2009 15 7 885 886 10.1177/1352458509104593 19465452
    [Google Scholar]
  149. Raza F. Kozitza C. Chybowski A. Goss K.N. Berei T. Runo J. Eldridge M. Chesler N. Interferon-β–induced pulmonary arterial hypertension. JACC. Case Rep. 2021 3 7 1038 1043 10.1016/j.jaccas.2021.02.005 34317680
    [Google Scholar]
  150. Zheng S. Lee P.Y. Wang J. Wang S. Huang Q. Huang Y. Liu Y. Zhou Q. Li T. Interstitial lung disease and psoriasis in a child with aicardi-goutières syndrome. Front. Immunol. 2020 11 985 10.3389/fimmu.2020.00985 32508843
    [Google Scholar]
  151. Wang H. Lv J. He J. Wu W. Zhong Y. Cao S. Cai Y. Wang Q. The prevalence and effects of treatments of rapidly progressive interstitial lung disease of dermatomyositis/polymyositis adults: A systematic review and meta-analysis. Autoimmun. Rev. 2023 22 8 103335 10.1016/j.autrev.2023.103335 37164215
    [Google Scholar]
  152. Wu Y. Li Y. Luo Y. Zhou Y. Liang X. Cheng L. Wu T. Wen J. Tan C. Liu Y. Proteomics: Potential techniques for discovering the pathogenesis of connective tissue diseases-interstitial lung disease. Front. Immunol. 2023 14 1146904 10.3389/fimmu.2023.1146904 37063894
    [Google Scholar]
  153. Lewis C. Sanderson R. Vasilottos N. Zheutlin A. Visovatti S. Pulmonary arterial hypertension in connective tissue diseases beyond systemic sclerosis. Heart Fail. Clin. 2023 19 1 45 54 10.1016/j.hfc.2022.08.016 36435572
    [Google Scholar]
  154. Wang X. Tu Y. Huang B. Li Y. Li Y. Zhang S. Lin Y. Huang L. Zhang W. Luo H. Pulmonary vascular endothelial injury and acute pulmonary hypertension caused by COVID-19: The fundamental cause of refractory hypoxemia? Cardiovasc. Diagn. Ther. 2020 10 4 892 897 10.21037/cdt‑20‑429 32968645
    [Google Scholar]
  155. Fraser E. Denney L. Antanaviciute A. Blirando K. Vuppusetty C. Zheng Y. Repapi E. Iotchkova V. Taylor S. Ashley N. St Noble V. Benamore R. Hoyles R. Clelland C. Rastrick J.M.D. Hardman C.S. Alham N.K. Rigby R.E. Simmons A. Rehwinkel J. Ho L.P. Multi-modal characterization of monocytes in idiopathic pulmonary fibrosis reveals a primed type I interferon immune phenotype. Front. Immunol. 2021 12 623430 10.3389/fimmu.2021.623430 33746960
    [Google Scholar]
  156. Akinbote A. Beltran-Sastre V. Cherubini M. Visone R. Hajal C. Cobanoglu D. Haase K. Classical and non-classical fibrosis phenotypes are revealed by lung and cardiac like microvascular tissues on-chip. Front. Physiol. 2021 12 735915 10.3389/fphys.2021.735915 34690810
    [Google Scholar]
  157. Guyer D.R. Tiedeman J. Yannuzzi L.A. Slakter J.S. Parke D. Kelley J. Tang R.A. Marmor M. Abrams G. Miller J.W. Interferon-associated retinopathy. Arch. Ophthalmol. 1993 111 3 350 356 10.1001/archopht.1993.01090030068041 8447745
    [Google Scholar]
  158. Hayasaka S. Fujii M. Yamamoto Y. Noda S. Kurome H. Sasaki M. Retinopathy and subconjunctival haemorrhage in patients with chronic viral hepatitis receiving interferon alfa. Br. J. Ophthalmol. 1995 79 2 150 152 10.1136/bjo.79.2.150 7696235
    [Google Scholar]
  159. Kawano T. Shigehira M. Uto H. Nakama T. Kato J. Hayashi K. Maruyama T. Kuribayashi T. Chuman T. Futami T. Tsubouchi H. Retinal complications during interferon therapy for chronic hepatitis C. Am. J. Gastroenterol. 1996 91 2 309 313 8607498
    [Google Scholar]
  160. Sugano S. Suzuki T. Watanabe M. Ohe K. Ishii K. Okajima T. Retinal complications and plasma C5a levels during interferon alpha therapy for chronic hepatitis C. Am. J. Gastroenterol. 1998 93 12 2441 2444 10.1111/j.1572‑0241.1998.00701.x 9860406
    [Google Scholar]
  161. Hejny C. Sternberg P. Jr Lawson D.H. Greiner K. Aaberg T.M. Jr Retinopathy associated with high-dose interferon alfa-2b therapy. Am. J. Ophthalmol. 2001 131 6 782 787 10.1016/S0002‑9394(01)00836‑4 11384576
    [Google Scholar]
  162. Martinez de Aragon J.S. Pulido J.S. Haupert C.L. Blodi C.F. Nielsen J.S. Jampol L.M. Interferon-β–associated retinopathy. Retin. Cases Brief Rep. 2009 3 1 24 26 10.1097/ICB.0b013e31814b160d 25390831
    [Google Scholar]
  163. Gaetani L. Menduno P.S. Cometa F. Di Gregorio M. Sarchielli P. Cagini C. Calabresi P. Di Filippo M. Retinopathy during interferon-β treatment for multiple sclerosis: case report and review of the literature. J. Neurol. 2016 263 3 422 427 10.1007/s00415‑015‑7879‑0 26292794
    [Google Scholar]
  164. Saito H. Ebinuma H. Nagata H. Inagaki Y. Saito Y. Wakabayashi K. Takagi T. Nakamura M. Katsura H. Oguchi Y. Ishii H. Interferon‐associated retinopathy in a uniform regimen of natural interferon‐α therapy for chronic hepatitis C. Liver 2001 21 3 192 197 10.1034/j.1600‑0676.2001.021003192.x 11422782
    [Google Scholar]
  165. Kim E.T. Kim L.H. Lee J.I. Chin H.S. Retinopathy in hepatitis C patients due to combination therapy with pegylated interferon and ribavirin. Jpn. J. Ophthalmol. 2009 53 6 598 602 10.1007/s10384‑009‑0738‑8 20020238
    [Google Scholar]
  166. Raza A. Mittal S. Sood G.K. Interferon‐associated retinopathy during the treatment of chronic hepatitis C: A systematic review. J. Viral Hepat. 2013 20 9 593 599 10.1111/jvh.12135 23910642
    [Google Scholar]
  167. Lan S. Cui Z. Yin Q. Liu Z. Liang L. He H. Liu H. Guo Z. Yu Y. Wu D. Prospective study of clinical characteristics of melanoma patients with retinopathy caused by a high-dose interferon α-2b. Melanoma Res. 2021 31 6 550 554 10.1097/CMR.0000000000000769 34524220
    [Google Scholar]
  168. Okuse C. Yotsuyanagi H. Nagase Y. Kobayashi Y. Yasuda K. Koike K. Iino S. Suzuki M. Itoh F. Risk factors for retinopathy associated with interferon α-2b and ribavirin combination therapy in patients with chronic hepatitis C. World J. Gastroenterol. 2006 12 23 3756 3759 10.3748/wjg.v12.i23.3756 16773695
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328322183240922153629
Loading
/content/journals/crcep/10.2174/0127724328322183240922153629
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test