Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

The latex of the xerophytic plant , popularly known as giant milkweed, contains a complex mixture of secondary metabolites and proteins and has attracted the attention of many researchers. Several bioactive laticifer enzymes from . have been studied for their potential applications in the medical, agricultural and food industries. The present work aimed to review the current scientific knowledge on cysteine peptidases from the latex of this plant, highlighting their biochemical properties and possible uses as biotechnological tools. Bibliographic databases (PubMed, Scopus and Web of Science) were searched for scientific works published in the last six decades reporting the purification, biochemical characterization, molecular cloning and potential applications of laticifer cysteine peptidases from . . Since the first works published in the late 1960s on the occurrence of thiol peptidases in this species, five cysteine peptidases (procerain, procerain B, CpCP-1, CpCP-2 and CpCP-3) have been purified and biochemically characterized. The characterized enzymes are members of the subfamily C1A of sulfhydryl proteases, showing the characteristic biochemical and structural features of papain and related proteins. Several biological activities of the purified enzymes have been demonstrated, including the inhibition of phytopathogenic fungi and milk coagulation properties, which may be of practical use. Moreover, pharmacologically active propeptides released from the posttranslational processing of . cysteine peptidase zymogens have been shown to be promising therapeutic agents against cancer cells. Further research is needed to provide a better comprehensive understanding of the mode of action and biosafety of these molecules.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037340497241024095749
2024-12-24
2025-04-29
Loading full text...

Full text loading...

References

  1. RawlingsN.D. BrixK. StockerW. Protease families, evolution and mechanism of action.Proteases: Structure and Function.Springer-VerlagWien201313610.1007/978‑3‑7091‑0885‑7_1
    [Google Scholar]
  2. NaickerD. RhodaC. SundaF. ArowoloA. Unravelling the intricate roles of FAM111A and FAM111B: From protease-mediated cellular processes to disease implications.Int. J. Mol. Sci.2024255284510.3390/ijms2505284538474092
    [Google Scholar]
  3. AmourA. BirdM. ChaudryL. DeadmanJ. HayesD. KayC. General considerations for proteolytic cascades.Biochem. Soc. Trans.2004321151610.1042/bst032001514748703
    [Google Scholar]
  4. CereniusL. SöderhällK. The prophenoloxidase-activating system in invertebrates.Immunol. Rev.2004198111612610.1111/j.0105‑2896.2004.00116.x15199959
    [Google Scholar]
  5. HuaT. RobitailleM. Roberts-ThomsonS.J. MonteithG.R. The intersection between cysteine proteases, Ca2+ signalling and cancer cell apoptosis.Biochim. Biophys. Acta Mol. Cell Res.20231870711953210.1016/j.bbamcr.2023.11953237393017
    [Google Scholar]
  6. KleineB. RossmanithW.G. Hormones and the Endocrine System.SpringerCham201610.1007/978‑3‑319‑15060‑4
    [Google Scholar]
  7. PietrocolaG. NobileG. RindiS. SpezialeP. Staphylococcus aureus manipulates innate immunity through own and host-expressed proteases.Front. Cell. Infect. Microbiol.2017716610.3389/fcimb.2017.0016628529927
    [Google Scholar]
  8. Argüello-GarcíaR. CarreroJ.C. Ortega-PierresM.G. Extracellular cysteine proteases of key intestinal protozoan pathogens—factors linked to virulence and pathogenicity.Int. J. Mol. Sci.202324161285010.3390/ijms24161285037629029
    [Google Scholar]
  9. BrasG. SatalaD. JuszczakM. KuligK. WronowskaE. BednarekA. ZawrotniakM. Rapala-KozikM. Karkowska-KuletaJ. Secreted aspartic proteinases: Key factors in Candida infections and host-pathogen interactions.Int. J. Mol. Sci.2024259477510.3390/ijms2509477538731993
    [Google Scholar]
  10. RawlingsN.D. BarrettA.J. ThomasP.D. HuangX. BatemanA. FinnR.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database.Nucleic Acids Res.201846D1D624D63210.1093/nar/gkx113429145643
    [Google Scholar]
  11. BarrettA.J. RawlingsN.D. Evolutionary lines of cysteine peptidases.BCHM2001382572773410.1515/bchm.2001.382.5.72711517925
    [Google Scholar]
  12. BallsA.K. LineweaverH. ThompsonR.R. Crystalline papain.Science193786223437910.1126/science.86.2234.379.a17784205
    [Google Scholar]
  13. BallsA.K. LineweaverH. Isolation and properties of crystalline papain.J. Biol. Chem.1939130266968610.1016/S0021‑9258(18)73538‑2
    [Google Scholar]
  14. DrenthJ. JansoniusJ.N. KoekoekR. SwenH.M. WolthersB.G. Structure of papain.Nature1968218514592993210.1038/218929a05681232
    [Google Scholar]
  15. KamphuisI.G. KalkK.H. SwarteM.B.A. DrenthJ. Structure of papain refined at 1.65 Å resolution.J. Mol. Biol.1984179223325610.1016/0022‑2836(84)90467‑46502713
    [Google Scholar]
  16. MitchelR.E.J. ChaikenI.M. SmithE.L. The complete amino acid sequence of papain. Additions and corrections.J. Biol. Chem.1970245143485349210.1016/S0021‑9258(18)62954‑05470818
    [Google Scholar]
  17. OancaG. AsadiM. SahaA. RamachandranB. WarshelA. Exploring the catalytic reaction of cysteine proteases.J. Phys. Chem. B202012450113491135610.1021/acs.jpcb.0c0819233264018
    [Google Scholar]
  18. OttoH.H. SchirmeisterT. Cysteine proteases and their inhibitors.Chem. Rev.199797113317210.1021/cr950025u11848867
    [Google Scholar]
  19. VermaS. DixitR. PandeyK.C. Cysteine proteases: Modes of activation and future prospects as pharmacological targets.Front. Pharmacol.2016710710.3389/fphar.2016.0010727199750
    [Google Scholar]
  20. EndressM.E. BruynsP.V. A revised classification of the apocynaceae s.l.Bot. Rev.200066115610.1007/BF02857781
    [Google Scholar]
  21. International plant names index.2024Available from: http://www.ipni.org
  22. Plants of the world online.2024Available from: http://www.plantsoftheworldonline.org
  23. BankoleA.A. ThiemannT. Biological activities, and uses of calotropis latexGums, Resins and Latexes of Plant Origin: Chemistry, Biological Activities and UsesSpringer, Cham.2022769799
    [Google Scholar]
  24. KaurA. BatishD.R. KaurS. ChauhanB.S. An overview of the characteristics and potential of Calotropis procera from botanical, ecological, and economic perspectives.Front. Plant Sci.20211269080610.3389/fpls.2021.69080634220914
    [Google Scholar]
  25. HassanL.M. GalalT.M. FarahatE.A. El-MidanyM.M. The biology of Calotropis procera (Aiton) W.T.Trees (Berl.)201529231132010.1007/s00468‑015‑1158‑7
    [Google Scholar]
  26. RabeloA.C.S. NorattoG. BorghesiJ. Souza FonsecaA. Cantanhede FilhoA.J. Costa CarneiroF.J. Abreu-SilvaA.L. MiglinoM.A. Calotropis procera (Aiton) Dryand (Apocynaceae): State of the art of its uses and applications.Curr. Top. Med. Chem.202323232197221310.2174/156802662366623060616255637282633
    [Google Scholar]
  27. JucáT.L. RamosM.V. MorenoF.B.M.B. Viana de MatosM.P. Marinho-FilhoJ.D.B. MoreiraR.A. Monteiro-MoreiraA.C.O. Insights on the phytochemical profile (cyclopeptides) and biological activities of Calotropis procera latex organic fractions.ScientificWorldJournal20132013161545410.1155/2013/61545424348174
    [Google Scholar]
  28. DomsallaA. MelzigM. Occurrence and properties of proteases in plant latices.Planta Med.200874769971110.1055/s‑2008‑107453018496785
    [Google Scholar]
  29. FreitasC.D.T. OliveiraJ.S. MirandaM.R.A. MacedoN.M.R. SalesM.P. Villas-BoasL.A. RamosM.V. Enzymatic activities and protein profile of latex from Calotropis procera. Plant Physiol. Biochem.20074510-1178178910.1016/j.plaphy.2007.07.02017888673
    [Google Scholar]
  30. Teixeira de FreitasC.D. Sousa NogueiraF.C. VasconcelosI.M. Abreu OliveiraJ.T. DomontG.B. RamosM.V. Osmotin purified from the latex of Calotropis procera: Biochemical characterization, biological activity and role in plant defense.Plant Physiol. Biochem.201149773874310.1016/j.plaphy.2011.01.02721334906
    [Google Scholar]
  31. FreitasC.D.T. FreitasD.C. CruzW.T. PorfírioC.T.M.N. SilvaM.Z.R. OliveiraJ.S. CarvalhoC.P.S. RamosM.V. Identification and characterization of two germin-like proteins with oxalate oxidase activity from Calotropis procera latex.Int. J. Biol. Macromol.2017105Pt 11051106110.1016/j.ijbiomac.2017.07.13328754622
    [Google Scholar]
  32. VianaC.A. RamosM.V. FilhoJ.D.B.M. LotufoL.V.C. FigueiredoI.S.T. de OliveiraJ.S. MastroeniP. Lima-FilhoJ.V. AlencarN.M.N. Cytotoxicity against tumor cell lines and anti-inflammatory properties of chitinases from Calotropis procera latex.Naunyn Schmiedebergs Arch. Pharmacol.2017390101005101310.1007/s00210‑017‑1397‑928698893
    [Google Scholar]
  33. MuthuS. GopalV. AL-YounisZ.K. AltemimiA.B. PerumalP. LakshmikanthanM. KrishnanK. NajmM.A.A. GiuffrèA.M. GovindanL. Extraction, purification, and investigation of the antibacterial potential of lysozyme isolated from the latex of Calotropis procera.Eur. Food Res. Technol.202425051401141610.1007/s00217‑024‑04467‑2
    [Google Scholar]
  34. PantR. SrivastavaS.C. Proteolytic activity of some plant latex (effect of time variation).Curr. Sci.1966354243
    [Google Scholar]
  35. AworhO.C. NakaiS. Extraction of milk clotting enzyme from sodom apple (Calotropis procera).J. Food Sci.19865161569157010.1111/j.1365‑2621.1986.tb13865.x
    [Google Scholar]
  36. AworhO.C. MullerH.G. Cheese-making properties of vegetable rennet from sodom apple (Calotropis procera).Food Chem.1987261717910.1016/0308‑8146(87)90168‑3
    [Google Scholar]
  37. AworhO.C. NakaiS. Technical note: Separation of sodom apple proteinases by gel filtration.Int. J. Food Sci. Technol.198823441942310.1111/j.1365‑2621.1988.tb00598.x
    [Google Scholar]
  38. AworhO.C. KascheV. ApampaO.O. Purification and some properties of sodom-apple latex proteinases.Food Chem.199450435936210.1016/0308‑8146(94)90204‑6
    [Google Scholar]
  39. SouzaD.P. FreitasC.D.T. PereiraD.A. NogueiraF.C. SilvaF.D.A. SalasC.E. RamosM.V. Laticifer proteins play a defensive role against hemibiotrophic and necrotrophic phytopathogens.Planta2011234118319310.1007/s00425‑011‑1392‑121394468
    [Google Scholar]
  40. BadgujarS.B. MahajanR.T. Comparison of cysteine proteases of four laticiferous plants and characterization of Euphorbia Nivulia Buch.-Ham. Latex glycosylated cysteine peptidase.Indian J. Nat. Prod. Resour.201232152160
    [Google Scholar]
  41. Kumar DubeyV. JagannadhamM.V. Procerain, a stable cysteine protease from the latex of Calotropis procera.Phytochemistry20036271057107110.1016/S0031‑9422(02)00676‑312591258
    [Google Scholar]
  42. DubeyV.K. JagannadhamM.V. Differences in the unfolding of procerain induced by pH, guanidine hydrochloride, urea, and temperature.Biochemistry20034242122871229710.1021/bi035047m14567690
    [Google Scholar]
  43. DubeyV. ShahA. JagannadhamM. KayasthaA. Effect of organic solvents on the molten globule state of procerain: Beta-sheet to alpha-helix switchover in presence of trifluoroethanol.Protein Pept. Lett.200613654554710.2174/09298660677714582316842106
    [Google Scholar]
  44. SinghA.N. ShuklaA.K. JagannadhamM.V. DubeyV.K. Purification of a novel cysteine protease, procerain B, from Calotropis procera with distinct characteristics compared to procerain.Process Biochem.201045339940610.1016/j.procbio.2009.10.014
    [Google Scholar]
  45. SinghA.N. DubeyV.K. Exploring applications of procerain b, a novel protease from Calotropis procera, and characterization by N-terminal sequencing as well as peptide mass fingerprinting.Appl. Biochem. Biotechnol.2011164557358010.1007/s12010‑011‑9158‑621264687
    [Google Scholar]
  46. RamosM.V. AraújoE.S. JucáT.L. Monteiro-MoreiraA.C.O. VasconcelosI.M. MoreiraR.A. VianaC.A. BeltraminiL.M. PereiraD.A. MorenoF.B. New insights into the complex mixture of latex cysteine peptidases in Calotropis procera.Int. J. Biol. Macromol.20135821121910.1016/j.ijbiomac.2013.04.00123583491
    [Google Scholar]
  47. FreitasC.D.T. SilvaR.O. RamosM.V. PorfírioC.T.M.N. FariasD.F. SousaJ.S. OliveiraJ.P.B. SouzaP.F.N. DiasL.P. GrangeiroT.B. Identification, characterization, and antifungal activity of cysteine peptidases from Calotropis procera latex.Phytochemistry202016911216310.1016/j.phytochem.2019.11216331605904
    [Google Scholar]
  48. SrivastavaG. GaurN. MakdeR.D. JamdarS.N. Autoproteolysis of Procerain and Procerain B mediated by structural changes.Phytochemistry202219611308610.1016/j.phytochem.2022.11308635091212
    [Google Scholar]
  49. SinghA.N. YadavP. DubeyV.K. cDNA cloning and molecular modeling of procerain B, a novel cysteine endopeptidase isolated from Calotropis procera.PLoS One201383e5980610.1371/journal.pone.005980623527269
    [Google Scholar]
  50. NandanaV. SinghS. SinghA.N. DubeyV.K. Procerain B, a cysteine protease from Calotropis procera, requires N-terminus pro-region for activity: cDNA cloning and expression with pro-sequence.Protein Expr. Purif.2014103162210.1016/j.pep.2014.08.00325173974
    [Google Scholar]
  51. VernetT. KhouriH.E. LaflammeP. TessierD.C. MusilR. Gour-SalinB.J. StorerA.C. ThomasD.Y. Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing.J. Biol. Chem.199126632214512145710.1016/S0021‑9258(18)54660‑31939177
    [Google Scholar]
  52. NieuwenhuizenN.J. MaddumageR. TsangG.K. FraserL.G. CooneyJ.M. De SilvaH.N. GreenS. RichardsonK.A. AtkinsonR.G. Mapping, complementation, and targets of the cysteine protease actinidin in kiwifruit.Plant Physiol.2012158137638810.1104/pp.111.18798922039217
    [Google Scholar]
  53. OngW.D. VooL.Y.C. KumarV.S. De novo assembly, characterization and functional annotation of pineapple fruit transcriptome through massively parallel sequencing.PLoS One2012710e4693710.1371/journal.pone.004693723091603
    [Google Scholar]
  54. BiswasS. ChakrabartiC. KunduS. JagannadhamM.V. DattaguptaJ.K. Proposed amino acid sequence and the 1.63 Å X-ray crystal structure of a plant cysteine protease, ervatamin B: Some insights into the structural basis of its stability and substrate specificity.Proteins200351448949710.1002/prot.1031912784208
    [Google Scholar]
  55. The genome of a lepidopteran model insect, the silkworm Bombyx mori.Insect Biochem. Mol. Biol.200838121036104510.1016/j.ibmb.2008.11.00419121390
    [Google Scholar]
  56. WijffelsG.L. PanaccioM. SalvatoreL. WilsonL. WalkerI.D. SpithillT.W. The secreted cathepsin L-like proteinases of the trematode, Fasciola hepatica, contain 3-hydroxyproline residues.Biochem. J.1994299378179010.1042/bj29907818192668
    [Google Scholar]
  57. ChurchD.M. GoodstadtL. HillierL.W. ZodyM.C. GoldsteinS. SheX. BultC.J. AgarwalaR. CherryJ.L. DiCuccioM. HlavinaW. KapustinY. MericP. MaglottD. BirtleZ. MarquesA.C. GravesT. ZhouS. TeagueB. PotamousisK. ChurasC. PlaceM. HerschlebJ. RunnheimR. ForrestD. Amos-LandgrafJ. SchwartzD.C. ChengZ. Lindblad-TohK. EichlerE.E. PontingC.P. Lineage-specific biology revealed by a finished genome assembly of the mouse.PLoS Biol.200975e100011210.1371/journal.pbio.100011219468303
    [Google Scholar]
  58. SantamaríaI. VelascoG. PendásA.M. PazA. López-OtínC. Molecular cloning and structural and functional characterization of human cathepsin F, a new cysteine proteinase of the papain family with a long propeptide domain.J. Biol. Chem.199927420138001380910.1074/jbc.274.20.1380010318784
    [Google Scholar]
  59. BondC.S. SchüttelkopfA.W. ALINE : A WYSIWYG protein-sequence alignment editor for publication-quality alignments.Acta Crystallogr. D Biol. Crystallogr.200965551051210.1107/S090744490900783519390156
    [Google Scholar]
  60. KwonC.W. ParkK.M. KangB.C. KweonD.H. KimM.D. ShinS.W. JeY.H. ChangP.S. Cysteine protease profiles of the medicinal plant Calotropis procera R. Br. revealed by de novo transcriptome analysis.PLoS One2015103e011932810.1371/journal.pone.011932825786229
    [Google Scholar]
  61. García-LorenzoM. SjödinA. JanssonS. FunkC. Protease gene families in Populus and Arabidopsis.BMC Plant Biol.2006613010.1186/1471‑2229‑6‑3017181860
    [Google Scholar]
  62. GhoshR. ChakrabortyS. ChakrabartiC. DattaguptaJ.K. BiswasS. Structural insights into the substrate specificity and activity of ervatamins, the papain-like cysteine proteases from a tropical plant, Ervatamia coronaria.FEBS J.2008275342143410.1111/j.1742‑4658.2007.06211.x18167146
    [Google Scholar]
  63. TeufelF. Almagro ArmenterosJ.J. JohansenA.R. GíslasonM.H. PihlS.I. TsirigosK.D. WintherO. BrunakS. von HeijneG. NielsenH. SignalP 6.0 predicts all five types of signal peptides using protein language models.Nat. Biotechnol.20224071023102510.1038/s41587‑021‑01156‑334980915
    [Google Scholar]
  64. Marchler-BauerA. BryantS. H. CD-Search: Protein Domain Annotations on the Fly.Nucleic Acids Res.200432Web Server issueW327W33110.1093/nar/gkh454
    [Google Scholar]
  65. LiuW. XieY. MaJ. LuoX. NieP. ZuoZ. LahrmannU. ZhaoQ. ZhengY. ZhaoY. XueY. RenJ. IBS: An illustrator for the presentation and visualization of biological sequences.Bioinformatics201531203359336110.1093/bioinformatics/btv36226069263
    [Google Scholar]
  66. Soares de OliveiraJ. Pereira BezerraD. Teixeira de FreitasC.D. Delano Barreto Marinho FilhoJ. Odorico de MoraesM. PessoaC. Costa-LotufoL.V. RamosM.V. In vitro cytotoxicity against different human cancer cell lines of laticifer proteins of Calotropis procera (Ait.) R. Br.Toxicol. In Vitro20072181563157310.1016/j.tiv.2007.05.00717604595
    [Google Scholar]
  67. RamosM.V. BandeiraG.P. FreitasC.D.T. NogueiraN.A.P. AlencarN.M.N. SousaP.A.S. CarvalhoA.F.U. Latex constituents from Calotropis procera (R. Br.) display toxicity upon egg hatching and larvae of Aedes aegypti (Linn.).Mem. Inst. Oswaldo Cruz2006101550351010.1590/S0074‑0276200600050000417072453
    [Google Scholar]
  68. RamosM.V. PereiraD.A. SouzaD.P. AraújoE.S. FreitasC.D.T. CavalheiroM.G. MatosM.P.V. CarvalhoA.F.U. Potential of laticifer fluids for inhibiting Aedes aegypti larval development: Evidence for the involvement of proteolytic activity.Mem. Inst. Oswaldo Cruz2009104680581210.1590/S0074‑0276200900060000119876551
    [Google Scholar]
  69. LopézL.M.I. VianaC.A. ErrastiM.E. GarroM.L. MarteganiJ.E. MazzilliG.A. FreitasC.D.T. AraújoÍ.M.S. da SilvaR.O. RamosM.V. Latex peptidases of Calotropis procera for dehairing of leather as an alternative to environmentally toxic sodium sulfide treatment.Bioprocess Biosyst. Eng.20174091391139810.1007/s00449‑017‑1796‑928624929
    [Google Scholar]
  70. FreitasC.D.T. LeiteH.B. OliveiraJ.P.B. AmaralJ.L. EgitoA.S. Vairo-CavalliS. LoboM.D.P. Monteiro-MoreiraA.C.O. RamosM.V. Insights into milk-clotting activity of latex peptidases from Calotropis procera and Cryptostegia grandiflora.Food Res. Int.201687505910.1016/j.foodres.2016.06.02029606248
    [Google Scholar]
  71. RawdkuenS. JaimakreuM. BenjakulS. Physicochemical properties and tenderness of meat samples using proteolytic extract from Calotropis procera latex.Food Chem.2013136290991610.1016/j.foodchem.2012.08.07723122144
    [Google Scholar]
  72. OliveiraJ.P.B. CandrevaA.M. RizzoG. RamosM.V. OliveiraJ.S. OliveiraH.D. AryM.B. DocenaG. FreitasC.D.T. Allergenicity reduction of cow’s milk proteins using latex peptidases.Food Chem.201928424525310.1016/j.foodchem.2019.01.12330744853
    [Google Scholar]
  73. FreitasD.C. ZambelliR.A. RamosM.V. OliveiraJ.P.B. SouzaP.F.N. SantosG.B.M. NaganoC.S. BezerraL.P. SilvaA.F.B. OliveiraJ.S. FreitasC.D.T. Latex peptidases produce peptides capable of delaying fungal growth in bread.Food Chem.2022373Pt A13141010.1016/j.foodchem.2021.13141034710691
    [Google Scholar]
  74. SinghA.N. SinghS. SutharN. DubeyV.K. Glutaraldehyde-activated chitosan matrix for immobilization of a novel cysteine protease, procerain B.J. Agric. Food Chem.201159116256626210.1021/jf200472x21528916
    [Google Scholar]
  75. SinghA.N. SinghS. DubeyV.K. Immobilization of procerain B, a cysteine endopeptidase, on amberlite MB-150 beads.PLoS One201386e6600010.1371/journal.pone.006600023776589
    [Google Scholar]
  76. SilvaM.Z.R. OliveiraJ.P.B. RamosM.V. FariasD.F. de SáC.A. RibeiroJ.A.C. SilvaA.F.B. de SousaJ.S. ZambelliR.A. da SilvaA.C. FurtadoG.P. GrangeiroT.B. VasconcelosM.S. SilveiraS.R. FreitasC.D.T. Biotechnological potential of a cysteine protease (CpCP3) from Calotropis procera latex for cheesemaking.Food Chem.202030712557410.1016/j.foodchem.2019.12557431648178
    [Google Scholar]
  77. OliveiraJ.P.B. NascimentoY.A.P. AmorimK.P.S. GonçalvesL.R.B. FreitasL.B.N. SilvaA.F.B. FerreiraO.P. RamosM.V. SouzaP.F.N. OliveiraJ.S. NetoN.A.S. MendonçaL.G. ZambelliR.A. FreitasC.D.T. Use of Calotropis procera cysteine peptidases (CpCPs) immobilized on glyoxyl-agarose for cheesemaking.Food Chem.202340313431910.1016/j.foodchem.2022.13431936182849
    [Google Scholar]
  78. GiangriecoI. CiardielloM.A. TamburriniM. TuppoL. MariA. AlessandriC. Plant and arthropod IgE-binding papain-like cysteine proteases: Multiple contributions to allergenicity.Foods202413579010.3390/foods1305079038472904
    [Google Scholar]
  79. PastorelloE.A. ContiA. PravettoniV. FarioliL. RivoltaF. AnsaloniR. IspanoM. IncorvaiaC. GiuffridaM.G. OrtolaniC. Identification of actinidin as the major allergen of kiwi fruit.J. Allergy Clin. Immunol.1998101453153710.1016/S0091‑6749(98)70360‑49564807
    [Google Scholar]
  80. KwonC.W. YangH. YeoS. ParkK.M. JeongA.J. LeeK.W. YeS.K. ChangP.S. Molecular cloning and anti-invasive activity of cathepsin L propeptide-like protein from Calotropis procera R. Br. against cancer cells.J. Enzyme Inhib. Med. Chem.201833165766410.1080/14756366.2018.144460929560748
    [Google Scholar]
  81. KwonC.W. YeoS. ChangP.S. Characterization and molecular docking study of cathepsin L inhibitory peptides (SnuCalCpIs) from Calotropis procera R. Br.Sci. Rep.2022121582510.1038/s41598‑022‑09854‑x35388095
    [Google Scholar]
  82. OlsonO.C. JoyceJ.A. Cysteine cathepsin proteases: Regulators of cancer progression and therapeutic response.Nat. Rev. Cancer2015151271272910.1038/nrc402726597527
    [Google Scholar]
  83. AichP. BiswasS. Highly conserved arg residue of ERFNIN motif of pro-domain is important for pH-induced zymogen activation process in cysteine cathepsins K and L.Cell Biochem. Biophys.2018761-221922910.1007/s12013‑017‑0838‑x29322360
    [Google Scholar]
  84. CrooksG.E. HonG. ChandoniaJ.M. BrennerS.E. WebLogo: A sequence logo generator.Genome Res.20041461188119010.1101/gr.84900415173120
    [Google Scholar]
  85. TurkB. TurkV. TurkD. Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors.Biol. Chem.19973783-41411509165064
    [Google Scholar]
  86. EnglundP.T. KingT.P. CraigL.C. WaltiA. Studies on ficin. I. Its isolation and characterization.Biochemistry19687116317510.1021/bi00841a0215758541
    [Google Scholar]
  87. McDowallM.A. Anionic proteinase from Actinidia chinensis. Preparation and properties of the crystalline enzyme.Eur. J. Biochem.197014221422110.1111/j.1432‑1033.1970.tb00280.x5506167
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037340497241024095749
Loading
/content/journals/cpps/10.2174/0113892037340497241024095749
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test