Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Introduction

Clinic infections caused by various microorganisms are a public health concern. The rise of new strains resistant to traditional antibiotics has exacerbated the problem. Thus, the search for new antimicrobial molecules remains highly relevant.

Methods

The current study purified, characterized, and assessed the antimicrobial activity of a papain inhibitor from L. seeds.

Results

The inhibitor was purified by heating the crude extract at 80°C for 30 min, followed by ion exchange chromatography on a DEAE cellulose column. The purification index was 9-fold, yielding 2.3%. SDS-PAGE and size exclusion chromatography revealed that the protease inhibitor (PI) is a 15.9 kDa monomeric protein. The inhibition kinetics showed that PI is a competitive inhibitor specific to papain (Ki = 1.02 x 10-4 M). PI remained active even after heating at 100°C for 120 min and at pH conditions varying from 2.0 to 10.0. Even after 60 min, PI was resistant to papain proteolysis. PI exhibited antimicrobial activity against and .

Conclusion

Here, we show that PI is a highly stable type-1 cystatin with the potential to combat infections caused by and . Additional investigations into PI's structural aspects and mechanism of action, as well as safety assessments, are essential prerequisites for its potential application as a novel therapeutic intervention.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037339021241017084509
2024-12-24
2025-05-18
Loading full text...

Full text loading...

References

  1. HutchingsM.I. TrumanA.W. WilkinsonB. Antibiotics: Past, present and future.Curr. Opin. Microbiol.201951728010.1016/j.mib.2019.10.00831733401
    [Google Scholar]
  2. World Health OrganizationGlobal Tuberculosis Report 2022.2022Available From: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022
  3. TóthR. NosekJ. Mora-MontesH.M. GabaldonT. BlissJ.M. NosanchukJ.D. TurnerS.A. ButlerG. VágvölgyiC. GácserA. Candida parapsilosis: From genes to the bedside.Clin. Microbiol. Rev.2019322e00111-1810.1128/CMR.00111‑1830814115
    [Google Scholar]
  4. BarbosaF. PintoE. KijjoaA. PintoM. SousaE. Targeting antimicrobial drug resistance with marine natural products.Int. J. Antimicrob. Agents202056110600510.1016/j.ijantimicag.2020.10600532387480
    [Google Scholar]
  5. de VriesD.J. BeartP.M. Fishing for drugs from the sea: Status and strategies.Trends Pharmacol. Sci.199516827527910.1016/S0165‑6147(00)89045‑87482989
    [Google Scholar]
  6. NourbakhshF. LotfalizadehM. BadpeymaM. ShakeriA. SoheiliV. From plants to antimicrobials: Natural products against bacterial membranes.Phytother. Res.2022361335210.1002/ptr.727534532918
    [Google Scholar]
  7. CotabarrenJ. LufranoD. ParisiM.G. ObregónW.D. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: A systematic review.Plant Sci.202029211039810.1016/j.plantsci.2019.11039832005400
    [Google Scholar]
  8. MaratheK.R. PatilR.H. VishwakarmaK.S. ChaudhariA.B. MaheshwariV.L. Protease inhibitors and their applications: An overview.Studies in Natural Products ChemistryAmsterdamElsevier2019622114210.1016/B978‑0‑444‑64185‑4.00006‑X
    [Google Scholar]
  9. AnandA. DivyaN. KottiP. An updated review of Terminalia catappa. Pharmacogn. Rev.2015918939810.4103/0973‑7847.16210326392705
    [Google Scholar]
  10. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3942051
    [Google Scholar]
  11. LaemmliU.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature1970227525968068510.1038/227680a05432063
    [Google Scholar]
  12. ErlangerB.F. KokowskyN. CohenW. The preparation and properties of two new chromogenic substrates of trypsin.Arch. Biochem. Biophys.196195227127810.1016/0003‑9861(61)90145‑X13890599
    [Google Scholar]
  13. AbeM. AbeK. KurodaM. AraiS. Corn Kernel cysteine proteinase inhibitor as a novel cystatin superfamily member of plant origin.Eur. J. Biochem.1992209393393710.1111/j.1432‑1033.1992.tb17365.x1425699
    [Google Scholar]
  14. DixonM. The determination of enzyme inhibitor constants.Biochem. J.195355117017110.1042/bj055017013093635
    [Google Scholar]
  15. Clinical and Laboratory Standards InstituteClinical and Laboratory Standards Institute, M27-A3: Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard—third edition.2008Available From: https://clsi.org/media/1461/m27a3_sample.pdf
  16. AguiarT.K.B. NetoN.A.S. SilvaR.R.S. FreitasC.D.T. MesquitaF.P. AlencarL.M.R. Santos-OliveiraR. GoldmanG.H. SouzaP.F.N. Behind the Curtain: In silico and in vitro experiments brought to light new insights into the anticryptococcal action of synthetic peptides.Antibiotics (Basel)202312115310.3390/antibiotics1201015336671354
    [Google Scholar]
  17. PereraH. JayawardanaB. RajapakseS. Heat stable protease inhibitors from Sesbania grandiflora and Terminalia catappa. Br. J. Pharm. Res.20161141910.9734/BJPR/2016/25841
    [Google Scholar]
  18. JemelI. KrayemN. Ben BachaA. AlonaziM. HorchaniH. GhamguiH. Novel stable protease inhibitor from Phoenix dactylifera (L.) flowers with antimicrobial and antitumoral activities.ACS Omega2024911acsomega.3c1028710.1021/acsomega.3c1028738524442
    [Google Scholar]
  19. CotabarrenJ. ClaverS. PayrolJ.A. Garcia-PardoJ. ObregónW.D. Purification and characterization of a novel thermostable papain inhibitor from Moringa oleifera with antimicrobial and anticoagulant properties.Pharmaceutics202113451210.3390/pharmaceutics1304051233917878
    [Google Scholar]
  20. KhanA.A. FaziliA.B.A. BhatS.A. BhatW.F. AsgharM.N. KhanM.S. BanoB. Purification, characterization and studies of a novel cysteine protease inhibitor from Juglans regia: Implications as a potential biopesticide.J. King Saud Univ. Sci.202234310182910.1016/j.jksus.2022.101829
    [Google Scholar]
  21. MeloI.R.S. DiasL.P. AraújoN.M.S. VasconcelosI.M. MartinsT.F. de MoraisG.A. GonçalvesJ.F.C. NaganoC.S. CarneiroR.F. OliveiraJ.T.A. ClCPI, a cysteine protease inhibitor purified from Cassia leiandra seeds has antifungal activity against Candida tropicalis by inducing disruption of the cell surface.Int. J. Biol. Macromol.20191331115112410.1016/j.ijbiomac.2019.04.17431034905
    [Google Scholar]
  22. BalbinottN. MargisR. Review: Unraveling the origin of the structural and functional diversity of plant cystatins.Plant Sci.202232111134210.1016/j.plantsci.2022.11134235696902
    [Google Scholar]
  23. RuanJ. YanJ. ChenH. JianpingC. SunW. ZhaoG. Purification and properties of the chymotrypsin inhibitor from wild emmer wheat (Triticum dicoccoides) of Israel and its toxic effect on beet armyworm, Spodoptera exigua. Pestic. Biochem. Physiol.201714214114710.1016/j.pestbp.2017.06.01329107237
    [Google Scholar]
  24. Abd El-latifA.O. Isolation and purification of a papain inhibitor from Egyptian genotypes of barley seeds and its in vitro and in vivo effects on the cowpea bruchid, Callosobruchus maculatus (F.).Pestic. Biochem. Physiol.2015118263210.1016/j.pestbp.2014.10.01625752426
    [Google Scholar]
  25. NelsonD.L. CoxM.M. Lehninger Principles of Biochemistry.5th edNew YorkW.H. Freeman and Company200842339
    [Google Scholar]
  26. BenchabaneM. SchlüterU. VorsterJ. GouletM.C. MichaudD. Plant cystatins.Biochimie201092111657166610.1016/j.biochi.2010.06.00620558232
    [Google Scholar]
  27. TurkV. StokaV. TurkD. Cystatins: Biochemical and structural properties, and medical relevance.Front. Biosci.2008Volume135406542010.2741/308918508595
    [Google Scholar]
  28. KordišD. TurkV. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes.BMC Evol. Biol.20099126610.1186/1471‑2148‑9‑26619919722
    [Google Scholar]
  29. SiddiquiM.F. AhmedA. BanoB. Insight into the biochemical, kinetic and spectroscopic characterization of garlic (Allium sativum) phytocystatin: Implication for cardiovascular disease.Int. J. Biol. Macromol.20179573474210.1016/j.ijbiomac.2016.11.10727916569
    [Google Scholar]
  30. DarrasF.H. PangY.P. On the use of the experimentally determined enzyme inhibition constant as a measure of absolute binding affinity.Biochem. Biophys. Res. Commun.2017489445145410.1016/j.bbrc.2017.05.16828571743
    [Google Scholar]
  31. ShyuD.J.H. ChouW.M. YiuT.J. LinC.P.C. TzenJ.T.C. Cloning, functional expression, and characterization of cystatin in sesame seed.J. Agric. Food Chem.20045251350135610.1021/jf034989v14995145
    [Google Scholar]
  32. KondoH. AbeK. NishimuraI. WatanabeH. EmoriY. AraiS. Two distinct cystatin species in rice seeds with different specificities against cysteine proteinases. Molecular cloning, expression, and biochemical studies on oryzacystatin-II.J. Biol. Chem.199026526158321583710.1016/S0021‑9258(18)55473‑91697595
    [Google Scholar]
  33. AhmedA. ShamsiA. BanoB. Purification and biochemical characterization of phytocystatin from Brassica alba.J. Mol. Recognit.201629522323110.1002/jmr.252226748819
    [Google Scholar]
  34. WuJ. HaardN.F. Purification and characterization of a cystatin from the leaves of methyl jasmonate treated tomato plants.Comp. Biochem. Physiol. C. Comp. Pharmacol. Toxicol.2000127220922010.1016/S0742‑8413(00)00145‑611083031
    [Google Scholar]
  35. PopovicM. AndjelkovicU. GrozdanovicM. AleksicI. Gavrovic-JankulovicM. In vitro antibacterial activity of cysteine protease inhibitor from kiwifruit (Actinidia deliciosa).Indian J. Microbiol.201353110010510.1007/s12088‑012‑0319‑224426085
    [Google Scholar]
  36. de FreitasC.D.T. LopesJ.L.S. BeltraminiL.M. de OliveiraR.S.B. OliveiraJ.T.A. RamosM.V. Osmotin from Calotropis procera latex: New insights into structure and antifungal properties.Biochim. Biophys. Acta Biomembr.20111808102501250710.1016/j.bbamem.2011.07.01421798235
    [Google Scholar]
  37. LimaA.M. AzevedoM.I.G. SousaL.M. OliveiraN.S. AndradeC.R. FreitasC.D.T. SouzaP.F.N. Plant antimicrobial peptides: An overview about classification, toxicity and clinical applications.Int. J. Biol. Macromol.2022214102110.1016/j.ijbiomac.2022.06.04335700843
    [Google Scholar]
  38. LopesF.E.S. da CostaH.P.S. SouzaP.F.N. OliveiraJ.P.B. RamosM.V. FreireJ.E.C. JucáT.L. FreitasC.D.T. Peptide from thaumatin plant protein exhibits selective anticandidal activity by inducing apoptosis via membrane receptor.Phytochemistry2019159465510.1016/j.phytochem.2018.12.00630577001
    [Google Scholar]
  39. MittlerR. ROS are good.Trends Plant Sci.2017221111910.1016/j.tplants.2016.08.00227666517
    [Google Scholar]
  40. FreitasC.D.T. CostaJ.H. GermanoT.A. de O RochaR. RamosM.V. BezerraL.P. Class III plant peroxidases: From classification to physiological functions.Int. J. Biol. Macromol.2024263Pt 113030610.1016/j.ijbiomac.2024.13030638387641
    [Google Scholar]
  41. ZhangZ. ChenY. LiB. ChenT. TianS. Reactive oxygen species: A generalist in regulating development and pathogenicity of phytopathogenic fungi.Comput. Struct. Biotechnol. J.2020183344334910.1016/j.csbj.2020.10.02433294130
    [Google Scholar]
  42. SouzaP.F.N. MarquesL.S.M. OliveiraJ.T.A. LimaP.G. DiasL.P. NetoN.A.S. LopesF.E.S. SousaJ.S. SilvaA.F.B. CaneiroR.F. LopesJ.L.S. RamosM.V. FreitasC.D.T. Synthetic antimicrobial peptides: From choice of the best sequences to action mechanisms.Biochimie202017513214510.1016/j.biochi.2020.05.01632534825
    [Google Scholar]
  43. AguiarT.K.B. MesquitaF.P. NetoN.A.S. GomesF.Í.R. FreitasC.D.T. CarneiroR.F. NaganoC.S. AlencarL.M.R. Santos-OliveiraR. OliveiraJ.T.A. SouzaP.F.N. No chance to survive: Mo-CBP3-PepII synthetic peptide acts on Cryptococcus neoformans by multiple mechanisms of action.Antibiotics (Basel)202312237810.3390/antibiotics1202037836830289
    [Google Scholar]
  44. UhlL. GerstelA. ChabalierM. DukanS. Hydrogen peroxide induced cell death: One or two modes of action?Heliyon201514e0004910.1016/j.heliyon.2015.e0004927441232
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037339021241017084509
Loading
/content/journals/cpps/10.2174/0113892037339021241017084509
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Candida, protein; protease inhibitor; seed; Staphylococcus aureus; Terminalia catappa
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test