Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Human paraoxonase 1 (hPON1) is a Ca2+-dependent metalloenzyme with multifunctional properties. Due to its diverse activities (arylesterase, phosphotriesterase, and lactonase), it plays a significant role in disease conditions. Researchers across the globe have demonstrated different properties of PON1, like anti-oxidant, anti-inflammatory, anti-atherogenic, anti-diabetic, and OP-neutralization. Due to its pleotropic role in disease conditions like atherosclerosis, diabetes, cardiovascular diseases, neurodegenerative disorders, and OP-poisoning, it can be considered as a potential candidate for the development of therapeutic interventions. Attempts are being made in this direction to identify the exact role of PON1 in these disease conditions. Different approaches like directed evolution, genetic as well as chemical fusion, liposomal delivery of PON1, are being developed and evaluated for their therapeutic effects in different pathological conditions. In this review, we outline the exact role and involvement of different properties of PON1 in the pathophysiology of different diseases and how it can be utilized and developed as a therapeutic intervention in PON1-associated disease conditions.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037335325241011162207
2024-12-24
2025-04-17
Loading full text...

Full text loading...

References

  1. MazurA. An enzyme in animal tissues capable of hydrolysing the phosphorus-fluorine bond of alkyl fluorophosphates.J. Biol. Chem.1946164127128910.1016/S0021‑9258(18)43068‑220989488
    [Google Scholar]
  2. AviramM. BilleckeS. SorensonR. BisgaierC. NewtonR. RosenblatM. ErogulJ. HsuC. DunlopC. La DuB. Paraoxonase active site required for protection against LDL oxidation involves its free sulfhydryl group and is different from that required for its arylesterase/paraoxonase activities: Selective action of human paraoxonase allozymes Q and R.Arterioscler. Thromb. Vasc. Biol.199818101617162410.1161/01.ATV.18.10.16179763535
    [Google Scholar]
  3. EckersonH.W. RomsonJ. WyteC. La DuB.N. The human serum paraoxonase polymorphism: Identification of phenotypes by their response to salts.Am. J. Hum. Genet.19833522142276301268
    [Google Scholar]
  4. SorensonR.C. Primo-ParmoS.L. CamperS.A. La DuB.N. The genetic mapping and gene structure of mouse paraoxonase/arylesterase.Genomics199530343143810.1006/geno.1995.12618825627
    [Google Scholar]
  5. AltenhöferS. WitteI. TeiberJ.F. WilgenbusP. PautzA. LiH. DaiberA. WitanH. ClementA.M. FörstermannU. HorkeS. One enzyme, two functions: PON2 prevents mitochondrial superoxide formation and apoptosis independent from its lactonase activity.J. Biol. Chem.201028532243982440310.1074/jbc.M110.11860420530481
    [Google Scholar]
  6. StoltzD.A. OzerE.A. TaftP.J. BarryM. LiuL. KissP.J. MoningerT.O. ParsekM.R. ZabnerJ. Drosophila are protected from Pseudomonas aeruginosa lethality by transgenic expression of paraoxonase-1.J. Clin. Invest.200811893123313110.1172/JCI3514718704198
    [Google Scholar]
  7. La DuB.N. AdkinsS. KuoC.L. LipsigD. Studies on human serum paraoxonase/arylesterase.Chem. Biol. Interact.1993871-3253410.1016/0009‑2797(93)90022‑Q8393742
    [Google Scholar]
  8. Taler-VerčičA. GoličnikM. BavecA. The structure and function of paraoxonase-1 and its comparison to paraoxonase-2 and -3.Molecules20202524598010.3390/molecules2524598033348669
    [Google Scholar]
  9. AviramM. VayaJ. Paraoxonase 1 activities, regulation, and interactions with atherosclerotic lesion.Curr. Opin. Lipidol.201324433934410.1097/MOL.0b013e32835ffcfd23508039
    [Google Scholar]
  10. GençerN. YavuzE. An alternative purification method for human serum paraoxonase 1 and its interaction with methidathion.Arch. Physiol. Biochem.2017123315916410.1080/13813455.2017.127963228276711
    [Google Scholar]
  11. JosseD. LockridgeO. XieW. BartelsC.F. SchopferL.M. MassonP. The active site of human paraoxonase (PON1).J. Appl. Toxicol.200121Suppl. 1S7S1110.1002/jat.78911920913
    [Google Scholar]
  12. MoyaC. MáñezS. Paraoxonases: Metabolic role and pharmacological projection.Naunyn Schmiedebergs Arch. Pharmacol.2018391434935910.1007/s00210‑018‑1473‑929404699
    [Google Scholar]
  13. BajajP. TripathyR.K. AggarwalG. PandeA.H. Human paraoxonase 1 as a pharmacologic agent: limitations and perspectives.ScientificWorldJournal201420141610.1155/2014/85439125386619
    [Google Scholar]
  14. ChistiakovD.A. MelnichenkoA.A. OrekhovA.N. BobryshevY.V. Paraoxonase and atherosclerosis-related cardiovascular diseases.Biochimie2017132192710.1016/j.biochi.2016.10.01027771368
    [Google Scholar]
  15. HarelM. AharoniA. GaidukovL. BrumshteinB. KhersonskyO. MegedR. DvirH. RavelliR.B.G. McCarthyA. TokerL. SilmanI. SussmanJ.L. TawfikD.S. Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes.Nat. Struct. Mol. Biol.200411541241910.1038/nsmb76715098021
    [Google Scholar]
  16. ShunmoogamN. NaidooP. ChiltonR. Paraoxonase (PON)-1: A brief overview on genetics, structure, polymorphisms and clinical relevance.Vasc. Health Risk Manag.20181413714310.2147/VHRM.S16517329950852
    [Google Scholar]
  17. AharoniA. GaidukovL. YagurS. TokerL. SilmanI. TawfikD.S. Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization.Proc. Natl. Acad. Sci. USA2004101248248710.1073/pnas.253690110014695884
    [Google Scholar]
  18. BajajP. TripathyR.K. AggarwalG. PandeA.H. Characterization of human paraoxonase 1 variants suggest that His residues at 115 and 134 positions are not always needed for the lactonase/arylesterase activities of the enzyme.Protein Sci.201322121799180710.1002/pro.238024123308
    [Google Scholar]
  19. YeungD.T. LenzD.E. CerasoliD.M. Analysis of active-site amino-acid residues of human serum paraoxonase using competitive substrates.FEBS J.200527292225223010.1111/j.1742‑4658.2005.04646.x15853807
    [Google Scholar]
  20. Ben-DavidM. EliasM. FilippiJ.J. DuñachE. SilmanI. SussmanJ.L. TawfikD.S. Catalytic versatility and backups in enzyme active sites: the case of serum paraoxonase 1.J. Mol. Biol.20124183-418119610.1016/j.jmb.2012.02.04222387469
    [Google Scholar]
  21. DraganovD.I. TeiberJ.F. SpeelmanA. OsawaY. SunaharaR. La DuB.N. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities.J. Lipid Res.20054661239124710.1194/jlr.M400511‑JLR20015772423
    [Google Scholar]
  22. HuX. JiangX. LenzD.E. CerasoliD.M. WallqvistA. In silico analyses of substrate interactions with human serum paraoxonase 1.Proteins200975248649810.1002/prot.2226418951406
    [Google Scholar]
  23. SunayS.Z. KayaaltıZ. BayrakT. SöylemezoğluT. Effect of paraoxonase 1 192 Q/R polymorphism on paraoxonase and acetylcholinesterase enzyme activities in a Turkish population exposed to organophosphate.Toxicol. Ind. Health201531121061106810.1177/074823371348724623625910
    [Google Scholar]
  24. GarinM.C. JamesR.W. DussoixP. BlanchéH. PassaP. FroguelP. RuizJ. Paraoxonase polymorphism Met-Leu54 is associated with modified serum concentrations of the enzyme. A possible link between the paraoxonase gene and increased risk of cardiovascular disease in diabetes.J. Clin. Invest.1997991626610.1172/JCI1191349011577
    [Google Scholar]
  25. AdkinsS. GanK.N. ModyM. La DuB.N. Molecular basis for the polymorphic forms of human serum paraoxonase/arylesterase: glutamine or arginine at position 191, for the respective A or B allozymes.Am. J. Hum. Genet.19935235986087916578
    [Google Scholar]
  26. ColeT.B. WalterB.J. ShihD.M. TwardA.D. LusisA.J. TimchalkC. RichterR.J. CostaL.G. FurlongC.E. Toxicity of chlorpyrifos and chlorpyrifos oxon in a transgenic mouse model of the human paraoxonase (PON1) Q192R polymorphism.Pharmacogenet. Genomics200515858959810.1097/01.fpc.0000167327.08034.d216007003
    [Google Scholar]
  27. SmolenA. EckersonH.W. GanK.N. HailatN. La DuB.N. Characteristics of the genetically determined allozymic forms of human serum paraoxonase/arylesterase.Drug Metab. Dispos.19911911071121673383
    [Google Scholar]
  28. ArslanA. TüzünF.A. ArslanH. DemirH. TamerS. DemirC. TasinM. The relationship between serum paraoxonase levels and carotid atherosclerotic plaque formation in Alzheimer’s patients.Neurol. Neurochir. Pol.201650640340910.1016/j.pjnns.2016.07.00227546893
    [Google Scholar]
  29. DobariyaP. AdhyaP. VaidyaB. KhandaveP.Y. SharmaS.S. PandeA.H. Fused human paraoxonase 1 as a prophylactic agent against organophosphate poisoning.Enzyme Microb. Technol.202316511020910.1016/j.enzmictec.2023.11020936764031
    [Google Scholar]
  30. ViktorinovaA. JurkovicovaI. FabryovaL. KinovaS. KorenM. StecovaA. SvitekovaK. Abnormalities in the relationship of paraoxonase 1 with HDL and apolipoprotein A1 and their possible connection to HDL dysfunctionality in type 2 diabetes.Diabetes Res. Clin. Pract.201814017418210.1016/j.diabres.2018.03.05529626583
    [Google Scholar]
  31. CastellazziM. Decreased arylesterase activity of paraoxonase-1 (PON-1) might be a common denominator of neuroinflammatory and neurodegenerative diseases.Int. J. Biochem. Cell Biol.201681Pt B356363
    [Google Scholar]
  32. IyengarA.R.S. PandeA.H. Organophosphate-hydrolyzing enzymes as first-line of defence against nerve agent-poisoning: Perspectives and the Road Ahead.Protein J.201635642443910.1007/s10930‑016‑9686‑627830420
    [Google Scholar]
  33. KimM.J. ParkM. KimD.W. ShinM.J. SonO. JoH.S. YeoH.J. ChoS.B. ParkJ.H. LeeC.H. KimD.S. KwonO.S. KimJ. HanK.H. ParkJ. EumW.S. ChoiS.Y. Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson’s disease model.Biomaterials201564455610.1016/j.biomaterials.2015.06.01526117230
    [Google Scholar]
  34. PaulK.C. SinsheimerJ.S. CockburnM. BronsteinJ.M. BordelonY. RitzB. Organophosphate pesticides and PON1 L55M in Parkinson’s disease progression.Environ. Int.2017107758110.1016/j.envint.2017.06.01828689109
    [Google Scholar]
  35. ReichertC.O. LevyD. BydlowskiS.P. Paraoxonase role in human neurodegenerative diseases.Antioxidants20201011110.3390/antiox1001001133374313
    [Google Scholar]
  36. RosenblatM. KarryR. AviramM. Paraoxonase 1 (PON1) is a more potent antioxidant and stimulant of macrophage cholesterol efflux, when present in HDL than in lipoprotein-deficient serum: Relevance to diabetes.Atherosclerosis2006187174.e174.e1010.1016/j.atherosclerosis.2005.08.02616229851
    [Google Scholar]
  37. AviramM. RosenblatM. Paraoxonases 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development.Free Radic. Biol. Med.20043791304131610.1016/j.freeradbiomed.2004.06.03015454271
    [Google Scholar]
  38. RozenbergO. ShihD.M. AviramM. Paraoxonase 1 (PON1) attenuates macrophage oxidative status: Studies in PON1 transfected cells and in PON1 transgenic mice.Atherosclerosis2005181191810.1016/j.atherosclerosis.2004.12.03015939049
    [Google Scholar]
  39. RozenbergO. RosenblatM. ColemanR. ShihD.M. AviramM. Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress: Studies in PON1-knockout mice.Free Radic. Biol. Med.200334677478410.1016/S0891‑5849(02)01429‑612633754
    [Google Scholar]
  40. TwardA. XiaY.R. WangX.P. ShiY.S. ParkC. CastellaniL.W. LusisA.J. ShihD.M. Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice.Circulation2002106448449010.1161/01.CIR.0000023623.87083.4F12135950
    [Google Scholar]
  41. ShihD.M. XiaY.R. WangX.P. MillerE. CastellaniL.W. SubbanagounderG. CheroutreH. FaullK.F. BerlinerJ.A. WitztumJ.L. LusisA.J. Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis.J. Biol. Chem.200027523175271753510.1074/jbc.M91037619910748217
    [Google Scholar]
  42. MacknessB. QuarckR. VerrethW. MacknessM. HolvoetP. Human paraoxonase-1 overexpression inhibits atherosclerosis in a mouse model of metabolic syndrome.Arterioscler. Thromb. Vasc. Biol.20062671545155010.1161/01.ATV.0000222924.62641.aa16627808
    [Google Scholar]
  43. MacKnessM. ArrolS. AbbottC. DurringtonP. Protection of low-density lipoprotein against oxidative modification by high- density lipoprotein associated paraoxonase.Atherosclerosis19931041-212913510.1016/0021‑9150(93)90183‑U8141836
    [Google Scholar]
  44. SinghK. SinghR. ChandraS. TyagiS. Paraoxonase-1 is a better indicator than HDL of Atherosclerosis – A pilot study in North Indian population.Diabetes Metab. Syndr.201812327527810.1016/j.dsx.2017.12.00629254890
    [Google Scholar]
  45. MacknessB. HineD. LiuY. MastorikouM. MacknessM. Paraoxonase-1 inhibits oxidised LDL-induced MCP-1 production by endothelial cells.Biochem. Biophys. Res. Commun.2004318368068310.1016/j.bbrc.2004.04.05615144891
    [Google Scholar]
  46. NavabM. ImesS.S. HamaS.Y. HoughG.P. RossL.A. BorkR.W. ValenteA.J. BerlinerJ.A. DrinkwaterD.C. LaksH. Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein.J. Clin. Invest.19918862039204610.1172/JCI1155321752961
    [Google Scholar]
  47. GbandjabaN.Y. GhalimN. HassarM. BerrouguiH. LabraziH. TakiH. SaileR. KhalilA. Paraoxonase activity in healthy, diabetic, and hemodialysis patients.Clin. Biochem.201245647047410.1016/j.clinbiochem.2012.01.00522285382
    [Google Scholar]
  48. DomagałaT.B. ŁacinskiM. TrzeciakW.H. MacknessB. MacknessM.I. JakubowskiH. The correlation of homocysteine-thiolactonase activity of the paraoxonase (PON1) protein with coronary heart disease status.Cell. Mol. Biol.200652541017543199
    [Google Scholar]
  49. JakubowskiH. Homocysteine modification in protein structure/function and human disease.Physiol. Rev.201999155560410.1152/physrev.00003.201830427275
    [Google Scholar]
  50. JeelaniH. TabassumN. AfrozeD. RashidF. Association of Paraoxonase1 enzyme and its genetic single nucleotide polymorphisms with cardio-metabolic and neurodegenerative diseases.Gene Rep.20202010077510.1016/j.genrep.2020.100775
    [Google Scholar]
  51. Perla-KajánJ. JakubowskiH. Paraoxonase 1 protects against protein N -homocysteinylation in humans.FASEB J.201024393193610.1096/fj.09‑14441019880629
    [Google Scholar]
  52. Perła-KajánJ. JakubowskiH. Paraoxonase 1 and homocysteine metabolism.Amino Acids20124341405141710.1007/s00726‑012‑1321‑z22643843
    [Google Scholar]
  53. HineD. MacknessB. MacknessM. Coincubation of PON1, APO A1, and LCAT increases the time HDL is able to prevent LDL oxidation.IUBMB Life201264215716110.1002/iub.58822184096
    [Google Scholar]
  54. AlharbiK.K. AlnbaheenM.S. AlharbiF.K. HasanatoR.M. KhanI.A. Q192R polymorphism in the PON1 gene and familial hypercholesterolemia in a Saudi population.Ann. Saudi Med.201737642543210.5144/0256‑4947.2017.42529229890
    [Google Scholar]
  55. LakshmyR. AhmadD. AbrahamR.A. SharmaM. VemparalaK. DasS. ReddyK.S. PrabhakaranD. Paraoxonase gene Q192R & L55M polymorphisms in Indians with acute myocardial infarction & association with oxidized low density lipoprotein.Indian J. Med. Res.201013152252920424303
    [Google Scholar]
  56. BayrakA. BayrakT. TokgözogluS.L. Volkan-SalanciB. DenizA. YavuzB. AlikasifogluM. DemirpençeE. Serum PON-1 activity but not Q192R polymorphism is related to the extent of atherosclerosis.J. Atheroscler. Thromb.201219437638410.5551/jat.1132022188760
    [Google Scholar]
  57. GuptaA. SalujaA. SaraswathyK.N. ImnamerenL. YadavS. DhamijaR.K. PON1 (paraoxonase 1) Q192R gene polymorphism in ischemic stroke among North Indian population.Ann. Indian Acad. Neurol.202225110010510.4103/aian.aian_571_2135342250
    [Google Scholar]
  58. GodboleC. ThakerS. KerkarP. NadkarM. GogtayN. ThatteU. Association of PON1 gene polymorphisms and enzymatic activity with risk of coronary artery disease.Future Cardiol.202117111912610.2217/fca‑2020‑002832583675
    [Google Scholar]
  59. GoldsmithM. AshaniY. SimoY. Ben-DavidM. LeaderH. SilmanI. SussmanJ.L. TawfikD.S. Evolved stereoselective hydrolases for broad-spectrum G-type nerve agent detoxification.Chem. Biol.201219445646610.1016/j.chembiol.2012.01.01722520752
    [Google Scholar]
  60. GuptaR.D. GoldsmithM. AshaniY. SimoY. MullokandovG. BarH. Ben-DavidM. LeaderH. MargalitR. SilmanI. SussmanJ.L. TawfikD.S. Directed evolution of hydrolases for prevention of G-type nerve agent intoxication.Nat. Chem. Biol.20117212012510.1038/nchembio.51021217689
    [Google Scholar]
  61. BajajP. TripathyR.K. AggarwalG. DatusaliaA.K. SharmaS.S. PandeA.H. Refolded recombinant human paraoxonase 1 variant exhibits prophylactic activity against organophosphate poisoning.Appl. Biochem. Biotechnol.2016180116517610.1007/s12010‑016‑2091‑y27131877
    [Google Scholar]
  62. ValiyaveettilM. AlamnehY. RezkP. BiggemannL. PerkinsM.W. SciutoA.M. DoctorB.P. NambiarM.P. Protective efficacy of catalytic bioscavenger, paraoxonase 1 against sarin and soman exposure in guinea pigs.Biochem. Pharmacol.201181680080910.1016/j.bcp.2010.12.02421219877
    [Google Scholar]
  63. YunH. YuJ. KimS. LeeN. LeeJ. LeeS. KimN.D. YuC. RhoJ. Expression and purification of biologically active recombinant human paraoxonase 1 from a Drosophila S2 stable cell line.Protein Expr. Purif.2017131344110.1016/j.pep.2016.11.00327838376
    [Google Scholar]
  64. BoadoR.J. ZhangY. ZhangY. WangY. PardridgeW.M. IgG-paraoxonase-1 fusion protein for targeted drug delivery across the human blood-brain barrier.Mol. Pharm.2008561037104310.1021/mp800113g19434854
    [Google Scholar]
  65. KirbyS.D. NorrisJ.R. Richard SmithJ. BahnsonB.J. CerasoliD.M. Human paraoxonase double mutants hydrolyze V and G class organophosphorus nerve agents.Chem. Biol. Interact.2013203118118510.1016/j.cbi.2012.10.02323159884
    [Google Scholar]
  66. WorekF. SeegerT. GoldsmithM. AshaniY. LeaderH. SussmanJ.S. TawfikD. ThiermannH. WilleT. Efficacy of the rePON1 mutant IIG1 to prevent cyclosarin toxicity in vivo and to detoxify structurally different nerve agents in vitro.Arch. Toxicol.20148861257126610.1007/s00204‑014‑1204‑z24477626
    [Google Scholar]
  67. AshaniY. In vitro evaluation of the catalytic activity of paraoxonases and phosphotriesterases predicts the enzyme circulatory levels required for in vivo protection against organophosphate intoxications.Chem. Biol. Interact.2016259Pt B25225610.1016/j.cbi.2016.04.039
    [Google Scholar]
  68. BetapudiV. GoswamiR. SilayevaL. DoctorD.M. ChilukuriN. Gene therapy delivering a paraoxonase 1 variant offers long-term prophylactic protection against nerve agents in mice.Sci. Transl. Med.202012527eaay035610.1126/scitranslmed.aay035631969483
    [Google Scholar]
  69. TiegangL. NanaW. HengD. MinZ. Polyethylene glycosylation prolongs the stability of recombinant human paraoxonase-1.Toxicol. Lett.2012210336637110.1016/j.toxlet.2012.02.01922414384
    [Google Scholar]
  70. HanZ.K. LiuZ.N. YuanL. ZhangP.S. ZhaoM. Preparation of paraoxonase-1 liposomes and studies on their in vivo pharmacokinetics in rats.Clin. Exp. Pharmacol. Physiol.2014411082582910.1111/1440‑1681.1227524916001
    [Google Scholar]
  71. Satvik IyengarA.R. Paraoxonase 1 as a potential prophylactic against nerve agent poisoning.Sensing of Deadly Toxic Chemical Warfare Agents, Nerve Agent Simulants, and their Toxicological AspectsElsevier2023
    [Google Scholar]
  72. IyengarA.R.S. KhandaveP.Y. BzdrengaJ. NachonF. BrazzolottoX. PandeA.H. Warfare nerve agents and paraoxonase-1 as a potential prophylactic therapy against intoxication.Protein Pept. Lett.202431534535510.2174/010929866528429324040904535938706353
    [Google Scholar]
  73. OguntibejuO.O. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links.Int. J. Physiol. Pathophysiol. Pharmacol.2019113456331333808
    [Google Scholar]
  74. DavìG. FalcoA. PatronoC. Lipid peroxidation in diabetes mellitus.Antioxid. Redox Signal.200571-225626810.1089/ars.2005.7.25615650413
    [Google Scholar]
  75. GiaccoF. BrownleeM. Oxidative stress and diabetic complications.Circ. Res.201010791058107010.1161/CIRCRESAHA.110.22354521030723
    [Google Scholar]
  76. RainsJ.L. JainS.K. Oxidative stress, insulin signaling, and diabetes.Free Radic. Biol. Med.201150556757510.1016/j.freeradbiomed.2010.12.00621163346
    [Google Scholar]
  77. SandeepS.H. ShindeS.H. PandeA.H. Polyspecificity - An emerging trend in the development of clinical antibodies.Mol. Immunol.202315517518310.1016/j.molimm.2023.02.00536827806
    [Google Scholar]
  78. TartanZ. OrhanG. KasıkçiogluH. UyarelH. UnalS. OzerN. OzayB. CilogluF. CamN. The role of paraoxonase (PON) enzyme in the extent and severity of the coronary artery disease in type-2 diabetic patients.Heart Vessels200722315816410.1007/s00380‑006‑0957‑617533519
    [Google Scholar]
  79. Koren-GluzerM. AviramM. MeilinE. HayekT. The antioxidant HDL-associated paraoxonase-1 (PON1) attenuates diabetes development and stimulates β-cell insulin release.Atherosclerosis2011219251051810.1016/j.atherosclerosis.2011.07.11921862013
    [Google Scholar]
  80. RozenbergO. ShihD.M. AviramM. Human serum paraoxonase 1 decreases macrophage cholesterol biosynthesis: possible role for its phospholipase-A2-like activity and lysophosphatidylcholine formation.Arterioscler. Thromb. Vasc. Biol.200323346146710.1161/01.ATV.0000060462.35946.B312615663
    [Google Scholar]
  81. Koren-GluzerM. AviramM. HayekT. Paraoxonase1 (PON1) reduces insulin resistance in mice fed a high-fat diet, and promotes GLUT4 overexpression in myocytes, via the IRS-1/Akt pathway.Atherosclerosis20132291717810.1016/j.atherosclerosis.2013.03.02823639858
    [Google Scholar]
  82. LeeS.J. KangH.K. ChoiY.J. EumW.S. ParkJ. ChoiS.Y. KwonH.Y. PEP-1-paraoxonase 1 fusion protein prevents cytokine-induced cell destruction and impaired insulin secretion in rat insulinoma cells.BMB Rep.2018511053854310.5483/BMBRep.2018.51.10.18130269741
    [Google Scholar]
  83. CrowJ.A. MeekE.C. WillsR.W. ChambersJ.E. A case-control study: The association of serum paraoxonase 1 activity and concentration with the development of type 2 diabetes mellitus.Diabetes Metab. Res. Rev.2018343e296710.1002/dmrr.296729156090
    [Google Scholar]
  84. FarbsteinD. LevyA.P. The genetics of vascular complications in diabetes mellitus.Cardiol. Clin.201028347749610.1016/j.ccl.2010.04.00520621252
    [Google Scholar]
  85. SavuO. SerafinceanuC. GrajdeanuI.V. IosifL. GamanL. StoianI. Paraoxonase lactonase activity, inflammation and antioxidant status in plasma of patients with type 1 diabetes mellitus.J. Int. Med. Res.201442252352910.1177/030006051351628724567352
    [Google Scholar]
  86. WuD. WuC. ZhongY. The association between paraoxonase 1 activity and the susceptibilities of diabetes mellitus, diabetic macroangiopathy and diabetic microangiopathy.J. Cell. Mol. Med.20182294283429110.1111/jcmm.1371129981194
    [Google Scholar]
  87. LiC. ChenJ.W. DingF.H. ShenY. LiuZ.H. WangF. ZhangR.Y. ShenW.F. LuL. WangX.Q. Relationship of high-density lipoprotein-associated arylesterase activity to systolic heart failure in patients with and without type 2 diabetes.Sci. Rep.201991597910.1038/s41598‑019‑42518‑x30979955
    [Google Scholar]
  88. PatraK.C. HayN. The pentose phosphate pathway and cancer.Trends Biochem. Sci.201439834735410.1016/j.tibs.2014.06.00525037503
    [Google Scholar]
  89. YuW. LiuX. FengL. YangH. YuW. FengT. WangS. WangJ. LiuN. Glycation of paraoxonase 1 by high glucose instigates endoplasmic reticulum stress to induce endothelial dysfunction in vivo.Sci. Rep.2017714582710.1038/srep4582728374834
    [Google Scholar]
  90. MenesesM.J. SilvestreR. Sousa-LimaI. MacedoM.P. Paraoxonase-1 as a regulator of glucose and lipid homeostasis: Impact on the onset and progression of metabolic disorders.Int. J. Mol. Sci.20192016404910.3390/ijms2016404931430977
    [Google Scholar]
  91. WitztumJ.L. FisherM. PietroT. SteinbrecherU.P. ElamR.L. Nonenzymatic glucosylation of high-density lipoprotein accelerates its catabolism in guinea pigs.Diabetes198231111029103210.2337/diacare.31.11.10296816643
    [Google Scholar]
  92. OzcanL. TabasI. Role of endoplasmic reticulum stress in metabolic disease and other disorders.Annu. Rev. Med.201263131732810.1146/annurev‑med‑043010‑14474922248326
    [Google Scholar]
  93. BansalS. ChawlaD. SiddarthM. BanerjeeB.D. MadhuS.V. TripathiA.K. A study on serum advanced glycation end products and its association with oxidative stress and paraoxonase activity in type 2 diabetic patients with vascular complications.Clin. Biochem.2013461-210911410.1016/j.clinbiochem.2012.10.01923103709
    [Google Scholar]
  94. CraciunE.C. LeucutaD.C. RusuR.L. DavidB.A. CretV. DroncaE. Paraoxonase-1 activities in children and adolescents with type 1 diabetes mellitus.Acta Biochim. Pol.201663351151510.18388/abp.2015_120927337219
    [Google Scholar]
  95. AyanD. ŞeneşM. ÇaycıA.B. SöylemezS. ErenN. AltuntaşY. ÖztürkF.Y. Evaluation of paraoxonase, arylesterase, and homocysteine thiolactonase activities in patients with diabetes and incipient diabetes nephropathy.J. Med. Biochem.201938448148810.2478/jomb‑2019‑001431496913
    [Google Scholar]
  96. KaoY.L. DonaghueK. ChanA. KnightJ. SilinkM. A variant of paraoxonase (PON1) gene is associated with diabetic retinopathy in IDDM.J. Clin. Endocrinol. Metab.19988372589259210.1210/jcem.83.7.50969661650
    [Google Scholar]
  97. MacKnessB. DurringtonP.N. AbuashiaB. BoultonA.J.M. MacKnessM.I. Low paraoxonase activity in type II diabetes mellitus complicated by retinopathy.Clin. Sci. (Lond.)200098335536310.1042/cs098035510677395
    [Google Scholar]
  98. MacknessB. MacknessM.I. ArrolS. TurkieW. JulierK. AbuashaB. MillerJ.E. BoultonA.J.M. DurringtonP.N. Serum paraoxonase (PON1) 55 and 192 polymorphism and paraoxonase activity and concentration in non-insulin dependent diabetes mellitus.Atherosclerosis1998139234134910.1016/S0021‑9150(98)00095‑19712341
    [Google Scholar]
  99. ZhouM. LiuX.H. LiuQ.Q. ChenM. BaiH. GuanL.B. FanP. Lactonase activity, status, and genetic variations of paraoxonase 1 in women with gestational diabetes mellitus.J. Diabetes Res.2020202011010.1155/2020/348342732090118
    [Google Scholar]
  100. Khosravi BakhtiariM. SharifiyazdiH. NazifiS. GhaemiM. Hadadipour ZarandiM. Effects of citral on serum antioxidant status and liver genes expressions of paraoxonase 1 and nitric oxide synthase in a rat model of streptozotocin-induced diabetes mellitus.Majallah-i Tahqiqat-i Dampizishki-i Iran202122319520234777519
    [Google Scholar]
  101. ParsaeyanN. Mozaffari-KhosraviH. MozayanM.R. Effect of pomegranate juice on paraoxonase enzyme activity in patients with type 2 diabetes.J. Diabetes Metab. Disord.20121111110.1186/2251‑6581‑11‑1123497651
    [Google Scholar]
  102. OzerE.A. PezzuloA. ShihD.M. ChunC. FurlongC. LusisA.J. GreenbergE.P. ZabnerJ. Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing.FEMS Microbiol. Lett.20052531293710.1016/j.femsle.2005.09.02316260097
    [Google Scholar]
  103. ReadingN.C. SperandioV. Quorum sensing: The many languages of bacteria.FEMS Microbiol. Lett.2006254111110.1111/j.1574‑6968.2005.00001.x16451172
    [Google Scholar]
  104. CampsJ. IftimieS. García-HerediaA. CastroA. JovenJ. Paraoxonases and infectious diseases.Clin. Biochem.20175013-1480481110.1016/j.clinbiochem.2017.04.01628433610
    [Google Scholar]
  105. DaviesJ.C. BiltonD. Bugs, biofilms, and resistance in cystic fibrosis.Respir. Care200954562864010.4187/aarc049219393107
    [Google Scholar]
  106. HallC.W. MahT.F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria.FEMS Microbiol. Rev.201741327630110.1093/femsre/fux01028369412
    [Google Scholar]
  107. PearsonJ.P. GrayK.M. PassadorL. TuckerK.D. EberhardA. IglewskiB.H. GreenbergE.P. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes.Proc. Natl. Acad. Sci. USA199491119720110.1073/pnas.91.1.1978278364
    [Google Scholar]
  108. PearsonJ.P. PassadorL. IglewskiB.H. GreenbergE.P. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa.Proc. Natl. Acad. Sci. USA19959251490149410.1073/pnas.92.5.14907878006
    [Google Scholar]
  109. CampsJ. CastañéH. Rodríguez-TomàsE. Baiges-GayaG. Hernández-AguileraA. ArenasM. IftimieS. JovenJ. On the role of paraoxonase-1 and chemokine ligand 2 (C-C motif) in metabolic alterations linked to inflammation and disease. A 2021 update.Biomolecules202111797110.3390/biom1107097134356595
    [Google Scholar]
  110. EstinM.L. StoltzD.A. ZabnerJ. Paraoxonase 1, quorum sensing, and P. aeruginosa infection: A novel model.Adv. Exp. Med. Biol.201066018319310.1007/978‑1‑60761‑350‑3_1720221881
    [Google Scholar]
  111. YangF. WangL.H. WangJ. DongY.H. HuJ.Y. ZhangL.H. Quorum quenching enzyme activity is widely conserved in the sera of mammalian species.FEBS Lett.2005579173713371710.1016/j.febslet.2005.05.06015963993
    [Google Scholar]
  112. ChenF. GaoY. ChenX. YuZ. LiX. Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection.Int. J. Mol. Sci.2013149174771750010.3390/ijms14091747724065091
    [Google Scholar]
  113. ChunC.K. OzerE.A. WelshM.J. ZabnerJ. GreenbergE.P. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia.Proc. Natl. Acad. Sci. USA2004101103587359010.1073/pnas.030875010114970327
    [Google Scholar]
  114. MaF. WangY. ZhangY. XiongN. YangB. ChenS. Heterologous expression of human paraoxonases in Pseudomonas aeruginosa inhibits biofilm formation and decreases antibiotic resistance.Appl. Microbiol. Biotechnol.200983113514110.1007/s00253‑009‑1890‑219205690
    [Google Scholar]
  115. Aluganti NarasimhuluC. MitraC. BhardwajD. BurgeK.Y. ParthasarathyS. Alzheimer’s Disease Markers in Aged ApoE-PON1 Deficient Mice.J. Alzheimers Dis.20196741353136510.3233/JAD‑18088330714958
    [Google Scholar]
  116. CervellatiC. VignaG.B. TrentiniA. SanzJ.M. ZimettiF. Dalla NoraE. MorieriM.L. ZulianiG. PassaroA. Paraoxonase-1 activities in individuals with different HDL circulating levels: Implication in reverse cholesterol transport and early vascular damage.Atherosclerosis2019285647010.1016/j.atherosclerosis.2019.04.21831029939
    [Google Scholar]
  117. SalariN. RasoulpoorS. Hosseinian-FarA. RazazianN. MansouriK. MohammadiM. Vaisi-RayganiA. JalaliR. ShabaniS. Association between serum paraoxonase 1 activity and its polymorphisms with multiple sclerosis: A systematic review.Neurol. Sci.202142249150010.1007/s10072‑020‑04842‑333095366
    [Google Scholar]
  118. VasiliE. Dominguez-MeijideA. OuteiroT.F. Spreading of α-Synuclein and Tau: A Systematic Comparison of the Mechanisms Involved.Front. Mol. Neurosci.20191210710.3389/fnmol.2019.0010731105524
    [Google Scholar]
  119. BorowczykK. ShihD.M. JakubowskiH. Metabolism and neurotoxicity of homocysteine thiolactone in mice: Evidence for a protective role of paraoxonase 1.J. Alzheimers Dis.201230222523110.3233/JAD‑2012‑11194022406444
    [Google Scholar]
  120. LeducV. ThérouxL. DeaD. RobitailleY. PoirierJ. Involvement of paraoxonase 1 genetic variants in Alzheimer’s disease neuropathology.Eur. J. Neurosci.20093091823183010.1111/j.1460‑9568.2009.06983.x19863653
    [Google Scholar]
  121. WingoT.S. Paraoxonase-1 polymorphisms in Alzheimer's disease, Parkinson's disease, and AD-PD spectrum diseases.Neurobiol Aging.201233120410.1016/j.neurobiolaging.2010.08.010
    [Google Scholar]
  122. WituckiŁ. JakubowskiH. Depletion of paraoxonase 1 (Pon1) dysregulates mTOR, autophagy, and accelerates amyloid beta accumulation in mice.Cells202312574610.3390/cells1205074636899882
    [Google Scholar]
  123. MotaA. Hemati-DinarvandM. Akbar TaheraghdamA. Reza NejabatiH. AhmadiR. GhasemnejadT. HasanpourM. ValiloM. Association of paraoxonse1 (PON1) genotypes with the activity of PON1 in patients with Parkinson’s disease.Acta Neurol. Taiwan.2019283667432002976
    [Google Scholar]
  124. AkhmedovaS.N. YakimovskyA.K. SchwartzE.I. Paraoxonase 1 Met–Leu 54 polymorphism is associated with Parkinson’s disease.J. Neurol. Sci.2001184217918210.1016/S0022‑510X(01)00439‑711239953
    [Google Scholar]
  125. TaylorM.C. Le CouteurD.G. MellickG.D. BoardP.G. Paraoxonase polymorphisms, pesticide exposure and Parkinson’s disease in a Caucasian population.J. Neural Transm. (Vienna)20001078-997998310.1007/s00702007004611041276
    [Google Scholar]
  126. LeeP.C. RhodesS.L. SinsheimerJ.S. BronsteinJ. RitzB. Functional paraoxonase 1 variants modify the risk of Parkinson’s disease due to organophosphate exposure.Environ. Int.201356424710.1016/j.envint.2013.03.00423602893
    [Google Scholar]
  127. PrécourtL.P. AmreD. DenisM.C. LavoieJ.C. DelvinE. SeidmanE. LevyE. The three-gene paraoxonase family: Physiologic roles, actions and regulation.Atherosclerosis20112141203610.1016/j.atherosclerosis.2010.08.07620934178
    [Google Scholar]
  128. GagliardiS. AbelK. BianchiM. MilaniP. BernuzziS. CoratoM. CeroniM. CashmanJ.R. CeredaC. Regulation of FMO and PON detoxication systems in ALS human tissues.Neurotox. Res.201323437037710.1007/s12640‑012‑9356‑123073612
    [Google Scholar]
  129. BaeS.S. ShahbazianA. WangJ. GolubI. OganesianB. DowdT. VayngortinB. WangR. ElashoffD. ReddyS.T. Charles-SchoemanC. Abnormal paraoxonase-1 (PON1) enzyme activity in idiopathic inflammatory myopathies.Rheumatology (Oxford)20226162512252310.1093/rheumatology/keab79534698804
    [Google Scholar]
  130. BacchettiT. FerrettiG. SahebkarA. The role of paraoxonase in cancer.Semin. Cancer Biol.201956728610.1016/j.semcancer.2017.11.01329170064
    [Google Scholar]
  131. PrasadY.R. AnakhaJ. PandeA.H. Treating liver cancer through arginine depletion.Drug Discov. Today202429410394010.1016/j.drudis.2024.10394038452923
    [Google Scholar]
  132. SamraZ.Q. PervaizS. ShaheenS. DarN. AtharM.A. Determination of oxygen derived free radicals producer (xanthine oxidase) and scavenger (paraoxonase1) enzymes and lipid parameters in different cancer patients.Clin. Lab.2011579-1074174722029190
    [Google Scholar]
  133. ArenasM. RodríguezE. SahebkarA. SabaterS. RizoD. PalliséO. HernándezM. RiuF. CampsJ. JovenJ. Paraoxonase-1 activity in patients with cancer: A systematic review and meta-analysis.Crit. Rev. Oncol. Hematol.201812761410.1016/j.critrevonc.2018.04.00529891113
    [Google Scholar]
  134. BulbullerN. ErenE. EllidagH.Y. OnerO.Z. SezerC. AydinO. YılmazN. Diagnostic value of thiols, paraoxonase 1, arylesterase and oxidative balance in colorectal cancer in human.Neoplasma201360441942410.4149/neo_2013_05423581414
    [Google Scholar]
  135. AtayA.E. KaplanM.A. EvliyaogluO. EkinN. IsıkdoganA. The predictive role of Paraoxonase 1 (PON1) activity on survival in patients with metastatic and nonmetastatic gastric cancer.Clin. Ter.20141651e1e524589953
    [Google Scholar]
  136. CamuzcuogluH. AriozD.T. ToyH. KurtS. CelikH. ErelO. Serum paraoxonase and arylesterase activities in patients with epithelial ovarian cancer.Gynecol. Oncol.2009112348148510.1016/j.ygyno.2008.10.03119101714
    [Google Scholar]
  137. ElkiranE.T. MarN. AygenB. GursuF. KaraogluA. KocaS. Serum paraoxonase and arylesterase activities in patients with lung cancer in a Turkish population.BMC Cancer2007714810.1186/1471‑2407‑7‑4817362500
    [Google Scholar]
  138. AriozD.T. CamuzcuogluH. ToyH. KurtS. CelikH. ErelO. Assessment of serum paraoxonase and arylesterase activity in patients with endometrial cancer.Eur. J. Gynaecol. Oncol.200930667968220099504
    [Google Scholar]
  139. TajiriK. ShimizuY. Liver physiology and liver diseases in the elderly.World J. Gastroenterol.201319468459846710.3748/wjg.v19.i46.845924379563
    [Google Scholar]
  140. DingG.Y. ZhuX.D. JiY. ShiG.M. ShenY.H. ZhouJ. FanJ. SunH.C. HuangC. Serum PON1 as a biomarker for the estimation of microvascular invasion in hepatocellular carcinoma.Ann. Transl. Med.20208520410.21037/atm.2020.01.4432309351
    [Google Scholar]
  141. YuZ. OuQ. ChenF. BiJ. LiW. MaJ. WangR. HuangX. Evaluation of the prognostic value of paraoxonase 1 in the recurrence and metastasis of hepatocellular carcinoma and establishment of a liver-specific predictive model of survival.J. Transl. Med.201816132710.1186/s12967‑018‑1707‑030477582
    [Google Scholar]
  142. GhoreshiZ.A. Abbasi-JorjandiM. AsadikaramG. Sharif-ZakM. SeyediF. Khaksari HaddadM. ZangoueyM. Paraoxonase 1 rs662 polymorphism, its related variables, and COVID-19 intensity: Considering gender and post-COVID complications.Exp. Biol. Med. (Maywood)2023248232351236236314852
    [Google Scholar]
  143. SurmaS. BanachM. LewekJ. COVID-19 and lipids. The role of lipid disorders and statin use in the prognosis of patients with SARS-CoV-2 infection.Lipids Health Dis.202120114110.1186/s12944‑021‑01563‑034689776
    [Google Scholar]
  144. DuzgunZ. KuralB.V. OremA. YildizI. In silico investigation of the interactions of certain drugs proposed for the treatment of COVID-19 with the paraoxonase-1.J. Biomol. Struct. Dyn.202341388489610.1080/07391102.2021.201497134895069
    [Google Scholar]
  145. Kotur-StevuljevicJ. SpasicS. Jelic-IvanovicZ. Spasojevic-KalimanovskaV. StefanovicA. VujovicA. MemonL. Kalimanovska-OstricD. PON1 status is influenced by oxidative stress and inflammation in coronary heart disease patients.Clin. Biochem.200841131067107310.1016/j.clinbiochem.2008.06.00918634772
    [Google Scholar]
  146. KhalafF.K. MohammedC.J. DubeP. ConnollyJ.A. LadA. AshrafU.M. BreidenbachJ.D. SuR.C. KleinhenzA.L. MalhotraD. GoharaA.F. HallerS.T. KennedyD.J. Paraoxonase-1 regulation of renal inflammation and fibrosis in chronic kidney disease.Antioxidants202211590010.3390/antiox1105090035624764
    [Google Scholar]
  147. MohammedC.J. XieY. BrewsterP.S. GhoshS. DubeP. SarsourT. KleinhenzA.L. CrawfordE.L. MalhotraD. JamesR.W. KalraP.A. HallerS.T. KennedyD.J. Circulating lactonase activity but not protein level of PON-1 predicts adverse outcomes in subjects with chronic kidney disease.J. Clin. Med.201987103410.3390/jcm807103431311140
    [Google Scholar]
  148. SamouilidouE.C. LiaouriA. KostopoulosV. NikasD. GrapsaE. The importance of paraoxonase 1 activity in chronic kidney disease.Ren. Fail.2024462237693010.1080/0886022X.2024.237693038982880
    [Google Scholar]
  149. KennedyD.J. Wilson TangW.H. FanY. WuY. MannS. PepoyM. HazenS.L. Diminished antioxidant activity of high- density lipoprotein-associated proteins in chronic kidney disease.J. Am. Heart Assoc.201322e00010410.1161/JAHA.113.00010423557751
    [Google Scholar]
  150. AharoniS. AviramM. FuhrmanB. Paraoxonase 1 (PON1) reduces macrophage inflammatory responses.Atherosclerosis2013228235336110.1016/j.atherosclerosis.2013.03.00523582715
    [Google Scholar]
  151. PrakashM. KedageV. MuttigiM.S. ShettyM.S. SuvarnaR. RaoS.S. JoshiC. Serum paraoxonase 1 activity status in patients with liver disorders.Saudi J. Gastroenterol.2010162798310.4103/1319‑3767.6123220339175
    [Google Scholar]
  152. XuG.Y. LvG.C. ChenY. HuaY.C. ZhuS.M. YangY.D. Monitoring the level of serum paraoxonase 1 activity in liver transplantation patients.Hepatobiliary Pancreat. Dis. Int.20054217818115908311
    [Google Scholar]
  153. KimS. LeeY. KooJ.S. Differential expression of lipid metabolism-related proteins in different breast cancer subtypes.PLoS One2015103e011947310.1371/journal.pone.011947325751270
    [Google Scholar]
  154. MahroozA. Pharmacological interactions of paraoxonase 1 (PON1): A HDL-bound antiatherogenic enzyme.Curr. Clin. Pharmacol.201611425926410.2174/157488471166616091515343327633038
    [Google Scholar]
  155. CostaL.G. GiordanoG. FurlongC.E. Pharmacological and dietary modulators of paraoxonase 1 (PON1) activity and expression: The hunt goes on.Biochem. Pharmacol.201181333734410.1016/j.bcp.2010.11.00821093416
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037335325241011162207
Loading
/content/journals/cpps/10.2174/0113892037335325241011162207
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test