Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Alzheimer's disease (AD), the most common kind of dementia worldwide, is characterized by elevated levels of the amyloid-β (Aβ) peptide and hyperphosphorylated tau protein in the neurons. The complexity of AD makes the development of treatments infamously challenging. Apolipoprotein E (APOE) genes’s ɛ4 allele is one of the main genetic risk factors for AD. While the APOE gene's ɛ4 allele considerably increases the chance of developing AD, the ɛ2 allele is protective compared to the prevalent ɛ3 variant. It is fiercely discussed how APOE affects the development and course of disease since it has a variety of activities that influence both neuronal and non-neuronal cells. ApoE4 contributes to the formation of tau tangles, deposition of Aβ, neuroinflammation, and other processes. Four decades of research have provided a significant understanding of the structure of APOE and how this may affect the neuropathology and pathogenesis of AD. APOE is a crucial lipid transporter essential for the growth of the central nervous system (CNS), upkeep, and repair. The mechanisms by which APOE contributes to the pathophysiology of AD are still up for discussion, though. Evidence suggests that APOE affects the brain's clearance and deposition of Aβ. Additionally, APOE has Aβ-independent pathways in AD, which has led to the identification of new functions for APOE, including mitochondrial dysfunction. This study summarizes important studies that describe how APOE4 affects well-known AD pathologies, including tau pathology, Aβ, neuroinflammation, and dysfunction of neural networks. This study also envisions some of the therapeutic approaches being used to target APOE4 in the hopes of preventing or treating AD.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037326839241014054430
2024-12-24
2025-04-08
Loading full text...

Full text loading...

References

  1. KumarP. JhaN.K. JhaS.K. RamaniK. AmbastaR.K. Tau phosphorylation, molecular chaperones, and ubiquitin E3 ligase: Clinical relevance in Alzheimer’s disease.J. Alzheimers Dis.201443234136110.3233/JAD‑14093325096626
    [Google Scholar]
  2. KarchC.M. GoateA.M. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis.Biol. Psychiatry2015771435110.1016/j.biopsych.2014.05.00624951455
    [Google Scholar]
  3. GauglerJ. JamesB. JohnsonT. MarinA. WeuveJ. 2019 Alzheimer’s disease facts and figures.Alzheimers Dement.201915332138710.1016/j.jalz.2019.01.010
    [Google Scholar]
  4. SheaY.F. ChuL.W. ChanA.O.K. HaJ. LiY. SongY.Q. A systematic review of familial Alzheimer’s disease: Differences in presentation of clinical features among three mutated genes and potential ethnic differences.J. Formos. Med. Assoc.20161152677510.1016/j.jfma.2015.08.00426337232
    [Google Scholar]
  5. PandeyG. RamakrishnanV. Invasive and non-invasive therapies for Alzheimer’s disease and other amyloidosis.Biophys. Rev.20201251175118610.1007/s12551‑020‑00752‑y32930962
    [Google Scholar]
  6. LambertJ.C. Ibrahim-VerbaasC.A. HaroldD. NajA.C. SimsR. BellenguezC. JunG. DeStefanoA.L. BisJ.C. BeechamG.W. Grenier-BoleyB. RussoG. Thornton-WellsT.A. JonesN. SmithA.V. ChourakiV. ThomasC. IkramM.A. ZelenikaD. VardarajanB.N. KamataniY. LinC-F. GerrishA. SchmidtH. KunkleB. DunstanM.L. RuizA. BihoreauM-T. ChoiS-H. ReitzC. PasquierF. HollingworthP. RamirezA. HanonO. FitzpatrickA.L. BuxbaumJ.D. CampionD. CraneP.K. BaldwinC. BeckerT. GudnasonV. CruchagaC. CraigD. AminN. BerrC. LopezO.L. De JagerP.L. DeramecourtV. JohnstonJ.A. EvansD. LovestoneS. LetenneurL. MorónF.J. RubinszteinD.C. EiriksdottirG. SleegersK. GoateA.M. FiévetN. HuentelmanM.J. GillM. BrownK. KambohM.I. KellerL. Barberger-GateauP. McGuinnessB. LarsonE.B. GreenR. MyersA.J. DufouilC. ToddS. WallonD. LoveS. RogaevaE. GallacherJ. St George-HyslopP. ClarimonJ. LleoA. BayerA. TsuangD.W. YuL. TsolakiM. BossùP. SpallettaG. ProitsiP. CollingeJ. SorbiS. Sanchez-GarciaF. FoxN.C. HardyJ. NaranjoM.C.D. BoscoP. ClarkeR. BrayneC. GalimbertiD. MancusoM. MatthewsF. MoebusS. MecocciP. Del ZompoM. MaierW. HampelH. PilottoA. BullidoM. PanzaF. CaffarraP. NacmiasB. GilbertJ.R. MayhausM. LannfeltL. HakonarsonH. PichlerS. CarrasquilloM.M. IngelssonM. BeeklyD. AlvarezV. ZouF. ValladaresO. YounkinS.G. CotoE. Hamilton-NelsonK.L. GuW. RazquinC. PastorP. MateoI. OwenM.J. FaberK.M. JonssonP.V. CombarrosO. O’DonovanM.C. CantwellL.B. SoininenH. BlackerD. MeadS. MosleyT.H.Jr BennettD.A. HarrisT.B. FratiglioniL. HolmesC. de BruijnR.F.A.G. PassmoreP. MontineT.J. BettensK. RotterJ.I. BriceA. MorganK. ForoudT.M. KukullW.A. HannequinD. PowellJ.F. NallsM.A. RitchieK. LunettaK.L. KauweJ.S.K. BoerwinkleE. RiemenschneiderM. BoadaM. HiltunenM. MartinE.R. SchmidtR. RujescuD. WangL-S. DartiguesJ-F. MayeuxR. TzourioC. HofmanA. NöthenM.M. GraffC. PsatyB.M. JonesL. HainesJ.L. HolmansP.A. LathropM. Pericak-VanceM.A. LaunerL.J. FarrerL.A. van DuijnC.M. Van BroeckhovenC. MoskvinaV. SeshadriS. WilliamsJ. SchellenbergG.D. AmouyelP. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease.Nat. Genet.201345121452145810.1038/ng.280224162737
    [Google Scholar]
  7. WeisgraberK.H. RallS.C.Jr MahleyR.W. Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms.J. Biol. Chem.1981256179077908310.1016/S0021‑9258(19)52510‑87263700
    [Google Scholar]
  8. CorderE.H. SaundersA.M. StrittmatterW.J. SchmechelD.E. GaskellP.C. SmallG.W. RosesA.D. HainesJ.L. Pericak-VanceM.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families.Science1993261512392192310.1126/science.83464438346443
    [Google Scholar]
  9. SaundersA.M. StrittmatterW.J. SchmechelD. George-HyslopP.H. Pericak-VanceM.A. JooS.H. RosiB.L. GusellaJ.F. Crapper-MacLachlanD.R. AlbertsM.J. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease.Neurology19934381467147210.1212/WNL.43.8.14678350998
    [Google Scholar]
  10. FarrerL.A. CupplesL.A. HainesJ.L. HymanB. KukullW.A. MayeuxR. MyersR.H. Pericak-VanceM.A. RischN. van DuijnC.M. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis.JAMA1997278161349135610.1001/jama.1997.035501600690419343467
    [Google Scholar]
  11. HuebbeP. RimbachG. Evolution of human apolipoprotein E (APOE) isoforms: Gene structure, protein function and interaction with dietary factors.Ageing Res. Rev.20173714616110.1016/j.arr.2017.06.00228647612
    [Google Scholar]
  12. McIntoshA.M. BennettC. DicksonD. AnestisS.F. WattsD.P. WebsterT.H. FontenotM.B. BradleyB.J. The apolipoprotein E (APOE) gene appears functionally monomorphic in chimpanzees (Pan troglodytes).PLoS One2012710e4776010.1371/journal.pone.004776023112842
    [Google Scholar]
  13. MahleyR.W. RallS.C.Jr ApolipoproteinE. Apolipoprotein E: Far more than a lipid transport protein.Annu. Rev. Genomics Hum. Genet.20001150753710.1146/annurev.genom.1.1.50711701639
    [Google Scholar]
  14. Arboleda-VelasquezJ.F. LoperaF. O’HareM. Delgado-TiradoS. MarinoC. ChmielewskaN. Saez-TorresK.L. AmarnaniD. SchultzA.P. SperlingR.A. Leyton-CifuentesD. ChenK. BaenaA. AguillonD. Rios-RomenetsS. GiraldoM. Guzmán-VélezE. NortonD.J. Pardilla-DelgadoE. ArtolaA. SanchezJ.S. Acosta-UribeJ. LalliM. KosikK.S. HuentelmanM.J. ZetterbergH. BlennowK. ReimanR.A. LuoJ. ChenY. ThiyyaguraP. SuY. JunG.R. NaymikM. GaiX. BootwallaM. JiJ. ShenL. MillerJ.B. KimL.A. TariotP.N. JohnsonK.A. ReimanE.M. QuirozY.T. Resistance to autosomal dominant Alzheimer’s disease in an APOE3 Christchurch homozygote: A case report.Nat. Med.201925111680168310.1038/s41591‑019‑0611‑331686034
    [Google Scholar]
  15. Sepulveda-FallaD. SanchezJ.S. AlmeidaM.C. BoassaD. Acosta-UribeJ. Vila-CastelarC. Ramirez-GomezL. BaenaA. AguillonD. Villalba-MorenoN.D. LittauJ.L. VillegasA. BeachT.G. WhiteC.L.III EllismanM. KrasemannS. GlatzelM. JohnsonK.A. SperlingR.A. ReimanE.M. Arboleda-VelasquezJ.F. KosikK.S. LoperaF. QuirozY.T. Distinct tau neuropathology and cellular profiles of an APOE3 christchurch homozygote protected against autosomal dominant Alzheimer’s dementia.Acta Neuropathol.2022144358960110.1007/s00401‑022‑02467‑835838824
    [Google Scholar]
  16. LiuC.C. MurrayM.E. LiX. ZhaoN. WangN. HeckmanM.G. ShueF. MartensY. LiY. RaulinA.C. RosenbergC.L. DossS.V. ZhaoJ. WrenM.C. JiaL. RenY. IkezuT.C. LuW. FuY. CaulfieldT. TrottierZ.A. KnightJ. ChenY. LinaresC. WangX. KurtiA. AsmannY.W. WszolekZ.K. SmithG.E. VemuriP. KantarciK. KnopmanD.S. LoweV.J. JackC.R.Jr ParisiJ.E. FermanT.J. BoeveB.F. Graff-RadfordN.R. PetersenR.C. YounkinS.G. FryerJ.D. WangH. HanX. FriedenC. DicksonD.W. RossO.A. BuG. APOE3 -Jacksonville (V236E) variant reduces self-aggregation and risk of dementia.Sci. Transl. Med.202113613eabc937510.1126/scitranslmed.abc937534586832
    [Google Scholar]
  17. MedwayC.W. Abdul-HayS. MimsT. MaL. BisceglioG. ZouF. PankratzS. SandoS.B. AaslyJ.O. BarcikowskaM. SiudaJ. WszolekZ.K. RossO.A. CarrasquilloM. DicksonD.W. Graff-RadfordN. PetersenR.C. Ertekin-TanerN. MorganK. BuG. YounkinS.G. ApoE variant p.V236E is associated with markedly reduced risk of Alzheimer’s disease.Mol. Neurodegener.2014911110.1186/1750‑1326‑9‑1124607147
    [Google Scholar]
  18. Le GuenY. BelloyM.E. Grenier-BoleyB. de RojasI. Castillo-MoralesA. JansenI. NicolasA. BellenguezC. DalmassoC. KüçükaliF. EgerS.J. RasmussenK.L. ThomassenJ.Q. DeleuzeJ.F. HeZ. NapolioniV. AmouyelP. JessenF. KehoeP.G. van DuijnC. TsolakiM. Sánchez-JuanP. SleegersK. IngelssonM. RossiG. HiltunenM. SimsR. van der FlierW.M. RamirezA. AndreassenO.A. Frikke-SchmidtR. WilliamsJ. RuizA. LambertJ.C. GreiciusM.D. ArosioB. BenussiL. BolandA. BorroniB. CaffarraP. DaianD. DanieleA. DebetteS. DufouilC. DüzelE. GalimbertiD. GiedraitisV. GrimmerT. GraffC. GrünblattE. HanonO. HausnerL. Heilmann-HeimbachS. HolstegeH. HortJ. JürgenD. KuulasmaaT. van der LugtA. MasulloC. MecocciP. MehrabianS. de MendonçaA. MoebusS. NacmiasB. NicolasG. OlasoR. PapenbergG. ParnettiL. PasquierF. PetersO. PijnenburgY.A.L. PoppJ. RaineroI. RamakersI. Riedel-HellerS. ScarmeasN. ScheltensP. ScherbaumN. SchneiderA. SeripaD. SoininenH. SolfrizziV. SpallettaG. SquassinaA. van SwietenJ. TegosT.J. TremolizzoL. VerheyF. VyhnalekM. WiltfangJ. BoadaM. García-GonzálezP. PuertaR. RealL.M. ÁlvarezV. BullidoM.J. ClarimonJ. García-AlbercaJ.M. MirP. MorenoF. PastorP. Piñol-RipollG. Molina-PorcelL. Pérez-TurJ. Rodríguez-RodríguezE. RoyoJ.L. Sánchez-ValleR. DichgansM. RujescuD. Association of rare APOE missense variants V236E and R251G with risk of Alzheimer disease.JAMA Neurol.202279765266310.1001/jamaneurol.2022.116635639372
    [Google Scholar]
  19. SelkoeD.J. HardyJ. The amyloid hypothesis of Alzheimer’s disease at 25 years.EMBO Mol. Med.20168659560810.15252/emmm.20160621027025652
    [Google Scholar]
  20. ViolaK.L. KleinW.L. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis.Acta Neuropathol.2015129218320610.1007/s00401‑015‑1386‑325604547
    [Google Scholar]
  21. MorleyJ.E. FarrS.A. The role of amyloid-beta in the regulation of memory.Biochem. Pharmacol.201488447948510.1016/j.bcp.2013.12.01824398426
    [Google Scholar]
  22. ChernickD. Ortiz-ValleS. JeongA. SwaminathanS.K. KandimallaK.K. RebeckG.W. LiL. High-density lipoprotein mimetic peptide 4F mitigates amyloid-β-induced inhibition of apolipoprotein E secretion and lipidation in primary astrocytes and microglia.J. Neurochem.2018147564766210.1111/jnc.1455430028014
    [Google Scholar]
  23. ZhaoN. LiuC.C. Van IngelgomA.J. LinaresC. KurtiA. KnightJ.A. HeckmanM.G. DiehlN.N. ShinoharaM. MartensY.A. AttrebiO.N. PetrucelliL. FryerJ.D. WszolekZ.K. Graff-RadfordN.R. CaselliR.J. Sanchez-ContrerasM.Y. RademakersR. MurrayM.E. KogaS. DicksonD.W. RossO.A. BuG. APOE ε2 is associated with increased tau pathology in primary tauopathy.Nat. Commun.201891438810.1038/s41467‑018‑06783‑030348994
    [Google Scholar]
  24. HoltzmanD.M. HerzJ. BuG. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease.Cold Spring Harb. Perspect. Med.201223a00631210.1101/cshperspect.a00631222393530
    [Google Scholar]
  25. IgnatiusM.J. Gebicke-HärterP.J. SkeneJ.H. SchillingJ.W. WeisgraberK.H. MahleyR.W. ShooterE.M. Expression of apolipoprotein E during nerve degeneration and regeneration.Proc. Natl. Acad. Sci. USA19868341125112910.1073/pnas.83.4.11252419900
    [Google Scholar]
  26. AbondioP. SazziniM. GaragnaniP. BoattiniA. MontiD. FranceschiC. LuiselliD. GiulianiC. The genetic variability of APOE in different human populations and its implications for longevity.Genes (Basel)201910322210.3390/genes1003022230884759
    [Google Scholar]
  27. KumarA. PalA. SinghP. RaniI. TondoloV. RongiolettiM. SquittiR. Might diet, APOE-APOA1 axis, and iron metabolism provide clues about the discrepancy in Alzheimer’s disease occurrence between humans and chimpanzees? A bioinformatics-based re-analysis of gene expression data on mice fed with human and chimpanzee diets.Biol. Trace Elem. Res.202420283750375910.1007/s12011‑023‑03932‑537938458
    [Google Scholar]
  28. WalkerL.C. JuckerM. The exceptional vulnerability of humans to Alzheimer’s disease.Trends Mol. Med.201723653454510.1016/j.molmed.2017.04.00128483344
    [Google Scholar]
  29. EndresK. Apolipoprotein A1, the neglected relative of Apolipoprotein E and its potential role in Alzheimer’s disease.Neural Regen. Res.202116112141214810.4103/1673‑5374.31066933818485
    [Google Scholar]
  30. HuangY. MahleyR.W. ApolipoproteinE. Apolipoprotein E: Structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases.Neurobiol. Dis.201472Pt A31210.1016/j.nbd.2014.08.02525173806
    [Google Scholar]
  31. MahleyR.W. ApolipoproteinE. Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology.Science1988240485262263010.1126/science.32839353283935
    [Google Scholar]
  32. WetterauJ.R. AggerbeckL.P. RallS.C.Jr WeisgraberK.H. Human apolipoprotein E3 in aqueous solution. I. Evidence for two structural domains.J. Biol. Chem.1988263136240624810.1016/S0021‑9258(18)68778‑23360781
    [Google Scholar]
  33. WeisgraberK.H. ApolipoproteinE. Apolipoprotein E: Structure-function relationships.Adv. Protein Chem.19944524930210.1016/S0065‑3233(08)60642‑78154371
    [Google Scholar]
  34. MahleyR.W. WeisgraberK.H. HuangY. Apolipoprotein E4: A causative factor and therapeutic target in neuropathology, including Alzheimer’s disease.Proc. Natl. Acad. Sci. USA2006103155644565110.1073/pnas.060054910316567625
    [Google Scholar]
  35. XuQ. BernardoA. WalkerD. KanegawaT. MahleyR.W. HuangY. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus.J. Neurosci.200626194985499410.1523/JNEUROSCI.5476‑05.200616687490
    [Google Scholar]
  36. KangS.S. EbbertM.T.W. BakerK.E. CookC. WangX. SensJ.P. KocherJ.P. PetrucelliL. FryerJ.D. Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau.J. Exp. Med.201821592235224510.1084/jem.2018065330082275
    [Google Scholar]
  37. RallS.C.Jr WeisgraberK.H. MahleyR.W. Human apolipoprotein E. The complete amino acid sequence.J. Biol. Chem.1982b25784171417810.1016/S0021‑9258(18)34702‑17068630
    [Google Scholar]
  38. MahleyR.W. InnerarityT.L. Lipoprotein receptors and cholesterol homeostasis. Biochimica et Biophysica Acta (BBA)-.Reviews on Biomembranes19837372197222
    [Google Scholar]
  39. MahleyR.W. JiZ.S. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E.J. Lipid Res.199940111610.1016/S0022‑2275(20)33334‑49869645
    [Google Scholar]
  40. GetzG.S. ReardonC.A. Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall.J. Lipid Res.200950S156S16110.1194/jlr.R800058‑JLR20019018038
    [Google Scholar]
  41. WeisgraberK.H. InnerarityT.L. MahleyR.W. Abnormal lipoprotein receptor-binding activity of the human E apoprotein due to cysteine-arginine interchange at a single site.J. Biol. Chem.198225752518252110.1016/S0021‑9258(18)34954‑86277903
    [Google Scholar]
  42. CorderE.H. SaundersA.M. RischN.J. StrittmatterW.J. SchmechelD.E. GaskellP.C.Jr RimmlerJ.B. LockeP.A. ConneallyP.M. SchmaderK.E. SmallG.W. RosesA.D. HainesJ.L. Pericak-VanceM.A. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease.Nat. Genet.19947218018410.1038/ng0694‑1807920638
    [Google Scholar]
  43. Braesch-AndersenS. PaulieS. SmedmanC. MiaS. Kumagai-BraeschM. ApoE. ApoE production in human monocytes and its regulation by inflammatory cytokines.PLoS One2013811e7990810.1371/journal.pone.007990824244577
    [Google Scholar]
  44. KockxM. TrainiM. KritharidesL. Cell-specific production, secretion, and function of apolipoprotein E.J. Mol. Med. (Berl.)201896536137110.1007/s00109‑018‑1632‑y29516132
    [Google Scholar]
  45. VitaliC. WellingtonC.L. CalabresiL. HDL and cholesterol handling in the brain.Cardiovasc. Res.2014103340541310.1093/cvr/cvu14824907980
    [Google Scholar]
  46. Hirsch-ReinshagenV. WellingtonC.L. Cholesterol metabolism, apolipoprotein E, adenosine triphosphate-binding cassette transporters, and Alzheimer’s disease.Curr. Opin. Lipidol.200718332533210.1097/MOL.0b013e32813aeabf17495608
    [Google Scholar]
  47. de ChavesE.P. NarayanaswamiV. ChristoffersenC. NielsenL.B. Apolipoprotein E and cholesterol in aging and disease in the brain.Future Lipidol.20083550553010.2217/17460875.3.5.50519649144
    [Google Scholar]
  48. PhillipsM.C. Apolipoprotein E isoforms and lipoprotein metabolism.IUBMB Life201466961662310.1002/iub.131425328986
    [Google Scholar]
  49. MahleyR.W. WeisgraberK.H. HuangY. ApolipoproteinE. Apolipoprotein E: Structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS.J. Lipid Res.200950S183S18810.1194/jlr.R800069‑JLR20019106071
    [Google Scholar]
  50. TokudaT. CaleroM. MatsubaraE. VidalR. KumarA. PermanneB. ZlokovicB. SmithJ.D. LaduM.J. RostagnoA. FrangioneB. GhisoJ. Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer’s amyloid β peptides.Biochem. J.2000348235936510.1042/bj348035910816430
    [Google Scholar]
  51. BoylesJ.K. ZoellnerC.D. AndersonL.J. KosikL.M. PitasR.E. WeisgraberK.H. HuiD.Y. MahleyR.W. Gebicke-HaerterP.J. IgnatiusM.J. A role for apolipoprotein E, apolipoprotein A-I, and low density lipoprotein receptors in cholesterol transport during regeneration and remyelination of the rat sciatic nerve.J. Clin. Invest.19898331015103110.1172/JCI1139432493483
    [Google Scholar]
  52. RueterJ. RimbachG. HuebbeP. Functional diversity of apolipoprotein E: from subcellular localization to mitochondrial function.Cell. Mol. Life Sci.202279949910.1007/s00018‑022‑04516‑736018414
    [Google Scholar]
  53. JiY. GongY. GanW. BeachT. HoltzmanD.M. WisniewskiT. Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer’s disease patients.Neuroscience2003122230531510.1016/j.neuroscience.2003.08.00714614898
    [Google Scholar]
  54. ZhangS.H. ReddickR.L. PiedrahitaJ.A. MaedaN. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E.Science1992258508146847110.1126/science.14115431411543
    [Google Scholar]
  55. PlumpA.S. SmithJ.D. HayekT. Aalto-SetäläK. WalshA. VerstuyftJ.G. RubinE.M. BreslowJ.L. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells.Cell199271234335310.1016/0092‑8674(92)90362‑G1423598
    [Google Scholar]
  56. Boehm-CaganA. BarR. HaratsD. ShaishA. LevkovitzH. BielickiJ.K. JohanssonJ.O. MichaelsonD.M. Differential effects of apoE4 and activation of ABCA1 on brain and plasma lipoproteins.PLoS One20161111e016619510.1371/journal.pone.016619527824936
    [Google Scholar]
  57. RawatV. WangS. SimaJ. BarR. LirazO. GundimedaU. ParekhT. ChanJ. JohanssonJ.O. TangC. ChuiH.C. HarringtonM.G. MichaelsonD.M. YassineH.N. ApoE4 alters ABCA1 membrane trafficking in astrocytes.J. Neurosci.201939489611962210.1523/JNEUROSCI.1400‑19.201931641056
    [Google Scholar]
  58. Boehm-CaganA. BarR. LirazO. BielickiJ.K. JohanssonJ.O. MichaelsonD.M. ABCA1 agonist reverses the ApoE4-driven cognitive and brain pathologies.J. Alzheimers Dis.20165431219123310.3233/JAD‑16046727567858
    [Google Scholar]
  59. Lane-DonovanC. WongW.M. DurakoglugilM.S. WasserC.R. JiangS. XianX. HerzJ. Genetic restoration of plasma apoe improves cognition and partially restores synaptic defects in ApoE-deficient mice.J. Neurosci.20163639101411015010.1523/JNEUROSCI.1054‑16.201627683909
    [Google Scholar]
  60. Alzgene - Meta-analysis of all published ad association studies (Case-control only).2010Available from: http://www.alzgene.org/meta.asp?geneID=83
  61. KanekiyoT. XuH. BuG. ApoE and Aβ in Alzheimer’s disease: Accidental encounters or partners?Neuron201481474075410.1016/j.neuron.2014.01.04524559670
    [Google Scholar]
  62. HuJ. LiuC.C. ChenX.F. ZhangY. XuH. BuG. Opposing effects of viral mediated brain expression of apolipoprotein E2 (apoE2) and apoE4 on apoE lipidation and Aβ metabolism in apoE4-targeted replacement mice.Mol. Neurodegener.2015101610.1186/s13024‑015‑0001‑325871773
    [Google Scholar]
  63. MahleyR.W. WeisgraberK.H. InnerarityT.L. Interaction of plasma lipoproteins containing apolipoproteins B and E with heparin and cell surface receptors.Biochim. Biophys. Acta Lipids Lipid Metab.19795751819110.1016/0005‑2760(79)90133‑4228738
    [Google Scholar]
  64. WahrleS.E. JiangH. ParsadanianM. LegleiterJ. HanX. FryerJ.D. KowalewskiT. HoltzmanD.M. ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE.J. Biol. Chem.200427939409874099310.1074/jbc.M40796320015269217
    [Google Scholar]
  65. MichikawaM. FanQ.W. IsobeI. YanagisawaK. Apolipoprotein E exhibits isoform-specific promotion of lipid efflux from astrocytes and neurons in culture.J. Neurochem.20007431008101610.1046/j.1471‑4159.2000.0741008.x10693931
    [Google Scholar]
  66. MahleyR.W. ApolipoproteinE. Apolipoprotein E: From cardiovascular disease to neurodegenerative disorders.J. Mol. Med. (Berl.)201694773974610.1007/s00109‑016‑1427‑y27277824
    [Google Scholar]
  67. SaitoH. DhanasekaranP. BaldwinF. WeisgraberK.H. Lund-KatzS. PhillipsM.C. Lipid binding-induced conformational change in human apolipoprotein E. Evidence for two lipid-bound states on spherical particles.J. Biol. Chem.200127644409494095410.1074/jbc.M10633720011533033
    [Google Scholar]
  68. KnouffC. HinsdaleM.E. MezdourH. AltenburgM.K. WatanabeM. QuarfordtS.H. SullivanP.M. MaedaN. Apo E structure determines VLDL clearance and atherosclerosis risk in mice.J. Clin. Invest.1999103111579158610.1172/JCI617210359567
    [Google Scholar]
  69. LinY.-T. SeoJ. GaoF. FeldmanH. M. WenH.-L. PenneyJ. CamH. P. GjoneskaE. RajaW. K. ChengJ. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC-derived brain cell types.Neuron201898611411154.e710.1016/j.neuron.2018.05.008.
    [Google Scholar]
  70. SienskiG. NarayanP. BonnerJ.M. KoryN. BolandS. ArczewskaA.A. RalveniusW.T. AkayL. LockshinE. HeL. MiloB. GraziosiA. BaruV. LewisC.A. KellisM. SabatiniD.M. TsaiL.H. LindquistS. APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia.Sci. Transl. Med.202113583eaaz456410.1126/scitranslmed.aaz456433658354
    [Google Scholar]
  71. FarmerB. KluemperJ. JohnsonL. Apolipoprotein E4 alters astrocyte fatty acid metabolism and lipid droplet formation.Cells20198218210.3390/cells802018230791549
    [Google Scholar]
  72. MarschallingerJ. IramT. ZardenetaM. LeeS.E. LehallierB. HaneyM.S. PluvinageJ.V. MathurV. HahnO. MorgensD.W. KimJ. TeviniJ. FelderT.K. WolinskiH. BertozziC.R. BassikM.C. AignerL. Wyss-CorayT. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain.Nat. Neurosci.202023219420810.1038/s41593‑019‑0566‑131959936
    [Google Scholar]
  73. ClaesC. DanhashE.P. HasselmannJ. ChadarevianJ.P. ShabestariS.K. EnglandW.E. LimT.E. HidalgoJ.L.S. SpitaleR.C. DavtyanH. Blurton-JonesM. Plaque-associated human microglia accumulate lipid droplets in a chimeric model of Alzheimer’s disease.Mol. Neurodegener.20211615010.1186/s13024‑021‑00473‑034301296
    [Google Scholar]
  74. VilleneuveS. BrissonD. GaudetD. Influence of abdominal obesity on the lipid-lipoprotein profile in apoprotein E2/4 carriers: The effect of an apparent duality.J Lipids2015201574240810.1155/2015/742408.
    [Google Scholar]
  75. ZhaoN. LiuC.C. Van IngelgomA.J. MartensY.A. LinaresC. KnightJ.A. PainterM.M. SullivanP.M. BuG. Apolipoprotein E4 impairs neuronal insulin signaling by trapping insulin receptor in the endosomes.Neuron2017961115129.e510.1016/j.neuron.2017.09.00328957663
    [Google Scholar]
  76. KockxM. JessupW. KritharidesL. Regulation of endogenous apolipoprotein E secretion by macrophages.Arterioscler. Thromb. Vasc. Biol.20082861060106710.1161/ATVBAHA.108.16435018388328
    [Google Scholar]
  77. WennerC. LorkowskiS. EngelT. CullenP. Apolipoprotein E in macrophages and hepatocytes is eegraded via the proteasomal pathway.Biochem. Biophys. Res. Commun.2001282260861410.1006/bbrc.2001.461111401504
    [Google Scholar]
  78. SharmanM.J. MoriciM. HoneE. BergerT. TaddeiK. MartinsI.J. LimW.L.F. SinghS. WenkM.R. GhisoJ. BuxbaumJ.D. GandyS. MartinsR.N. APOE genotype results in differential effects on the peripheral clearance of amyloid-beta42 in APOE knock-in and knock-out mice.J. Alzheimers Dis.201021240340910.3233/JAD‑2010‑10014120555142
    [Google Scholar]
  79. ShinoharaM. KanekiyoT. YangL. LinthicumD. ShinoharaM. FuY. PriceL. Frisch-DaielloJ.L. HanX. FryerJ.D. BuG. APOE2 eases cognitive decline during Aging: Clinical and preclinical evaluations.Ann. Neurol.201679575877410.1002/ana.2462826933942
    [Google Scholar]
  80. LefterovI. WolfeC.M. FitzN.F. NamK.N. LetronneF. BiedrzyckiR.J. KoflerJ. HanX. WangJ. SchugJ. KoldamovaR. APOE2 orchestrated differences in transcriptomic and lipidomic profiles of postmortem AD brain.Alzheimers Res. Ther.201911111310.1186/s13195‑019‑0558‑031888770
    [Google Scholar]
  81. MayeuxR. SaundersA.M. SheaS. MirraS. EvansD. RosesA.D. HymanB.T. CrainB. TangM.X. PhelpsC.H. Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer’s disease.N. Engl. J. Med.1998338850651110.1056/NEJM1998021933808049468467
    [Google Scholar]
  82. BalesK.R. VerinaT. DodelR.C. DuY. AltstielL. BenderM. HyslopP. JohnstoneE.M. LittleS.P. CumminsD.J. PiccardoP. GhettiB. PaulS.M. Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition.Nat. Genet.199717326326410.1038/ng1197‑2639354781
    [Google Scholar]
  83. MahanT.E. WangC. BaoX. ChoudhuryA. UlrichJ.D. HoltzmanD.M. Selective reduction of astrocyte apoE3 and apoE4 strongly reduces Aβ accumulation and plaque-related pathology in a mouse model of amyloidosis.Mol. Neurodegener.20221711310.1186/s13024‑022‑00516‑035109920
    [Google Scholar]
  84. LiuC.C. KanekiyoT. XuH. BuG. BuG. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy.Nat. Rev. Neurol.20139210611810.1038/nrneurol.2012.26323296339
    [Google Scholar]
  85. SananD.A. WeisgraberK.H. RussellS.J. MahleyR.W. HuangD. SaundersA. SchmechelD. WisniewskiT. FrangioneB. RosesA.D. Apolipoprotein E associates with beta amyloid peptide of Alzheimer’s disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3.J. Clin. Invest.199494286086910.1172/JCI1174078040342
    [Google Scholar]
  86. MishraS. BlazeyT.M. HoltzmanD.M. CruchagaC. SuY. MorrisJ.C. BenzingerT.L.S. GordonB.A. Longitudinal brain imaging in preclinical Alzheimer disease: Impact of APOE ε4 genotype.Brain201814161828183910.1093/brain/awy10329672664
    [Google Scholar]
  87. LimY.Y. MorminoE.C. APOE genotype and early β-amyloid accumulation in older adults without dementia.Neurology201789101028103410.1212/WNL.000000000000433628794245
    [Google Scholar]
  88. HabchiJ. ChiaS. GalvagnionC. MichaelsT.C.T. BellaicheM.M.J. RuggeriF.S. SanguaniniM. IdiniI. KumitaJ.R. SparrE. LinseS. DobsonC.M. KnowlesT.P.J. VendruscoloM. Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes.Nat. Chem.201810667368310.1038/s41557‑018‑0031‑x29736006
    [Google Scholar]
  89. SchmechelD.E. SaundersA.M. StrittmatterW.J. CrainB.J. HuletteC.M. JooS.H. Pericak-VanceM.A. GoldgaberD. RosesA.D. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease.Proc. Natl. Acad. Sci. USA199390209649965310.1073/pnas.90.20.96498415756
    [Google Scholar]
  90. NelsonP.T. PiousN.M. JichaG.A. WilcockD.M. FardoD.W. EstusS. RebeckG.W. APOE-ε2 and APOE-ε4 correlate with increased amyloid accumulation in cerebral vasculature.J. Neuropathol. Exp. Neurol.201372770871510.1097/NEN.0b013e31829a25b923771217
    [Google Scholar]
  91. NicollJ.A.R. BurnettC. LoveS. GrahamD.I. DewarD. IronsideJ.W. StewartJ. VintersH.V. High frequency of apolipoprotein E ε2 Allele in hemorrhage due to cerebral amyloid angiopathy.Ann. Neurol.199741671672110.1002/ana.4104106079189032
    [Google Scholar]
  92. BiffiA. SonniA. AndersonC.D. KisselaB. JagiellaJ.M. SchmidtH. Jimenez-CondeJ. HansenB.M. Fernandez-CadenasI. CortelliniL. AyresA. SchwabK. JuchniewiczK. UrbanikA. RostN.S. ViswanathanA. Seifert-HeldT. StoegererE.M. TomásM. RabionetR. EstivillX. BrownD.L. SillimanS.L. SelimM. WorrallB.B. MeschiaJ.F. MontanerJ. LindgrenA. RoquerJ. SchmidtR. GreenbergS.M. SlowikA. BroderickJ.P. WooD. RosandJ. Variants at APOE influence risk of deep and lobar intracerebral hemorrhage.Ann. Neurol.201068693494310.1002/ana.2213421061402
    [Google Scholar]
  93. LoveS. ChalmersK. InceP. EsiriM. AttemsJ. JellingerK. YamadaM. McCarronM. MinettT. MatthewsF. GreenbergS. MannD. KehoeP.G. Development, appraisal, validation and implementation of a consensus protocol for the assessment of cerebral amyloid angiopathy in post-mortem brain tissue.Am. J. Neurodegener. Dis.201431193224754000
    [Google Scholar]
  94. RaulinA.C. KraftL. Al-HilalyY.K. XueW.F. McGeehanJ.E. AtackJ.R. SerpellL. The molecular basis for apolipoprotein E4 as the major risk factor for late-Onset Alzheimer’s disease.J. Mol. Biol.2019431122248226510.1016/j.jmb.2019.04.01931051176
    [Google Scholar]
  95. WinklerK. ScharnaglH. TisljarU. HoschützkyH. FriedrichI. HoffmannM.M. HüttingerM. WielandH. MärzW. Competition of Aβ amyloid peptide and apolipoprotein E for receptor-mediated endocytosis.J. Lipid Res.199940344745510.1016/S0022‑2275(20)32449‑410064733
    [Google Scholar]
  96. BilousovaT. MelnikM. MiyoshiE. GonzalezB.L. PoonW.W. VintersH.V. MillerC.A. CorradaM.M. KawasC. HatamiA. AlbayR.III GlabeC. GylysK.H. Apolipoprotein E/amyloid-β complex accumulates in Alzheimer disease cortical synapses via apolipoprotein E receptors and is enhanced by APOE4.Am. J. Pathol.201918981621163610.1016/j.ajpath.2019.04.01031108099
    [Google Scholar]
  97. YamazakiY. ZhaoN. CaulfieldT.R. LiuC.C. BuG. Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies.Nat. Rev. Neurol.201915950151810.1038/s41582‑019‑0228‑731367008
    [Google Scholar]
  98. WoodS.J. ChanW. WetzelR. Seeding of A beta fibril formation is inhibited by all three isotypes of apolipoprotein E.Biochemistry19963538126231262810.1021/bi961074j8823200
    [Google Scholar]
  99. HashimotoT. Serrano-PozoA. HoriY. AdamsK.W. TakedaS. BanerjiA.O. MitaniA. JoynerD. ThyssenD.H. BacskaiB.J. FroschM.P. Spires-JonesT.L. FinnM.B. HoltzmanD.M. HymanB.T. ApolipoproteinE. Apolipoprotein E, especially apolipoprotein E4, increases the oligomerization of amyloid β peptide.J. Neurosci.20123243151811519210.1523/JNEUROSCI.1542‑12.201223100439
    [Google Scholar]
  100. LiuS. ParkS. AllingtonG. PrelliF. SunY. Martá-ArizaM. ScholtzovaH. BiswasG. BrownB. VergheseP.B. MehtaP.D. KwonY.U. WisniewskiT. Targeting apolipoprotein E/amyloid β binding by peptoid CPO_Aβ17-21 P ameliorates Alzheimer’s disease related pathology and cognitive decline.Sci. Rep.201771800910.1038/s41598‑017‑08604‑828808293
    [Google Scholar]
  101. LiJ. KanekiyoT. ShinoharaM. ZhangY. LaDuM.J. XuH. BuG. Differential regulation of amyloid-β endocytic trafficking and lysosomal degradation by apolipoprotein E isoforms.J. Biol. Chem.201228753445934460110.1074/jbc.M112.42022423132858
    [Google Scholar]
  102. HaselP. LiddelowS.A. Isoform-dependent APOE secretion modulates neuroinflammation.Nat. Rev. Neurol.202117526526610.1038/s41582‑021‑00483‑y33727705
    [Google Scholar]
  103. FengW. ZhangY. WangZ. XuH. WuT. MarshallC. GaoJ. XiaoM. Microglia prevent beta-amyloid plaque formation in the early stage of an Alzheimer’s disease mouse model with suppression of glymphatic clearance.Alzheimers Res. Ther.202012112510.1186/s13195‑020‑00688‑133008458
    [Google Scholar]
  104. DeaneR. SagareA. HammK. ParisiM. LaneS. FinnM.B. HoltzmanD.M. ZlokovicB.V. apoE isoform–specific disruption of amyloid β peptide clearance from mouse brain.J. Clin. Invest.2008118124002401310.1172/JCI3666319033669
    [Google Scholar]
  105. TaiL.M. BilousovaT. JungbauerL. RoeskeS.K. YoumansK.L. YuC. PoonW.W. CornwellL.B. MillerC.A. VintersH.V. Van EldikL.J. FardoD.W. EstusS. BuG. GylysK.H. LaDuM.J. Levels of soluble apolipoprotein E/amyloid-β (Aβ) complex are reduced and oligomeric Aβ increased with APOE4 and Alzheimer disease in a transgenic mouse model and human samples.J. Biol. Chem.201328885914592610.1074/jbc.M112.44210323293020
    [Google Scholar]
  106. Tarasoff-ConwayJ.M. CarareR.O. OsorioR.S. GlodzikL. ButlerT. FieremansE. AxelL. RusinekH. NicholsonC. ZlokovicB.V. FrangioneB. BlennowK. MénardJ. ZetterbergH. WisniewskiT. de LeonM.J. Clearance systems in the brain—implications for Alzheimer disease.Nat. Rev. Neurol.201511845747010.1038/nrneurol.2015.11926195256
    [Google Scholar]
  107. VergheseP.B. CastellanoJ.M. GaraiK. WangY. JiangH. ShahA. BuG. FriedenC. HoltzmanD.M. ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions.Proc. Natl. Acad. Sci. USA201311019E1807E181610.1073/pnas.122048411023620513
    [Google Scholar]
  108. MawuenyegaK.G. SigurdsonW. OvodV. MunsellL. KastenT. MorrisJ.C. YarasheskiK.E. BatemanR.J. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease.Science20103306012177410.1126/science.119762321148344
    [Google Scholar]
  109. MuthC. HartmannA. Sepulveda-FallaD. GlatzelM. KrasemannS. Phagocytosis of apoptotic cells is specifically upregulated in ApoE4 expressing microglia in vitro .Front. Cell. Neurosci.20191318110.3389/fncel.2019.0018131130847
    [Google Scholar]
  110. LiM.Z. JiJ-G. ZhengL-J. ShenJ. LiX-Y. ZhangQ. BaiX. WangQ-S. SIRT1 facilitates amyloid beta peptide degradation by upregulating lysosome number in primary astrocytes.Neural Regen. Res.201813112005201310.4103/1673‑5374.23944930233076
    [Google Scholar]
  111. PoirierJ. MironJ. PicardC. GormleyP. ThérouxL. BreitnerJ. DeaD. Apolipoprotein E and lipid homeostasis in the etiology and treatment of sporadic Alzheimer's disease.Neurobiol Aging201435Suppl 2S31010.1016/j.neurobiolaging.2014.03.037
    [Google Scholar]
  112. SweeneyM.D. ZhaoZ. MontagneA. NelsonA.R. ZlokovicB.V. Blood-brain barrier: From physiology to disease and back.Physiol. Rev.2019991217810.1152/physrev.00050.201730280653
    [Google Scholar]
  113. CookD.G. LeverenzJ.B. McMillanP.J. KulstadJ.J. EricksenS. RothR.A. SchellenbergG.D. JinL.W. KovacinaK.S. CraftS. Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-ε4 allele.Am. J. Pathol.2003162131331910.1016/S0002‑9440(10)63822‑912507914
    [Google Scholar]
  114. MinersJ.S. Van HelmondZ. ChalmersK. WilcockG. LoveS. KehoeP.G. Decreased expression and activity of neprilysin in Alzheimer disease are associated with cerebral amyloid angiopathy.J. Neuropathol. Exp. Neurol.200665101012102110.1097/01.jnen.0000240463.87886.9a17021406
    [Google Scholar]
  115. SaidoT. LeissringM.A. Proteolytic degradation of amyloid β-protein.Cold Spring Harb. Perspect. Med.201226a00637910.1101/cshperspect.a00637922675659
    [Google Scholar]
  116. JiangQ. LeeC.Y.D. MandrekarS. WilkinsonB. CramerP. ZelcerN. MannK. LambB. WillsonT.M. CollinsJ.L. RichardsonJ.C. SmithJ.D. ComeryT.A. RiddellD. HoltzmanD.M. TontonozP. LandrethG.E. ApoE promotes the proteolytic degradation of Abeta.Neuron200858568169310.1016/j.neuron.2008.04.01018549781
    [Google Scholar]
  117. WildsmithK.R. HolleyM. SavageJ.C. SkerrettR. LandrethG.E. Evidence for impaired amyloid β clearance in Alzheimer’s disease.Alzheimers Res. Ther.2013543310.1186/alzrt18723849219
    [Google Scholar]
  118. HawkesC.A. SullivanP.M. HandsS. WellerR.O. NicollJ.A.R. CarareR.O. Disruption of arterial perivascular drainage of amyloid-β from the brains of mice expressing the human APOE ε4 allele.PLoS One201277e4163610.1371/journal.pone.004163622848551
    [Google Scholar]
  119. ReimanE.M. ChenK. LiuX. BandyD. YuM. LeeW. AyutyanontN. KepplerJ. ReederS.A. LangbaumJ.B.S. AlexanderG.E. KlunkW.E. MathisC.A. PriceJ.C. AizensteinH.J. DeKoskyS.T. CaselliR.J. Fibrillar amyloid-β burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease.Proc. Natl. Acad. Sci. USA2009106166820682510.1073/pnas.090034510619346482
    [Google Scholar]
  120. YuJ.T. TanL. HardyJ. Apolipoprotein E in Alzheimer’s disease: An update.Annu. Rev. Neurosci.20143717910010.1146/annurev‑neuro‑071013‑01430024821312
    [Google Scholar]
  121. TesseurI. Van DorpeJ. SpittaelsK. Van den HauteC. MoecharsD. Van LeuvenF. Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice.Am. J. Pathol.2000156395196410.1016/S0002‑9440(10)64963‑210702411
    [Google Scholar]
  122. RiddellD.R. ZhouH. AtchisonK. WarwickH.K. AtkinsonP.J. JeffersonJ. XuL. AschmiesS. KirkseyY. HuY. WagnerE. ParrattA. XuJ. LiZ. ZaleskaM.M. JacobsenJ.S. PangalosM.N. ReinhartP.H. Impact of apolipoprotein E (ApoE) polymorphism on brain ApoE levels.J. Neurosci.20082845114451145310.1523/JNEUROSCI.1972‑08.200818987181
    [Google Scholar]
  123. VitekM.P. BrownC.M. ColtonC.A. APOE genotype-specific differences in the innate immune response.Neurobiol. Aging20093091350136010.1016/j.neurobiolaging.2007.11.01418155324
    [Google Scholar]
  124. TesseurI. Van DorpeJ. BruynseelsK. BronfmanF. SciotR. Van LommelA. Van LeuvenF. Prominent axonopathy and disruption of axonal transport in transgenic mice expressing human apolipoprotein E4 in neurons of brain and spinal cord.Am. J. Pathol.200015751495151010.1016/S0002‑9440(10)64788‑811073810
    [Google Scholar]
  125. HaassC. SelkoeD.J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β-peptide.Nat. Rev. Mol. Cell Biol.20078210111210.1038/nrm210117245412
    [Google Scholar]
  126. BloomG.S. Amyloid-β and tau.JAMA Neurol.201471450550810.1001/jamaneurol.2013.584724493463
    [Google Scholar]
  127. MorrisM. MaedaS. VosselK. MuckeL. The many faces of tau.Neuron201170341042610.1016/j.neuron.2011.04.00921555069
    [Google Scholar]
  128. LeeV.M.Y. GoedertM. TrojanowskiJ.Q. Neurodegenerative tauopathies.Annu. Rev. Neurosci.20012411121115910.1146/annurev.neuro.24.1.112111520930
    [Google Scholar]
  129. ChangC.W. ShaoE. MuckeL. Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies.Science20213716532eabb825510.1126/science.abb825533632820
    [Google Scholar]
  130. WangC. XiongM. GratuzeM. BaoX. ShiY. AndheyP.S. ManisM. SchroederC. YinZ. MadoreC. ButovskyO. ArtyomovM. UlrichJ.D. HoltzmanD.M. Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia.Neuron20211091016571674.e710.1016/j.neuron.2021.03.02433831349
    [Google Scholar]
  131. ShiY. YamadaK. LiddelowS.A. SmithS.T. ZhaoL. LuoW. TsaiR.M. SpinaS. GrinbergL.T. RojasJ.C. GallardoG. WangK. RohJ. RobinsonG. FinnM.B. JiangH. SullivanP.M. BaufeldC. WoodM.W. SutphenC. McCueL. XiongC. Del-AguilaJ.L. MorrisJ.C. CruchagaC. FaganA.M. MillerB.L. BoxerA.L. SeeleyW.W. ButovskyO. BarresB.A. PaulS.M. HoltzmanD.M. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy.Nature2017549767352352710.1038/nature2401628959956
    [Google Scholar]
  132. ShiY. ManisM. LongJ. WangK. SullivanP.M. Remolina SerranoJ. HoyleR. HoltzmanD.M. Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model.J. Exp. Med.2019216112546256110.1084/jem.2019098031601677
    [Google Scholar]
  133. FarfelJ.M. YuL. De JagerP.L. SchneiderJ.A. BennettD.A. Association of APOE with tau-tangle pathology with and without β-amyloid.Neurobiol. Aging201637192510.1016/j.neurobiolaging.2015.09.01126481403
    [Google Scholar]
  134. WangC. NajmR. XuQ. JeongD. WalkerD. BalestraM.E. YoonS.Y. YuanH. LiG. MillerZ.A. MillerB.L. MalloyM.J. HuangY. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector.Nat. Med.201824564765710.1038/s41591‑018‑0004‑z29632371
    [Google Scholar]
  135. CaoJ. GaamouchF.E. MeabonJ.S. MeekerK.D. ZhuL. ZhongM.B. BendikJ. ElderG. JingP. XiaJ. LuoW. CookD.G. CaiD. ApoE4-associated phospholipid dysregulation contributes to development of Tau hyper-phosphorylation after traumatic brain injury.Sci. Rep.2017711137210.1038/s41598‑017‑11654‑728900205
    [Google Scholar]
  136. KochG. Di LorenzoF. LoizzoS. MottaC. TravaglioneS. BaiulaM. RimondiniR. PonzoV. BonnìS. TonioloS. SallustioF. BozzaliM. CaltagironeC. CampanaG. MartoranaA. CSF tau is associated with impaired cortical plasticity, cognitive decline and astrocyte survival only in APOE4-positive Alzheimer’s disease.Sci. Rep.2017711372810.1038/s41598‑017‑14204‑329062035
    [Google Scholar]
  137. KoriathC. LashleyT. TaylorW. DruyehR. DimitriadisA. DenningN. WilliamsJ. WarrenJ.D. FoxN.C. SchottJ.M. RoweJ.B. CollingeJ. RohrerJ.D. MeadS. ApoE4 lowers age at onset in patients with frontotemporal dementia and tauopathy independent of amyloid-β copathology.Alzheimers Dement. (Amst.)201911127728010.1016/j.dadm.2019.01.01030949567
    [Google Scholar]
  138. DengH. OrdazA. UpadhyayulaP.S. Gillis-BuckE.M. SuenC.G. MelhadoC.G. MohammedN. LamT. YueJ.K. ApolipoproteinE. Apolipoprotein E epsilon 4 genotype, mild traumatic brain injury, and the development of chronic traumatic encephalopathy.Med. Sci. (Basel)2018637810.3390/medsci603007830223506
    [Google Scholar]
  139. RauchJ.N. LunaG. GuzmanE. AudouardM. ChallisC. SibihY.E. LeshukC. HernandezI. WegmannS. HymanB.T. GradinaruV. KampmannM. KosikK.S. LRP1 is a master regulator of tau uptake and spread.Nature2020580780338138510.1038/s41586‑020‑2156‑532296178
    [Google Scholar]
  140. HarrisF.M. BrechtW.J. XuQ. MahleyR.W. HuangY. Increased tau phosphorylation in apolipoprotein E4 transgenic mice is associated with activation of extracellular signal-regulated kinase: Modulation by zinc.J. Biol. Chem.200427943447954480110.1074/jbc.M40812720015322121
    [Google Scholar]
  141. HoeH.S. HarrisD.C. RebeckG.W. Multiple pathways of apolipoprotein E signaling in primary neurons.J. Neurochem.200593114515510.1111/j.1471‑4159.2004.03007.x15773914
    [Google Scholar]
  142. BraithwaiteS.P. StockJ.B. LombrosoP.J. NairnA.C. Protein phosphatases and Alzheimer’s disease.Prog. Mol. Biol. Transl. Sci.201210634337910.1016/B978‑0‑12‑396456‑4.00012‑222340724
    [Google Scholar]
  143. TheendakaraV. BredesenD.E. RaoR.V. Downregulation of protein phosphatase 2A by apolipoprotein E: Implications for Alzheimer’s disease.Mol. Cell. Neurosci.201783839110.1016/j.mcn.2017.07.00228720530
    [Google Scholar]
  144. StrittmatterW.J. SaundersA.M. GoedertM. WeisgraberK.H. DongL.M. JakesR. HuangD.Y. Pericak-VanceM. SchmechelD. RosesA.D. Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: Implications for Alzheimer disease.Proc. Natl. Acad. Sci. USA19949123111831118610.1073/pnas.91.23.111837972031
    [Google Scholar]
  145. GibbG.M. PearceJ. BettsJ.C. LovestoneS. HoffmannM.M. MaerzW. BlackstockW.P. AndertonB.H. Differential effects of apolipoprotein E isoforms on phosphorylation at specific sites on tau by glycogen synthase kinase-3β identified by nano-electrospray mass spectrometry.FEBS Lett.20004852-39910310.1016/S0014‑5793(00)02196‑711094148
    [Google Scholar]
  146. CarusoA. MotoleseM. IacovelliL. CaraciF. CopaniA. NicolettiF. TerstappenG.C. GaviraghiG. CaricasoleA. Inhibition of the canonical Wnt signaling pathway by apolipoprotein E4 in PC12 cells.J. Neurochem.200698236437110.1111/j.1471‑4159.2006.03867.x16805831
    [Google Scholar]
  147. Gomez-NicolaD. BocheD. Post-mortem analysis of neuroinflammatory changes in human Alzheimer’s disease.Alzheimers Res. Ther.2015714210.1186/s13195‑015‑0126‑125904988
    [Google Scholar]
  148. CanningD.R. McKeonR.J. DeWittD.A. PerryG. WujekJ.R. FredericksonR.C.A. SilverJ. β-Amyloid of Alzheimer’s disease induces reactive gliosis that inhibits axonal outgrowth.Exp. Neurol.1993124228929810.1006/exnr.1993.11998287928
    [Google Scholar]
  149. HeurtauxT. MichelucciA. LosciutoS. GallottiC. FeltenP. DorbanG. GrandbarbeL. MorgaE. HeuschlingP. Microglial activation depends on beta-amyloid conformation: Role of the formylpeptide receptor 2.J. Neurochem.2010114257658610.1111/j.1471‑4159.2010.06783.x20456016
    [Google Scholar]
  150. LucinK.M. Wyss-CorayT. Immune activation in brain aging and neurodegeneration: too much or too little?Neuron200964111012210.1016/j.neuron.2009.08.03919840553
    [Google Scholar]
  151. KloskeC.M. WilcockD.M. The important interface between apolipoprotein e and neuroinflammation in Alzheimer’s disease.Front. Immunol.20201175410.3389/fimmu.2020.0075432425941
    [Google Scholar]
  152. ButovskyO. JedrychowskiM.P. MooreC.S. CialicR. LanserA.J. GabrielyG. KoeglspergerT. DakeB. WuP.M. DoykanC.E. FanekZ. LiuL. ChenZ. RothsteinJ.D. RansohoffR.M. GygiS.P. AntelJ.P. WeinerH.L. Identification of a unique TGF-β–dependent molecular and functional signature in microglia.Nat. Neurosci.201417113114310.1038/nn.359924316888
    [Google Scholar]
  153. KrasemannS. MadoreC. CialicR. BaufeldC. CalcagnoN. El FatimyR. BeckersL. O’LoughlinE. XuY. FanekZ. GrecoD.J. SmithS.T. TweetG. HumulockZ. ZrzavyT. Conde-SanromanP. GaciasM. WengZ. ChenH. TjonE. MazaheriF. HartmannK. MadiA. UlrichJ.D. GlatzelM. WorthmannA. HeerenJ. BudnikB. LemereC. IkezuT. HeppnerF.L. LitvakV. HoltzmanD.M. LassmannH. WeinerH.L. OchandoJ. HaassC. ButovskyO. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases.Immunity2017473566581.e910.1016/j.immuni.2017.08.00828930663
    [Google Scholar]
  154. LaskowitzD.T. MatthewW.D. BennettE.R. SchmechelD. HerbstreithM.H. GoelS. McMillianM.K. Endogenous apolipoprotein E suppresses LPS-stimulated microglial nitric oxide production.Neuroreport19989461561810.1097/00001756‑199803090‑000109559926
    [Google Scholar]
  155. LaskowitzD.T. GoelS. BennettE.R. MatthewW.D. Apolipoprotein E suppresses glial cell secretion of TNFα.J. Neuroimmunol.1997761-2707410.1016/S0165‑5728(97)00021‑09184634
    [Google Scholar]
  156. PocivavsekA. RebeckG.W. Inhibition of c-Jun N-terminal kinase increases apoE expression in vitro and in vivo .Biochem. Biophys. Res. Commun.2009387351652010.1016/j.bbrc.2009.07.04819615334
    [Google Scholar]
  157. BargerS.W. HarmonA.D. Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E.Nature1997388664587888110.1038/422579278049
    [Google Scholar]
  158. QiaoX. CumminsD.J. PaulS.M. Neuroinflammation-induced acceleration of amyloid deposition in the APP V717F transgenic mouse.Eur. J. Neurosci.200114347448210.1046/j.0953‑816x.2001.01666.x11553297
    [Google Scholar]
  159. LynchJ.R. TangW. WangH. VitekM.P. BennettE.R. SullivanP.M. WarnerD.S. LaskowitzD.T. APOE genotype and an ApoE-mimetic peptide modify the systemic and central nervous system inflammatory response.J. Biol. Chem.200327849485294853310.1074/jbc.M30692320014507923
    [Google Scholar]
  160. ColtonC. BrownC. CookD. NeedhamL. XuQ. CzapigaM. SaundersA. SchmechelD. RasheedK. VitekM. APOE and the regulation of microglial nitric oxide production: A link between genetic risk and oxidative stress.Neurobiol. Aging200223577778510.1016/S0197‑4580(02)00016‑712392781
    [Google Scholar]
  161. Keren-ShaulH. SpinradA. WeinerA. Matcovitch-NatanO. Dvir-SzternfeldR. UllandT.K. DavidE. BaruchK. Lara-AstaisoD. TothB. ItzkovitzS. ColonnaM. SchwartzM. AmitI. A unique microglia type associated with restricting development of Alzheimer’s disease.Cell2017169712761290.e1710.1016/j.cell.2017.05.01828602351
    [Google Scholar]
  162. Villegas-LlerenaC. PhillipsA. Garcia-ReitboeckP. HardyJ. PocockJ.M. Microglial genes regulating neuroinflammation in the progression of Alzheimer’s disease.Curr. Opin. Neurobiol.201636748110.1016/j.conb.2015.10.00426517285
    [Google Scholar]
  163. FriedbergJ.S. AytanN. CherryJ.D. XiaW. StandringO.J. AlvarezV.E. NicksR. SvirskyS. MengG. JunG. RyuH. AuR. SteinT.D. Associations between brain inflammatory profiles and human neuropathology are altered based on apolipoprotein E ε4 genotype.Sci. Rep.2020101292410.1038/s41598‑020‑59869‑532076055
    [Google Scholar]
  164. ArendtT. SchindlerC. BrücknerM.K. EschrichK. BiglV. ZedlickD. MarcovaL. Plastic neuronal remodeling is impaired in patients with Alzheimer’s disease carrying apolipoprotein epsilon 4 allele.J. Neurosci.199717251652910.1523/JNEUROSCI.17‑02‑00516.19978987775
    [Google Scholar]
  165. KoffieR.M. HashimotoT. TaiH.C. KayK.R. Serrano-PozoA. JoynerD. HouS. KopeikinaK.J. FroschM.P. LeeV.M. HoltzmanD.M. HymanB.T. Spires-JonesT.L. Apolipoprotein E4 effects in Alzheimer’s disease are mediated by synaptotoxic oligomeric amyloid-β.Brain201213572155216810.1093/brain/aws12722637583
    [Google Scholar]
  166. SweetR.A. MacDonaldM.L. KirkwoodC.M. DingY. SchempfT. Jones-LaughnerJ. KoflerJ. IkonomovicM.D. LopezO.L. GarverM.E. FitzN.F. KoldamovaR. YatesN.A. ApolipoproteinE. Apolipoprotein E*4 (APOE*4) genotype is associated with altered levels of glutamate signaling proteins and synaptic coexpression networks in the prefrontal cortex in mild to moderate Alzheimer disease.Mol. Cell. Proteomics20161572252226210.1074/mcp.M115.05658027103636
    [Google Scholar]
  167. ChenY. DurakoglugilM.S. XianX. HerzJ. ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling.Proc. Natl. Acad. Sci. USA201010726120111201610.1073/pnas.091498410720547867
    [Google Scholar]
  168. ChungW.S. VergheseP.B. ChakrabortyC. JoungJ. HymanB.T. UlrichJ.D. HoltzmanD.M. BarresB.A. Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes.Proc. Natl. Acad. Sci. USA201611336101861019110.1073/pnas.160989611327559087
    [Google Scholar]
  169. Lane-DonovanC. HerzJ. The ApoE receptors Vldlr and Apoer2 in central nervous system function and disease.J. Lipid Res.20175861036104310.1194/jlr.R07550728292942
    [Google Scholar]
  170. Andrews-ZwillingY. Bien-LyN. XuQ. LiG. BernardoA. YoonS.Y. ZwillingD. YanT.X. ChenL. HuangY. Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice.J. Neurosci.20103041137071371710.1523/JNEUROSCI.4040‑10.201020943911
    [Google Scholar]
  171. LeungL. Andrews-ZwillingY. YoonS.Y. JainS. RingK. DaiJ. WangM.M. TongL. WalkerD. HuangY. Apolipoprotein E4 causes age- and sex-dependent impairments of hilar GABAergic interneurons and learning and memory deficits in mice.PLoS One2012712e5356910.1371/journal.pone.005356923300939
    [Google Scholar]
  172. TongL.M. YoonS.Y. Andrews-ZwillingY. YangA. LinV. LeiH. HuangY. Enhancing GABA signaling during middle adulthood prevents age-dependent GABAergic interneuron decline and learning and memory deficits in ApoE4 mice.J. Neurosci.20163672316232210.1523/JNEUROSCI.3815‑15.201626888940
    [Google Scholar]
  173. NurielT. AnguloS.L. KhanU. AshokA. ChenQ. FigueroaH.Y. EmraniS. LiuL. HermanM. BarrettG. SavageV. BuitragoL. Cepeda-PradoE. FungC. GoldbergE. GrossS.S. HussainiS.A. MorenoH. SmallS.A. DuffK.E. Neuronal hyperactivity due to loss of inhibitory tone in APOE4 mice lacking Alzheimer's disease-like pathology.Nat Commun81146410.1038/s41467‑017‑01444‑0
    [Google Scholar]
  174. GillespieA.K. JonesE.A. LinY.H. KarlssonM.P. KayK. YoonS.Y. TongL.M. NovaP. CarrJ.S. FrankL.M. HuangY. Apolipoprotein E4 causes age-dependent disruption of slow gamma oscillations during hippocampal sharp-wave ripples.Neuron201690474075110.1016/j.neuron.2016.04.00927161522
    [Google Scholar]
  175. DuongM.T. NasrallahI.M. WolkD.A. ChangC.C.Y. ChangT.Y. Cholesterol, atherosclerosis, and apoe in vascular contributions to cognitive impairment and dementia (VCID): Potential mechanisms and therapy.Front. Aging Neurosci.20211364799010.3389/fnagi.2021.64799033841127
    [Google Scholar]
  176. HallidayM.R. PomaraN. SagareA.P. MackW.J. FrangioneB. ZlokovicB.V. Relationship between cyclophilin a levels and matrix metalloproteinase 9 activity in cerebrospinal fluid of cognitively normal apolipoprotein e4 carriers and blood-brain barrier breakdown.JAMA Neurol.20137091198120010.1001/jamaneurol.2013.384124030206
    [Google Scholar]
  177. HallidayM.R. RegeS.V. MaQ. ZhaoZ. MillerC.A. WinklerE.A. ZlokovicB.V. Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease.J. Cereb. Blood Flow Metab.201636121622710.1038/jcbfm.2015.4425757756
    [Google Scholar]
  178. NishitsujiK. HosonoT. NakamuraT. BuG. MichikawaM. Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood-brain barrier model.J. Biol. Chem.201128620175361754210.1074/jbc.M111.22553221471207
    [Google Scholar]
  179. BellR.D. WinklerE.A. SinghI. SagareA.P. DeaneR. WuZ. HoltzmanD.M. BetsholtzC. ArmulikA. SallstromJ. BerkB.C. ZlokovicB.V. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A.Nature2012485739951251610.1038/nature1108722622580
    [Google Scholar]
  180. MarottoliF.M. KatsumataY. KosterK.P. ThomasR. FardoD.W. TaiL.M. Peripheral inflammation, apolipoprotein E4, and amyloid-β interact to induce cognitive and cerebrovascular dysfunction.ASN Neuro20179410.1177/175909141771920128707482
    [Google Scholar]
  181. RobertJ. ButtonE.B. YuenB. GilmourM. KangK. BahrabadiA. StukasS. ZhaoW. KulicI. WellingtonC.L. Clearance of beta-amyloid is facilitated by apolipoprotein E and circulating high-density lipoproteins in bioengineered human vessels.eLife20176e2959510.7554/eLife.2959528994390
    [Google Scholar]
  182. KoizumiK. HattoriY. AhnS.J. BuendiaI. CiacciarelliA. UekawaK. WangG. HillerA. ZhaoL. VossH.U. PaulS.M. SchafferC. ParkL. IadecolaC. Apoε4 disrupts neurovascular regulation and undermines white matter integrity and cognitive function.Nat. Commun.201891381610.1038/s41467‑018‑06301‑230232327
    [Google Scholar]
  183. JanelidzeS. MattssonN. StomrudE. LindbergO. PalmqvistS. ZetterbergH. BlennowK. HanssonO. CSF biomarkers of neuroinflammation and cerebrovascular dysfunction in early Alzheimer disease.Neurology2018919e867e87710.1212/WNL.000000000000608230054439
    [Google Scholar]
  184. YamazakiY. LiuC.-C. YamazakiA. ShueF. MartensY. A. ChenY. QiaoW. KurtiA. OueH. RenY. Vascular ApoE4 impairs behavior by modulating gliovascular function.Neuron20211093438447.e610.1016/j.neuron.2020.11.019
    [Google Scholar]
  185. MaQ. ZhaoZ. SagareA.P. WuY. WangM. OwensN.C. VergheseP.B. HerzJ. HoltzmanD.M. ZlokovicB.V. Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism.Mol. Neurodegener.20181315710.1186/s13024‑018‑0286‑030340601
    [Google Scholar]
  186. WeersP.M.M. NarayanaswamiV. ChoyN. LutyR. HicksL. KayC.M. RyanR.O. Lipid binding ability of human apolipoprotein E N-terminal domain isoforms: Correlation with protein stability?Biophys. Chem.20021001-348149210.1016/S0301‑4622(02)00300‑912646385
    [Google Scholar]
  187. ChouC.Y. JenW.P. HsiehY.H. ShiaoM.S. ChangG.G. Structural and functional variations in human apolipoprotein E3 and E4.J. Biol. Chem.200628119133331334410.1074/jbc.M51107720016540478
    [Google Scholar]
  188. SakamotoT. TanakaM. VedhachalamC. NickelM. NguyenD. DhanasekaranP. PhillipsM.C. Lund-KatzS. SaitoH. Contributions of the carboxyl-terminal helical segment to the self-association and lipoprotein preferences of human apolipoprotein E3 and E4 isoforms.Biochemistry20084792968297710.1021/bi701923h18201068
    [Google Scholar]
  189. BrodbeckJ. McGuireJ. LiuZ. Meyer-FrankeA. BalestraM.E. JeongD. PleissM. McComasC. HessF. WitterD. PetersonS. ChildersM. GouletM. LivertonN. HargreavesR. FreedmanS. WeisgraberK.H. MahleyR.W. HuangY. Structure-dependent impairment of intracellular apolipoprotein E4 trafficking and its detrimental effects are rescued by small-molecule structure correctors.J. Biol. Chem.201128619172171722610.1074/jbc.M110.21738021454574
    [Google Scholar]
  190. YinJ. NielsenM. CarcioneT. LiS. ShiJ. Apolipoprotein E regulates mitochondrial function through the PGC-1α-sirtuin 3 pathway.Aging (Albany NY)20191123111481115610.18632/aging.10251631808750
    [Google Scholar]
  191. JamesR. SearcyJ.L. BihanT.L. MartinS.F. GliddonC.M. PoveyJ. DeightonR.F. KerrL.E. McCullochJ. HorsburghK. Proteomic analysis of mitochondria in APOE transgenic mice and in response to an ischemic challenge.J. Cereb. Blood Flow Metab.201232116417610.1038/jcbfm.2011.12021878944
    [Google Scholar]
  192. SchmuklerE. SolomonS. SimonovitchS. GoldshmitY. WolfsonE. MichaelsonD.M. Pinkas-KramarskiR. Altered mitochondrial dynamics and function in APOE4-expressing astrocytes.Cell Death Dis.202011757810.1038/s41419‑020‑02776‑432709881
    [Google Scholar]
  193. WilkinsH.M. WangX. MentaB.W. KoppelS.J. BothwellR. BeckerA.M. AndersonH. SchwartzE. PeiD. YellapuN.K. ChaliseP. GouvionC.M. HaeriM. BurnsJ.M. SwerdlowR.H. Bioenergetic and inflammatory systemic phenotypes in Alzheimer’s disease APOE ε4-carriers.Aging Cell2021205e1335610.1111/acel.1335633939248
    [Google Scholar]
  194. WilkinsH.M. KoppelS.J. BothwellR. MahnkenJ. BurnsJ.M. SwerdlowR.H. Platelet cytochrome oxidase and citrate synthase activities in APOE ε4 carrier and non-carrier Alzheimer’s disease patients.Redox Biol.20171282883210.1016/j.redox.2017.04.01028448944
    [Google Scholar]
  195. SorrentinoV. RomaniM. MouchiroudL. BeckJ.S. ZhangH. D’AmicoD. MoullanN. PotenzaF. SchmidA.W. RietschS. CountsS.E. AuwerxJ. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity.Nature2017552768418719310.1038/nature2514329211722
    [Google Scholar]
  196. XiaoH. GaoY. LiuL. LiY. Association between polymorphisms in the promoter region of the apolipoprotein E (APOE) gene and Alzheimer’s disease: A meta-analysis.EXCLI J.20171692193828900374
    [Google Scholar]
  197. CummingsJ. LeeG. RitterA. SabbaghM. ZhongK. Alzheimer’s disease drug development pipeline: 2019.Alzheimers Dement. (N. Y.)20195127229310.1016/j.trci.2019.05.00831334330
    [Google Scholar]
  198. MehtaD. JacksonR. PaulG. ShiJ. SabbaghM. Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010-2015.Expert Opin. Investig. Drugs201726673573910.1080/13543784.2017.132386828460541
    [Google Scholar]
  199. MahleyR.W. Central nervous system lipoproteins.Arterioscler. Thromb. Vasc. Biol.20163671305131510.1161/ATVBAHA.116.30702327174096
    [Google Scholar]
  200. ChenH.K. JiZ.S. DodsonS.E. MirandaR.D. RosenblumC.I. ReynoldsI.J. FreedmanS.B. WeisgraberK.H. HuangY. MahleyR.W. Apolipoprotein E4 domain interaction mediates detrimental effects on mitochondria and is a potential therapeutic target for Alzheimer disease.J. Biol. Chem.201128675215522110.1074/jbc.M110.15108421118811
    [Google Scholar]
  201. MahleyR.W. HuangY. Small-molecule structure correctors target abnormal protein structure and function: Structure corrector rescue of apolipoprotein E4-associated neuropathology.J. Med. Chem.201255218997900810.1021/jm300861823013167
    [Google Scholar]
  202. ZhongN. WeisgraberK. Understanding the basis for the association of apoE4 with Alzheimer’s disease: Opening the door for therapeutic approaches.Curr. Alzheimer Res.20096541541810.2174/15672050978920792119874264
    [Google Scholar]
  203. RamaswamyG. XuQ. HuangY. WeisgraberK.H. Effect of domain interaction on apolipoprotein E levels in mouse brain.J. Neurosci.20052546106581066310.1523/JNEUROSCI.1922‑05.200516291938
    [Google Scholar]
  204. MahleyR.W. Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism.Arterioscler. Thromb. Vasc. Biol.20163671305131510.1161/ATVBAHA.116.30702327174096
    [Google Scholar]
  205. HarrisF.M. BrechtW.J. XuQ. TesseurI. KekoniusL. Wyss-CorayT. FishJ.D. MasliahE. HopkinsP.C. Scearce-LevieK. WeisgraberK.H. MuckeL. MahleyR.W. HuangY. Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer’s disease-like neurodegeneration and behavioral deficits in transgenic mice.Proc. Natl. Acad. Sci. USA200310019109661097110.1073/pnas.143439810012939405
    [Google Scholar]
  206. BrechtW.J. HarrisF.M. ChangS. TesseurI. YuG.Q. XuQ. Dee FishJ. Wyss-CorayT. ButtiniM. MuckeL. MahleyR.W. HuangY. Neuron-specific apolipoprotein e4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice.J. Neurosci.200424102527253410.1523/JNEUROSCI.4315‑03.200415014128
    [Google Scholar]
  207. TachibanaM. ShinoharaM. YamazakiY. LiuC.C. RogersJ. BuG. KanekiyoT. Rescuing effects of RXR agonist bexarotene on aging-related synapse loss depend on neuronal LRP1.Exp. Neurol.2016b2771910.1016/j.expneurol.2015.12.00326688581
    [Google Scholar]
  208. LiaoF. LiA. XiongM. Bien-LyN. JiangH. ZhangY. FinnM.B. HoyleR. KeyserJ. LeftonK.B. RobinsonG.O. SerranoJ.R. SilvermanA.P. GuoJ.L. GetzJ. HenneK. LeynsC.E.G. GallardoG. UlrichJ.D. SullivanP.M. LernerE.P. HudryE. SweeneyZ.K. DennisM.S. HymanB.T. WattsR.J. HoltzmanD.M. Targeting of nonlipidated, aggregated apoE with antibodies inhibits amyloid accumulation.J. Clin. Invest.201812852144215510.1172/JCI9642929600961
    [Google Scholar]
  209. QosaH. AbuznaitA.H. HillR.A. KaddoumiA. Enhanced brain amyloid-β clearance by rifampicin and caffeine as a possible protective mechanism against Alzheimer’s disease.J. Alzheimers Dis.201231115116510.3233/JAD‑2012‑12031922504320
    [Google Scholar]
  210. ShinoharaM. SatoN. KurinamiH. TakeuchiD. TakedaS. ShimamuraM. YamashitaT. UchiyamaY. RakugiH. MorishitaR. Reduction of brain β-amyloid (Abeta) by fluvastatin, a hydroxymethylglutaryl-CoA reductase inhibitor, through increase in degradation of amyloid precursor protein C-terminal fragments (APP-CTFs) and Abeta clearance.J. Biol. Chem.201028529220912210210.1074/jbc.M110.10227720472556
    [Google Scholar]
  211. KanekiyoT. CirritoJ.R. LiuC.C. ShinoharaM. LiJ. SchulerD.R. ShinoharaM. HoltzmanD.M. BuG. Neuronal clearance of amyloid-β by endocytic receptor LRP1.J. Neurosci.20133349192761928310.1523/JNEUROSCI.3487‑13.201324305823
    [Google Scholar]
  212. LiuC.C. HuJ. ZhaoN. WangJ. WangN. CirritoJ.R. KanekiyoT. HoltzmanD.M. BuG. Astrocytic LRP1 mediates brain Aβ clearance and impacts amyloid deposition.J. Neurosci.201737154023403110.1523/JNEUROSCI.3442‑16.201728275161
    [Google Scholar]
  213. KanekiyoT. LiuC.C. ShinoharaM. LiJ. BuG. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer’s amyloid-β.J. Neurosci.20123246164581646510.1523/JNEUROSCI.3987‑12.201223152628
    [Google Scholar]
  214. Gilat-FrenkelM. Boehm-CaganA. LirazO. XianX. HerzJ. MichaelsonD. Involvement of the Apoer2 and Lrp1 receptors in mediating the pathological effects of ApoE4 in vivo .Curr. Alzheimer Res.201411654955710.2174/156720501066613111923244424251389
    [Google Scholar]
  215. RosenbergJ.B. KaplittM.G. DeB.P. ChenA. FlagielloT. SalamiC. PeyE. ZhaoL. Ricart ArbonaR.J. MonetteS. DykeJ.P. BallonD.J. KaminskyS.M. SondhiD. PetskoG.A. PaulS.M. CrystalR.G. AAVrh.10-mediated APOE2 central nervous system gene therapy for APOE4-associated Alzheimer’s disease.Hum. Gene Ther. Clin. Dev.2018291244710.1089/humc.2017.23129409358
    [Google Scholar]
  216. LinY.T. SeoJ. GaoF. FeldmanH.M. WenH.L. PenneyJ. CamH.P. GjoneskaE. RajaW.K. ChengJ. RuedaR. KritskiyO. AbdurrobF. PengZ. MiloB. YuC.J. ElmsaouriS. DeyD. KoT. YanknerB.A. TsaiL.H. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types.Neuron2018986129410.1016/j.neuron.2018.06.01129953873
    [Google Scholar]
  217. SuidanG.L. RamaswamyG. Targeting apolipoprotein E for Alzheimer’s disease: An industry perspective.Int. J. Mol. Sci.2019209216110.3390/ijms2009216131052389
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037326839241014054430
Loading
/content/journals/cpps/10.2174/0113892037326839241014054430
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test