Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1875-6921
  • E-ISSN: 1875-6913

Abstract

Type 2 diabetes mellitus (T2DM) is a condition of metabolism that impacts people worldwide regardless of country, age group, and gender. In addition to a sedentary lifestyle, genetic susceptibility, specifically single nucleotide polymorphisms, is implicated in the emergence and progression of T2DM. This study compares the genetic variants of the Indian population with three other ethnic cohorts: African, European, and Chinese. Based on the literature survey, common and unique Single Nucleotide Polymorphisms (SNPs) and genes were explored in different Populations, including and . Identifying common and specific markers may help in risk prediction and early detection of T2DM. In conclusion, this comparative study of T2DM-susceptible SNPs in Indian and other ethnic groups highlights the complexity and diversity of genetic factors contributing to T2DM. By shedding light on the similarities and disparities in genetic predisposition across populations, this review contributes to the ongoing efforts to develop more effective and tailored approaches for managing and avoiding T2DM in diverse global populations.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921327160241022074236
2024-10-28
2025-01-30
Loading full text...

Full text loading...

References

  1. International diabetes federation. In: IDF Diabetes Atlas.10th edInternational Diabetes Federation: Brussels202116
    [Google Scholar]
  2. World Health OrganizationDiabetes.2021Available from: https://www.who.int/health-topics/diabetes#tab=tab_1 accessed on 2021 Jun 04
  3. ChenL. MaglianoD.J. ZimmetP.Z. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives.Nat. Rev. Endocrinol.20128422823610.1038/nrendo.2011.183 22064493
    [Google Scholar]
  4. ChanJ.C.N. LimL.L. WarehamN.J. The lancet commission on diabetes: Using data to transform diabetes care and patient lives.Lancet2021396102672019208210.1016/S0140‑6736(20)32374‑6
    [Google Scholar]
  5. SunH. SaeediP. KarurangaS. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  6. AhmadE. LimS. LampteyR. WebbD.R. DaviesM.J. Type 2 diabetes.Lancet2022400103651803182010.1016/S0140‑6736(22)01655‑5 36332637
    [Google Scholar]
  7. BhuttaZ.A. SalamR.A. GomberA. A century past the discovery of insulin: Global progress and challenges for type 1 diabetes among children and adolescents in low-income and middle-income countries.Lancet2021398103131837185010.1016/S0140‑6736(21)02247‑9 34774146
    [Google Scholar]
  8. FloodD. SeiglieJ.A. DunnM. The state of diabetes treatment coverage in 55 low-income and middle-income countries: A cross-sectional study of nationally representative, individual-level data in 680 102 adults.Lancet Healthy Longev.202126e340e35110.1016/S2666‑7568(21)00089‑1 35211689
    [Google Scholar]
  9. Manne-GoehlerJ. GeldsetzerP. AgoudaviK. Health system performance for people with diabetes in 28 low- and middle-income countries: A cross-sectional study of nationally representative surveys.PLoS Med.2019163e100275110.1371/journal.pmed.1002751 30822339
    [Google Scholar]
  10. Hill-BriggsF. AdlerN.E. BerkowitzS.A. Social determinants of health and diabetes: A scientific review.Diabetes Care202144125827910.2337/dci20‑0053 33139407
    [Google Scholar]
  11. CorsiD.J. SubramanianS.V. Socioeconomic gradients and distribution of diabetes, hypertension, and obesity in india.JAMA Netw. Open201924e19041110.1001/jamanetworkopen.2019.0411 30951154
    [Google Scholar]
  12. SpanakisE.K. GoldenS.H. Race/ethnic difference in diabetes and diabetic complications.Curr. Diab. Rep.201313681482310.1007/s11892‑013‑0421‑9 24037313
    [Google Scholar]
  13. WhyteM.B. HintonW. McGovernA. Disparities in glycaemic control, monitoring, and treatment of type 2 diabetes in England: A retrospective cohort analysis.PLoS Med.20191610e100294210.1371/journal.pmed.1002942 31589609
    [Google Scholar]
  14. DasA.K. ShahS. History of diabetes: From ants to analogs.J. Assoc. Physicians India201159Suppl.67 21818991
    [Google Scholar]
  15. PatelC.J. ChenR. KodamaK. IoannidisJ.P.A. ButteA.J. Systematic identification of interaction effects between genome- and environment-wide associations in type 2 diabetes mellitus.Hum. Genet.2013132549550810.1007/s00439‑012‑1258‑z 23334806
    [Google Scholar]
  16. AliO. Genetics of type 2 diabetes.World J. Diabetes20134411412310.4239/wjd.v4.i4.114 23961321
    [Google Scholar]
  17. BodhiniD. RadhaV. MohanV. Association study of IRS1 gene polymorphisms with type 2 diabetes in south Indians.Diabetes Technol. Ther.201113776777210.1089/dia.2011.0017 21612394
    [Google Scholar]
  18. JosephA. ThirupathammaM. MathewsE. AlaguM. Genetics of type 2 diabetes mellitus in Indian and Global Population: A Review.Egypt. J. Med. Hum. Genet.202223113510.1186/s43042‑022‑00346‑1 37192883
    [Google Scholar]
  19. MaherB. Personal genomes: The case of the missing heritability.Nature20084567218182110.1038/456018a 18987709
    [Google Scholar]
  20. AltshulerD. HirschhornJ.N. KlannemarkM. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes.Nat. Genet.2000261768010.1038/79216 10973253
    [Google Scholar]
  21. SandhuM.S. WeedonM.N. FawcettK.A. Common variants in WFS1 confer risk of type 2 diabetes.Nat. Genet.200739895195310.1038/ng2067 17603484
    [Google Scholar]
  22. SladekR. RocheleauG. RungJ. A genome-wide association study identifies novel risk loci for type 2 diabetes.Nature2007445713088188510.1038/nature05616
    [Google Scholar]
  23. SaxenaR. VoightB.F. LyssenkoV. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels.Science200731658291331133610.1126/science.1142358 17463246
    [Google Scholar]
  24. ScottL.J. MohlkeK.L. BonnycastleL.L. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants.Science200731658291341134510.1126/science.1142382 17463248
    [Google Scholar]
  25. SteinthorsdottirV. ThorleifssonG. ReynisdottirI. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes.Nat. Genet.200739677077510.1038/ng2043 17460697
    [Google Scholar]
  26. BurtonP.R. ClaytonD.G. CardonL.R. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.Nature2007447714566167810.1038/nature05911 17554300
    [Google Scholar]
  27. GudmundssonJ. SulemP. SteinthorsdottirV. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes.Nat. Genet.200739897798310.1038/ng2062 17603485
    [Google Scholar]
  28. ZegginiE. ScottL.J. SaxenaR. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes.Nat. Genet.200840563864510.1038/ng.120 18372903
    [Google Scholar]
  29. Simonis-BikA.M. NijpelsG. van HaeftenT.W. Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic beta-cell function.Diabetes201059129330110.2337/db09‑1048 19833888
    [Google Scholar]
  30. GrarupN. AndersenG. KrarupN.T. Association testing of novel type 2 diabetes risk alleles in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and NOTCH2 loci with insulin release, insulin sensitivity, and obesity in a population-based sample of 4,516 glucose-tolerant middle-aged Danes.Diabetes20085792534254010.2337/db08‑0436 18567820
    [Google Scholar]
  31. LyssenkoV. NagornyC.L.F. ErdosM.R. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion.Nat. Genet.2009411828810.1038/ng.288 19060908
    [Google Scholar]
  32. Bouatia-NajiN. BonnefondA. Cavalcanti-ProençaC. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk.Nat. Genet.2009411899410.1038/ng.277 19060909
    [Google Scholar]
  33. RungJ. CauchiS. AlbrechtsenA. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia.Nat. Genet.200941101110111510.1038/ng.443 19734900
    [Google Scholar]
  34. DupuisJ. LangenbergC. ProkopenkoI. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.Nat. Genet.201042210511610.1038/ng.520 20081858
    [Google Scholar]
  35. QiL. CornelisM.C. KraftP. Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes.Hum. Mol. Genet.201019132706271510.1093/hmg/ddq156 20418489
    [Google Scholar]
  36. VoightB.F. ScottL.J. SteinthorsdottirV. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis.Nat. Genet.201042757958910.1038/ng.609 20581827
    [Google Scholar]
  37. SaxenaR. ElbersC.C. GuoY. Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci.Am. J. Hum. Genet.201290341042510.1016/j.ajhg.2011.12.022 22325160
    [Google Scholar]
  38. MorrisA.P. VoightB.F. TeslovichT.M. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes.Nat. Genet.201244998199010.1038/ng.2383 22885922
    [Google Scholar]
  39. AliF. KumarR. SahuP.L. SinghG.N. Physicochemical characterization and compatibility study of roflumilast with various pharmaceutical excipients.J. Therm. Anal. Calorim.201713031627164110.1007/s10973‑017‑6274‑8
    [Google Scholar]
  40. AliF. NehaK. SharmaK. KhasimbiS. ChauhanG. Nanotechnology-based medicinal products and patents: A promising way to treat psoriasis.Curr. Drug Deliv.202219558759910.2174/1567201819666220126163943 35081890
    [Google Scholar]
  41. KhatakS. KhatakM. AliF. Development and validation of a RP-HPLC method for simultaneous estimation of antitubercular drugs in solid lipid nanoparticles.Indian J. Pharm. Sci.2018806996100210.4172/pharmaceutical‑sciences.1000449
    [Google Scholar]
  42. AliF. NandiU. TrivediM. Quantitative characterization and pharmaceutical compatibility between teneligliptin and widely used excipients by using thermal and liquid chromatography tandem mass spectrometry techniques.J. Therm. Anal. Calorim.2018132138539610.1007/s10973‑018‑6962‑z
    [Google Scholar]
  43. AliF. KhasimbiS. AliA. Lipid-based nano-phytomedicines for disease treatment and theranostic applications.Curr. Nanomed.2021111405010.2174/2468187310999201023151700
    [Google Scholar]
  44. MahajanA. GoM.J. ZhangW. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility.Nat. Genet.201446323424410.1038/ng.2897 24509480
    [Google Scholar]
  45. LiouC.W. ChenJ.B. TiaoM.M. Mitochondrial DNA coding and control region variants as genetic risk factors for type 2 diabetes.Diabetes201261102642265110.2337/db11‑1369 22891220
    [Google Scholar]
  46. YeZ. GillsonC. SimsM. The association of the mitochondrial DNA OriB variant (16184–16193 polycytosine tract) with type 2 diabetes in Europid populations.Diabetologia20135691907191310.1007/s00125‑013‑2945‑6 23702607
    [Google Scholar]
  47. PradeepaR. MohanV. Epidemiology of type 2 diabetes in India.Indian J. Ophthalmol.202169112932293810.4103/ijo.IJO_1627_21 34708726
    [Google Scholar]
  48. ShethJ. TrivediS. ShahA. Are we predisposed to type 2 diabetes risk: A case-control study from urban population in western india.Endocrinol Metab Int J2017530012210.15406/emij.2017.05.00122
    [Google Scholar]
  49. TaiE.S. CorellaD. Deurenberg-YapM. Differential effects of the C1431T and Pro12Ala PPARγ gene variants on plasma lipids and diabetes risk in an Asian population.J. Lipid Res.200445467468510.1194/jlr.M300363‑JLR200 14729856
    [Google Scholar]
  50. RadhaV. VimaleswaranK.S. BabuH.N.S. Role of genetic polymorphism peroxisome proliferator-activated receptor-gamma2 Pro12Ala on ethnic susceptibility to diabetes in South-Asian and Caucasian subjects: Evidence for heterogeneity.Diabetes Care20062951046105110.2337/dc05‑1473 16644635
    [Google Scholar]
  51. ViswanathanV. ZhuY. BalaK. Association between ACE gene polymorphism and diabetic nephropathy in South Indian patients.JOP2001228387 11867868
    [Google Scholar]
  52. BhavaniB.A. PadmaT. SastryB.K.S. ReddyN.K. NausheenK. The insertion I/deletion D polymorphism of angiotensin-converting enzyme (ACE) gene increase the susceptibility to hypertension and/or diabetes.Int. J. Hum. Genet.20055424725210.1080/09723757.2005.11885934
    [Google Scholar]
  53. RazaS.T. FatimaJ. AhmedF. Association of angiotensin-converting enzyme (ACE) and fatty acid binding protein 2 (FABP2) genes polymorphism with type 2 diabetes mellitus in Northern India.J. Renin Angiotensin Aldosterone Syst.201415457257910.1177/1470320313481082 23468166
    [Google Scholar]
  54. RazaS.T. AbbasS. AhmedF. FatimaJ. ZaidiZ.H. MahdiF. Association of MTHFR and PPARγ2 gene polymorphisms in relation to type 2 diabetes mellitus cases among north Indian population.Gene2012511237537910.1016/j.gene.2012.09.072 23036708
    [Google Scholar]
  55. YajnikC.S. JanipalliC.S. BhaskarS. FTO gene variants are strongly associated with type 2 diabetes in South Asian Indians.Diabetologia200952224725210.1007/s00125‑008‑1186‑6 19005641
    [Google Scholar]
  56. TabassumR. ChavaliS. DwivediO.P. TandonN. BharadwajD. Genetic variants of FOXA2: risk of type 2 diabetes and effect on metabolic traits in North Indians.J. Hum. Genet.20085311-1295796510.1007/s10038‑008‑0335‑6 18797817
    [Google Scholar]
  57. MahajanA. TabassumR. ChavaliS. Obesity-dependent association of TNF-LTA locus with type 2 diabetes in North Indians.J. Mol. Med. (Berl.)201088551552210.1007/s00109‑010‑0594‑5 20177654
    [Google Scholar]
  58. ChavaliS. MahajanA. TabassumR. Association of variants in genes involved in pancreatic β-cell development and function with type 2 diabetes in North Indians.J. Hum. Genet.2011561069570010.1038/jhg.2011.83 21814221
    [Google Scholar]
  59. BodhiniD. RadhaV. DeepaR. The G1057D polymorphism of IRS-2 gene and its relationship with obesity in conferring susceptibility to type 2 diabetes in Asian Indians.Int. J. Obes.20073119710210.1038/sj.ijo.0803356 16652127
    [Google Scholar]
  60. JahnaviS. PoovazhagiV. KanthimathiS. Novel ABCC8 (SUR1) gene mutations in Asian Indian children with congenital hyperinsulinemic hypoglycemia.Ann. Hum. Genet.201478531131910.1111/ahg.12070 25117148
    [Google Scholar]
  61. SinghP.P. NazI. GilmourA. SinghM. MastanaS. Association of APOE (Hha1) and ACE (I/D) gene polymorphisms with type 2 diabetes mellitus in North West India.Diabetes Res. Clin. Pract.20067419510210.1016/j.diabres.2006.03.013 16621107
    [Google Scholar]
  62. SinghS. VenketeshS. VermaJ.S. VermaM. LellammaC.O. GoelR.C. Paraoxonase (PON1) activity in north west Indian Punjabis with coronary artery disease & type 2 diabetes mellitus.Indian J. Med. Res.20071256783787 17704557
    [Google Scholar]
  63. SinghP. SinghM. GaurS. KaurT. The ApoAI-CIII-AIV gene cluster and its relation to lipid levels in type 2 diabetes mellitus and coronary heart disease: determination of a novel susceptible haplotype.Diab. Vasc. Dis. Res.20074212412910.3132/dvdr.2007.030 17654446
    [Google Scholar]
  64. AchyutB.R. SrivastavaA. BhattacharyaS. MittalB. Genetic association of interleukin-1β (−511C/T) and interleukin-1 receptor antagonist (86 bp repeat) polymorphisms with Type 2 diabetes mellitus in North Indians.Clin. Chim. Acta20073771-216316910.1016/j.cca.2006.09.012 17069782
    [Google Scholar]
  65. BanerjeeM. BidH.K. KonwarR. AgrawalC.G. Association of IL-4 and IL-1RN (receptor antagonist) gene variants and the risk of type 2 diabetes mellitus: A study in the north Indian population.Indian J. Med. Sci.200862725926610.4103/0019‑5359.42021 18688110
    [Google Scholar]
  66. VimaleswaranK.S. RadhaV. GhoshS. Peroxisome proliferator‐activated receptor‐γ co‐activator‐1α (PGC‐1α) gene polymorphisms and their relationship to Type 2 diabetes in Asian Indians.Diabet. Med.200522111516152110.1111/j.1464‑5491.2005.01709.x 16241916
    [Google Scholar]
  67. VimaleswaranK.S. RadhaV. AnjanaM. Effect of polymorphisms in the PPARGC1A gene on body fat in Asian Indians.Int. J. Obes.200630688489110.1038/sj.ijo.0803228 16446747
    [Google Scholar]
  68. SharmaR. MatharooK. KapoorR. BhanwerA.J.S. Association of PGC-1α gene with type 2 diabetes in three unrelated endogamous groups of North-West India (Punjab): a case-control and meta-analysis study.Mol. Genet. Genomics2018293231732910.1007/s00438‑017‑1385‑2 29063962
    [Google Scholar]
  69. BhatA. KoulA. RaiE. SharmaS. DharM.K. BamezaiR.N.K. PGC-1α Thr394Thr and Gly482Ser variants are significantly associated with T2DM in two North Indian populations: A replicate case-control study.Hum. Genet.2007121560961410.1007/s00439‑007‑0352‑0 17390150
    [Google Scholar]
  70. AliS. ChopraR. ManvatiS. Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups.PLoS One201383e5888110.1371/journal.pone.0058881 23527042
    [Google Scholar]
  71. AbateN. ChandaliaM. SatijaP. ENPP1/PC-1 K121Q polymorphism and genetic susceptibility to type 2 diabetes.Diabetes20055441207121310.2337/diabetes.54.4.1207 15793263
    [Google Scholar]
  72. ChauhanG. SpurgeonC.J. TabassumR. Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians.Diabetes20105982068207410.2337/db09‑1386 20424228
    [Google Scholar]
  73. ReddyB.M. KommojuU.J. SamyS.K. Association of CDKAL1, CDKN2A/B & HHEX gene polymorphisms with type 2 diabetes mellitus in the population of Hyderabad, India.Indian J. Med. Res.2016143445546310.4103/0971‑5916.184303 27377502
    [Google Scholar]
  74. ChidambaramM. RadhaV. MohanV. Replication of recently described type 2 diabetes gene variants in a South Indian population.Metabolism201059121760176610.1016/j.metabol.2010.04.024 20580033
    [Google Scholar]
  75. BodhiniD. RadhaV. DharM. NarayaniN. MohanV. The rs12255372(G/T) and rs7903146(C/T) polymorphisms of the TCF7L2 gene are associated with type 2 diabetes mellitus in Asian Indians.Metabolism20075691174117810.1016/j.metabol.2007.04.012 17697858
    [Google Scholar]
  76. ChandakG.R. JanipalliC.S. BhaskarS. Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population.Diabetologia2006501636710.1007/s00125‑006‑0502‑2 17093941
    [Google Scholar]
  77. TabassumR. ChauhanG. DwivediO.P. Genome-wide association study for type 2 diabetes in Indians identifies a new susceptibility locus at 2q21.Diabetes201362397798610.2337/db12‑0406 23209189
    [Google Scholar]
  78. KommojuU.J. MarudaJ. KadarkaraiS. No detectable association of IGF2BP2 and SLC30A8 genes with type 2 diabetes in the population of Hyderabad, India.Meta Gene20131152310.1016/j.mgene.2013.09.003 25606370
    [Google Scholar]
  79. KhanI.A. PoornimaS. JahanP. RaoP. HasanQ. Type 2 diabetes mellitus and the association of candidate genes in asian indian population from hyderabad, india.J. Clin. Diagn. Res.2015911GC01GC0510.7860/JCDR/2015/14471.6855 26673680
    [Google Scholar]
  80. SaxenaR. SaleheenD. BeenL.F. Genome-wide association study identifies a novel locus contributing to type 2 diabetes susceptibility in Sikhs of Punjabi origin from India.Diabetes20136251746175510.2337/db12‑1077 23300278
    [Google Scholar]
  81. SharmaR. MatharooK. KapoorR. ChopraH. BhanwerA. Ethnic differences in CAPN10 SNP-19 in type 2 diabetes: A North-West Indian case control study and evidence from meta-analysis.Genet. Res.201395514615510.1017/S0016672313000207 24429295
    [Google Scholar]
  82. LalrohluiF. SharmaV. SharmaI. MACF1 gene variant rs2296172 is associated with T2D susceptibility in Mizo population from Northeast India.Int. J. Diabetes Dev. Ctries.202040222322610.1007/s13410‑019‑00788‑1
    [Google Scholar]
  83. BainsV. KaurH. BadaruddozaB. Association analysis of polymorphisms in LEP (rs7799039 and rs2167270) and LEPR (rs1137101) gene towards the development of type 2 diabetes in North Indian Punjabi population.Gene202075414484610.1016/j.gene.2020.144846 32512158
    [Google Scholar]
  84. MatharooK. AroraP. BhanwerA.J.S. Association of adiponectin (AdipoQ) and sulphonylurea receptor (ABCC8) gene polymorphisms with Type 2 Diabetes in North Indian population of Punjab.Gene2013527122823410.1016/j.gene.2013.05.075 23764562
    [Google Scholar]
  85. GuptaV. VinayD.G. RafiqS. Association analysis of 31 common polymorphisms with type 2 diabetes and its related traits in Indian sib pairs.Diabetologia201255234935710.1007/s00125‑011‑2355‑6 22052079
    [Google Scholar]
  86. NairA.K. SugunanD. KumarH. AnilkumarG. Case-control analysis of SNPs in GLUT4, RBP4 and STRA6: Association of SNPs in STRA6 with type 2 diabetes in a South Indian population.PLoS One201057e1144410.1371/journal.pone.0011444 20625434
    [Google Scholar]
  87. LalrohluiF. SharmaV. SharmaI. Genotyping of T2D susceptible genes in a high risk North-East Indian population.Obes. Med.20201710016210.1016/j.obmed.2019.100162
    [Google Scholar]
  88. PhaniN.M. VohraM. RajeshS. Implications of critical PPARγ2, ADIPOQ and FTO gene polymorphisms in type 2 diabetes and obesity-mediated susceptibility to type 2 diabetes in an Indian population.Mol. Genet. Genomics2016291119320410.1007/s00438‑015‑1097‑4 26243686
    [Google Scholar]
  89. RyukJ.A. ZhangX. KoB.S. DailyJ.W. ParkS. Association of β3-adrenergic receptor rs4994 polymorphisms with the risk of type 2 diabetes: A systematic review and meta-analysis.Diabetes Res. Clin. Pract.2017129869610.1016/j.diabres.2017.03.034 28521197
    [Google Scholar]
  90. MaR.C.W. HuC. TamC.H. Genome-wide association study in a Chinese population identifies a susceptibility locus for type 2 diabetes at 7q32 near PAX4.Diabetologia20135661291130510.1007/s00125‑013‑2874‑4 23532257
    [Google Scholar]
  91. TsaiF.J. YangC.F. ChenC.C. A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese.PLoS Genet.201062e100084710.1371/journal.pgen.1000847 20174558
    [Google Scholar]
  92. HuC. ZhangR. WangC. PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population.PLoS One2009410e764310.1371/journal.pone.0007643 19862325
    [Google Scholar]
  93. PengD. WangJ. ZhangR. CDKAL1 rs7756992 is associated with diabetic retinopathy in a Chinese population with type 2 diabetes.Sci. Rep.201771881210.1038/s41598‑017‑09010‑w 28821857
    [Google Scholar]
  94. ChenM.P. ChungF.M. ChangD.M. ENPP1 K121Q polymorphism is not related to type 2 diabetes mellitus, features of metabolic syndrome, and diabetic cardiovascular complications in a Chinese population.Rev. Diabet. Stud.200631213010.1900/RDS.2006.3.21 17491709
    [Google Scholar]
  95. LiY. ENPP1 K121Q polymorphism and type 2 diabetes mellitus in the Chinese population: a meta-analysis including 11 855 subjects.Metabolism201261562563310.1016/j.metabol.2011.10.002 22136912
    [Google Scholar]
  96. LiuL. DingH. WangH.R. Polymorphism of HMGA1 is associated with increased risk of type 2 diabetes among Chinese individuals.Diabetologia20125561685168810.1007/s00125‑012‑2518‑0 22411136
    [Google Scholar]
  97. BrunettiA. ChiefariE. FotiD. Recent advances in the molecular genetics of type 2 diabetes mellitus.World J. Diabetes20145212814010.4239/wjd.v5.i2.128
    [Google Scholar]
  98. DouH. MaE. YinL. JinY. WangH. The association between gene polymorphism of TCF7L2 and type 2 diabetes in Chinese Han population: A meta-analysis.PLoS One201383e5949510.1371/journal.pone.0059495 23527206
    [Google Scholar]
  99. RaoP. ZhouY. GeS.Q. Validation of type 2 diabetes risk variants identified by genome-wide association studies in northern han chinese.Int. J. Environ. Res. Public Health201613986310.3390/ijerph13090863 27589775
    [Google Scholar]
  100. JiangB. LiuY. LiuY. FangF. WangX. LiB. Association of four insulin resistance genes with type 2 diabetes mellitus and hypertension in the Chinese Han population.Mol. Biol. Rep.201441292593310.1007/s11033‑013‑2937‑0 24414038
    [Google Scholar]
  101. XiaoS. ZengX. QuanL. ZhuJ. Correlation between polymorphism of FTO gene and type 2 diabetes mellitus in Uygur people from northwest China.Int. J. Clin. Exp. Med.20158697449750 26309651
    [Google Scholar]
  102. HuC. ZhangR. WangC. Variants from GIPR, TCF7L2, DGKB, MADD, CRY2, GLIS3, PROX1, SLC30A8 and IGF1 are associated with glucose metabolism in the Chinese.PLoS One2010511e1554210.1371/journal.pone.0015542 21103350
    [Google Scholar]
  103. YasudaK. MiyakeK. HorikawaY. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus.Nat. Genet.20084091092109710.1038/ng.207 18711367
    [Google Scholar]
  104. LiQ. TangT. JiangF. Polymorphisms of the KCNQ1 gene are associated with the therapeutic responses of sulfonylureas in Chinese patients with type 2 diabetes.Acta Pharmacol. Sin.2017381808910.1038/aps.2016.103 27694910
    [Google Scholar]
  105. LiH. GanW. LuL. A genome-wide association study identifies GRK5 and RASGRP1 as type 2 diabetes loci in Chinese Hans.Diabetes201362129129810.2337/db12‑0454 22961080
    [Google Scholar]
  106. YaoM. WuY. FangQ. SunL. LiT. QiaoH. Association ofADIPOQ variants with type 2 diabetes mellitus susceptibility in ethnic Han Chinese from northeast China.J. Diabetes Investig.20167685385910.1111/jdi.12535 27181706
    [Google Scholar]
  107. FanY. LiX. ZhangY. Genetic variants of TPCN2 associated with type 2 diabetes risk in the chinese population.PLoS One2016112e014961410.1371/journal.pone.0149614 26918892
    [Google Scholar]
  108. ChangY.C. ChiuY.F. LiuP.H. Replication of genome‐wide association signals of type 2 diabetes in Han Chinese in a prospective cohort.Clin. Endocrinol. (Oxf.)201276336537210.1111/j.1365‑2265.2011.04175.x 21767287
    [Google Scholar]
  109. YuanF. LiH. SongC. A replication study identified seven SNPS associated with quantitative traits of type 2 diabetes among chinese population in a cross-sectional study.Int. J. Environ. Res. Public Health2020177243910.3390/ijerph17072439 32260174
    [Google Scholar]
  110. DengX. LiuH. Nalima, Qiqiger A, Zhu J. Association of polymorphisms rs290487, rs864745, rs4430796 and rs23136 with type 2 diabetes in the Uyghur population in China.Int. J. Clin. Exp. Pathol.201710888138819 31966747
    [Google Scholar]
  111. KazakovaE. ZghuangT. LiT. FangQ. HanJ. QiaoH. Gas6 gene rs8191974 and Ap3s2 gene rs2028299 are associated with type 2 diabetes in the northern Chinese Han population.Acta Biochim. Pol.201764222723110.18388/abp.2016_1299 28399188
    [Google Scholar]
  112. ZhouX. ChenC. YinD. A variation in the abcc8 gene is associated with type 2 diabetes mellitus and repaglinide efficacy in chinese type 2 diabetes mellitus patients.Intern. Med.201958162341234710.2169/internalmedicine.2133‑18 31118371
    [Google Scholar]
  113. MatshaT Fanampe YakoY Association of the ENPP1 rs997509 polymorphism with obesity in South African mixed ancestry learners.East Afr. Med. J.2010878323329 23451554
    [Google Scholar]
  114. YakoY.Y. MadubedubeJ.H. KengneA.P. ErasmusR.T. PillayT.S. MatshaT.E. Contribution of ENPP1, TCF7L2, and FTO polymorphisms to type 2 diabetes in mixed ancestry ethnic population of South Africa.Afr. Health Sci.20161541149116010.4314/ahs.v15i4.14 26958016
    [Google Scholar]
  115. StaigerH. StančákováA. ZilinskaiteJ. A candidate type 2 diabetes polymorphism near the HHEX locus affects acute glucose-stimulated insulin release in European populations: results from the EUGENE2 study.Diabetes200857251451710.2337/db07‑1254 18039816
    [Google Scholar]
  116. HorikawaY. MiyakeK. YasudaK. Replication of genome-wide association studies of type 2 diabetes susceptibility in Japan.J. Clin. Endocrinol. Metab.20089383136314110.1210/jc.2008‑0452 18477659
    [Google Scholar]
  117. PirieF.J. MotalaA.A. PegoraroR.J. ParukI.M. GovenderT. RomL. Variants in PPARG, KCNJ11, TCF7L2, FTO, and HHEX genes in South African subjects of Zulu descent with type 2 diabetes.Afr J Diabetes Med201014686570
    [Google Scholar]
  118. LewisJ.P. PalmerN.D. HicksP.J. Association analysis in african americans of European-derived type 2 diabetes single nucleotide polymorphisms from whole-genome association studies.Diabetes20085782220222510.2337/db07‑1319 18443202
    [Google Scholar]
  119. PalmerN.D. McDonoughC.W. HicksP.J. A genome-wide association search for type 2 diabetes genes in African Americans.PLoS One201271e2920210.1371/journal.pone.0029202 22238593
    [Google Scholar]
  120. LiY. WangL. LuX. CDKAL1 gene rs7756992 A/G polymorphism and type 2 diabetes mellitus: a meta-analysis of 62,567 subjects.Sci. Rep.201331313110.1038/srep03131 24185407
    [Google Scholar]
  121. ChenG. BentleyA. AdeyemoA. Genome-wide association study identifies novel loci association with fasting insulin and insulin resistance in African Americans.Hum. Mol. Genet.201221204530453610.1093/hmg/dds282 22791750
    [Google Scholar]
  122. NgM.C. ShrinerD. ChenB.H. MEta-analysis of type 2 diabetes in african americans consortium.PLoS Genet.2014108e100451710.1371/journal.pgen.1004517 25102180
    [Google Scholar]
  123. CauchiS. EzzidiI. El AchhabY. European genetic variants associated with type 2 diabetes in North African Arabs.Diabetes Metab.201238431632310.1016/j.diabet.2012.02.003 22463974
    [Google Scholar]
  124. TurkiA. Al-ZabenG.S. KhirallahM. MarmouchH. MahjoubT. AlmawiW.Y. Gender-dependent associations of CDKN2A/2B, KCNJ11, POLI, SLC30A8, and TCF7L2 variants with type 2 diabetes in (North African) Tunisian Arabs.Diabetes Res. Clin. Pract.20141033e40e4310.1016/j.diabres.2013.12.040 24485399
    [Google Scholar]
  125. AyelignB. GenetuM. WondmagegnT. AdaneG. NegashM. BerhaneN. TNF-α (−308) gene polymorphism and type 2 diabetes mellitus in ethiopian diabetes patients.Diabetes Metab. Syndr. Obes.2019122453245910.2147/DMSO.S229987 31819571
    [Google Scholar]
  126. AbdelhamidI. LasramK. MeiloudG. E23K variant in KCNJ11 gene is associated with susceptibility to type 2 diabetes in the Mauritanian population.Prim. Care Diabetes20148217117510.1016/j.pcd.2013.10.006 24332549
    [Google Scholar]
  127. EngwaG.A. NwaloF.N. ChikezieC.C. Possible association between ABCC8 C49620T polymorphism and type 2 diabetes in a Nigerian population.BMC Med. Genet.20181917810.1186/s12881‑018‑0601‑1 29751826
    [Google Scholar]
  128. DanquahI. OthmerT. FrankL.K. Bedu-AddoG. SchulzeM.B. MockenhauptF.P. The TCF7L2 rs7903146 (T) allele is associated with type 2 diabetes in urban Ghana: A hospital-based case–control study.BMC Med. Genet.20131419610.1186/1471‑2350‑14‑96 24059590
    [Google Scholar]
  129. AdeyemoA.A. ZaghloulN.A. ChenG. ZRANB3 is an African-specific type 2 diabetes locus associated with beta-cell mass and insulin response.Nat. Commun.2019101319510.1038/s41467‑019‑10967‑7 31324766
    [Google Scholar]
  130. CookeJ.N. NgM.C.Y. PalmerN.D. Genetic risk assessment of type 2 diabetes-associated polymorphisms in African Americans.Diabetes Care201235228729210.2337/dc11‑0957 22275441
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921327160241022074236
Loading
/content/journals/cppm/10.2174/0118756921327160241022074236
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test