Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1875-6921
  • E-ISSN:

Abstract

Polycystic Ovary Syndrome (PCOS) is a condition affecting women of reproductive age, characterized by a heterogeneous array of symptoms. This study aims to examine the role of Precision and Personalized Medicine (PPM) in managing PCOS, given the diverse manifestations of the disease and any genetic factors involved. In this review, we have analyzed the existing literature on the heterogeneity in PCOS symptoms, efforts to acquire PPM data for the characterization of molecular changes in PCOS, and the impact of advances in artificial intelligence on precision medicine. PCOS symptoms present differently in each individual, making traditional therapies ineffective. By tailoring treatment to each individual's genetic and molecular profile, PPM offers a promising approach to address the complex nature of PCOS. Understanding PCOS molecular underpinnings requires continuous acquisition of PPM data. Advances in artificial intelligence have greatly enhanced precision medicine's potential applications. Precision medicine could become a standard component of PCOS care, similar to its application in treating serious conditions like cancer and heart disease, due to its ability to address the condition's complexity through individualized treatment approaches.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921331801240820115132
2024-08-01
2024-11-26
Loading full text...

Full text loading...

References

  1. AjmalN. KhanS.Z. ShaikhR. Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article.Eur. J. Obstet. Gynecol. Reprod. Biol. X2019310006010.1016/j.eurox.2019.100060 31403134
    [Google Scholar]
  2. BulsaraJ. PatelP. SoniA. AcharyaS. A review: Brief insight into polycystic ovarian syndrome.Endocr. Metab. Sci.2021310008510.1016/j.endmts.2021.100085
    [Google Scholar]
  3. PundirC.S. DeswalR. NarwalV. DangA. The prevalence of polycystic ovary syndrome: A brief systematic review.J. Hum. Reprod. Sci.202013426127110.4103/jhrs.JHRS_95_18 33627974
    [Google Scholar]
  4. CareyA.H. ChanK.L. ShortF. WhiteD. WilliamsonR. FranksS. Evidence for a single gene effect causing polycystic ovaries and male pattern baldness.Clin. Endocrinol. (Oxf.)199338665365810.1111/j.1365‑2265.1993.tb02150.x 8334753
    [Google Scholar]
  5. PrapasN. KarkanakiA. PrapasI. KalogiannidisI. KatsikisI. PanidisD. Genetics of polycystic ovary syndrome.Hippokratia2009134216223 20011085
    [Google Scholar]
  6. ParkerJ. O’BrienC. HawrelakJ. GershF.L. Polycystic ovary syndrome: An evolutionary adaptation to lifestyle and the environment.Int. J. Environ. Res. Public Health2022193133610.3390/ijerph19031336 35162359
    [Google Scholar]
  7. KhanM.J. UllahA. BasitS. Genetic basis of polycystic ovary syndrome (PCOS): Current perspectives.Appl. Clin. Genet.20191224926010.2147/TACG.S200341
    [Google Scholar]
  8. HalpernA. ManciniM.C. MagalhãesM.E.C. Metabolic syndrome, dyslipidemia, hypertension and type 2 diabetes in youth: From diagnosis to treatment.Diabetol. Metab. Syndr.2010215510.1186/1758‑5996‑2‑55 20718958
    [Google Scholar]
  9. LoACQ LoCCW Oliver-WilliamsC Cardiovascular disease risk in women with hyperandrogenism, oligomenorrhea/ menstrual irregularity or polycystic ovaries(components of polycystic ovary syndrome): A systematic review and meta-analysis.EuroHeart J Open202334oead06110.1093/ehjopen/oead061 37404840
    [Google Scholar]
  10. RosenfieldR.L. EhrmannD.A. The pathogenesis of Polycystic Ovary Syndrome (PCOS): The hypothesis of PCOS as functional ovarian hyperandrogenism revisited.Endocr. Rev.201637546752010.1210/er.2015‑1104 27459230
    [Google Scholar]
  11. MihailidisJ. DermesropianR. TaxelP. LuthraP. Grant-KelsJ.M. Endocrine evaluation of hirsutism.Int. J. Womens Dermatol.201731Suppl. 1S6S1010.1016/j.ijwd.2017.02.007 28492032
    [Google Scholar]
  12. FarrellK. AntoniM.H. Insulin resistance, obesity, inflammation, and depression in polycystic ovary syndrome: Biobehavioral mechanisms and interventions.Fertil. Steril.20109451565157410.1016/j.fertnstert.2010.03.081 20471009
    [Google Scholar]
  13. BaigM. RehmanR. TariqS. FatimaS.S. Serum leptin levels in polycystic ovary syndrome and its relationship with metabolic and hormonal profile in pakistani females.Int. J. Endocrinol.201420141510.1155/2014/132908 25587271
    [Google Scholar]
  14. UnluturkU. HarmanciA. KocaefeC. YildizB.O. The genetic basis of the polycystic ovary syndrome: A literature review including discussion of PPAR-γ.PPAR Res.2007200712310.1155/2007/49109 17389770
    [Google Scholar]
  15. WickenheisserJ.K. BieglerJ.M. Nelson-DeGraveV.L. LegroR.S. StraussJ.F.III McAllisterJ.M. Cholesterol side-chain cleavage gene expression in theca cells: Augmented transcriptional regulation and mRNA stability in polycystic ovary syndrome.PLoS One2012711e4896310.1371/journal.pone.0048963 23155436
    [Google Scholar]
  16. ShenW. LiT. HuY. LiuH. SongM. Common polymorphisms in the CYP1A1 and CYP11A1 genes and polycystic ovary syndrome risk: A meta-analysis and meta-regression.Arch. Gynecol. Obstet.2014289110711810.1007/s00404‑013‑2939‑0 23852617
    [Google Scholar]
  17. PusalkarM. MeherjiP. GokralJ. ChinnarajS. MaitraA. CYP11A1 and CYP17 promoter polymorphisms associate with hyperandrogenemia in polycystic ovary syndrome.Fertil. Steril.200992265365910.1016/j.fertnstert.2008.07.016 18725155
    [Google Scholar]
  18. TechatraisakK. ChayachindaC. WongwananurukT. No association between CYP17 ‐34T/C polymorphism and insulin resistance in Thai polycystic ovary syndrome.J. Obstet. Gynaecol. Res.20154191412141710.1111/jog.12733 26096606
    [Google Scholar]
  19. ChenJ. ShenS. TanY. The correlation of aromatase activity and obesity in women with or without polycystic ovary syndrome.J. Ovarian Res.2015811110.1186/s13048‑015‑0139‑1 25881575
    [Google Scholar]
  20. DawoodA.S. GoyalM. Debates regarding lean patients with polycystic ovary syndrome: A narrative review.J. Hum. Reprod. Sci.201710315416110.4103/jhrs.JHRS_77_17 29142442
    [Google Scholar]
  21. ChuaA.K. AzzizR. GoodarziM.O. Association study of CYP17 and HSD11B1 in polycystic ovary syndrome utilizing comprehensive gene coverage.Mol. Hum. Reprod.201218632032410.1093/molehr/gas002 22238371
    [Google Scholar]
  22. XingC. ZhangJ. ZhaoH. HeB. Effect of sex hormone-binding globulin on polycystic ovary syndrome: Mechanisms, manifestations, genetics, and treatment.Int. J. Womens Health2022149110510.2147/IJWH.S344542
    [Google Scholar]
  23. FerkP. TeranN. GersakK. The (TAAAA)n microsatellite polymorphism in the SHBG gene influences serum SHBG levels in women with polycystic ovary syndrome.Hum. Reprod.20072241031103610.1093/humrep/del457 17189294
    [Google Scholar]
  24. De LeoV. MusacchioM.C. CappelliV. MassaroM.G. MorganteG. PetragliaF. Genetic, hormonal and metabolic aspects of PCOS: An update.Reprod. Biol. Endocrinol.20161413810.1186/s12958‑016‑0173‑x 27423183
    [Google Scholar]
  25. BlomquistC.H. Kinetic analysis of enzymic activities: Prediction of multiple forms of 17β-hydroxysteroid dehydrogenase.J. Steroid Biochem. Mol. Biol.1995555-651552410.1016/0960‑0760(95)00200‑6 8547176
    [Google Scholar]
  26. CarbunaruG. PrasadP. ScocciaB. The hormonal phenotype of Nonclassic 3 β-hydroxysteroid dehydrogenase (HSD3B) deficiency in hyperandrogenic females is associated with insulin-resistant polycystic ovary syndrome and is not a variant of inherited HSD3B2 deficiency.J. Clin. Endocrinol. Metab.200489278379410.1210/jc.2003‑030934 14764797
    [Google Scholar]
  27. WaterworthD.M. BennettS.T. GharaniN. Linkage and association of insulin gene VNTR regulatory polymorphism with polycystic ovary syndrome.Lancet1997349905798699010.1016/S0140‑6736(96)08368‑7 9100625
    [Google Scholar]
  28. Diamanti-KandarakisE. PiperiC. Genetics of polycystic ovary syndrome: Searching for the way out of the labyrinth.Hum. Reprod. Update200511663164310.1093/humupd/dmi025 15994846
    [Google Scholar]
  29. BhimwalT. Puneet, Priyadarshani A. Understanding polycystic ovary syndrome in light of associated key genes.Egypt. J. Med. Hum. Genet.20232413810.1186/s43042‑023‑00418‑w
    [Google Scholar]
  30. HiamD. Moreno-AssoA. TeedeH.J. The genetics of polycystic ovary syndrome: An overview of candidate gene systematic reviews and genome-wide association studies.J. Clin. Med.2019810160610.3390/jcm8101606 31623391
    [Google Scholar]
  31. BenrickA. ChanclónB. MicallefP. Adiponectin protects against development of metabolic disturbances in a PCOS mouse model.Proc. Natl. Acad. Sci. USA201711434E7187E719610.1073/pnas.1708854114 28790184
    [Google Scholar]
  32. GrothS.W. Adiponectin and polycystic ovary syndrome.Biol. Res. Nurs.2010121627210.1177/1099800410371824 20498127
    [Google Scholar]
  33. TeedeH. DeeksA. MoranL. Polycystic ovary syndrome: A complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan.BMC Med.2010814110.1186/1741‑7015‑8‑41 20591140
    [Google Scholar]
  34. BickertonA.S.T. ClarkN. MeekingD. Cardiovascular risk in women with polycystic ovarian syndrome (PCOS).J. Clin. Pathol.200558215115410.1136/jcp.2003.015271 15677534
    [Google Scholar]
  35. ShahA.K. YadavB.K. ShahA.K. SuriA. DeoS.K. Cardiovascular risk predictors high sensitivity c-reactive protein and plasminogen activator inhibitor-1 in women with lean phenotype of polycystic ovarian syndrome: A prospective case-control study.J. Lab. Physicians2023151313710.1055/s‑0042‑1750066
    [Google Scholar]
  36. ShaabanZ. KhoradmehrA. Amiri-YektaA. Jafarzadeh ShiraziM.R. TamadonA. Pathophysiologic mechanisms of obesity- and chronic inflammation-related genes in etiology of polycystic ovary syndrome.Iran. J. Basic Med. Sci.201922121378138610.22038/IJBMS.2019.14029 32133054
    [Google Scholar]
  37. WeltC.K. Genetics of polycystic ovary syndrome.Endocrinol. Metab. Clin. North Am.2021501718210.1016/j.ecl.2020.10.006 33518187
    [Google Scholar]
  38. CastroV. ShenY. YuS. Identification of subjects with polycystic ovary syndrome using electronic health records.Reprod. Biol. Endocrinol.201513111610.1186/s12958‑015‑0115‑z 26510685
    [Google Scholar]
  39. XuN. AzzizR. GoodarziM.O. Epigenetics in polycystic ovary syndrome: A pilot study of global DNA methylation.Fertil. Steril.2010942781783.e110.1016/j.fertnstert.2009.10.020 19939367
    [Google Scholar]
  40. MukherjeeS. Pathomechanisms of polycystic ovary syndrome multidimensional approaches.Front. Biosci. (Elite Ed.)201810338442210.2741/e829
    [Google Scholar]
  41. NarayanP. Genetic Models for the Study of Luteinizing Hormone Receptor Function.Front. Endocrinol. (Lausanne)2015615210.3389/fendo.2015.00152 26483755
    [Google Scholar]
  42. McAllisterJ.M. ModiB. MillerB.A. Overexpression of a DENND1A isoform produces a polycystic ovary syndrome theca phenotype.Proc. Natl. Acad. Sci. USA201411115E1519E152710.1073/pnas.1400574111 24706793
    [Google Scholar]
  43. DumesicD.A. HoyosL.R. ChazenbalkG.D. NaikR. PadmanabhanV. AbbottD.H. Mechanisms of intergenerational transmission of polycystic ovary syndrome.Reproduction20201591R1R1310.1530/REP‑19‑0197 31376813
    [Google Scholar]
  44. BarkerD.J. The fetal and infant origins of adult disease.BMJ199030167611111-110.1136/bmj.301.6761.1111 2252919
    [Google Scholar]
  45. FilippouP. HomburgR. Is foetal hyperexposure to androgens a cause of PCOS?Hum. Reprod. Update201723442143210.1093/humupd/dmx013 28531286
    [Google Scholar]
  46. BarkerD.J.P. The origins of the developmental origins theory.J. Intern. Med.2007261541241710.1111/j.1365‑2796.2007.01809.x 17444880
    [Google Scholar]
  47. PiltonenT.T. GiacobiniP. EdvinssonÅ. Circulating antimüllerian hormone and steroid hormone levels remain high in pregnant women with polycystic ovary syndrome at term.Fertil. Steril.20191113588596.e110.1016/j.fertnstert.2018.11.028 30630591
    [Google Scholar]
  48. NilssonE.E. Sadler-RigglemanI. SkinnerM.K. Environmentally induced epigenetic transgenerational inheritance of disease.Environ. Epigenet.201842dvy01610.1093/eep/dvy016 30038800
    [Google Scholar]
  49. StueveT.R. WolffM.S. PajakA. TeitelbaumS.L. ChenJ. CYP19A1 promoter methylation in saliva associated with milestones of pubertal timing in urban girls.BMC Pediatr.20141417810.1186/1471‑2431‑14‑78 24649863
    [Google Scholar]
  50. Vázquez-MartínezE.R. Gómez-ViaisY.I. García-GómezE. DNA methylation in the pathogenesis of polycystic ovary syndrome.Reproduction20191581R27R4010.1530/REP‑18‑0449 30959484
    [Google Scholar]
  51. HoegerK.M. DokrasA. PiltonenT. Update on PCOS: Consequences, challenges, and guiding treatment.J. Clin. Endocrinol. Metab.20211063e1071e108310.1210/clinem/dgaa839 33211867
    [Google Scholar]
  52. ChecaM.A. PratM.O. ChecaM.A. CarrerasR.C. Current trends in the treatment of polycystic ovary syndrome with desire for children.Ther. Clin. Risk Manag.20095235336010.2147/TCRM.S3779 19536311
    [Google Scholar]
  53. LegroR.S. ArslanianS.A. EhrmannD.A. Diagnosis and treatment of polycystic ovary syndrome: An endocrine society clinical practice guideline.J. Clin. Endocrinol. Metab.201398124565459210.1210/jc.2013‑2350 24151290
    [Google Scholar]
  54. LeskoL.J. Personalized medicine: Elusive dream or imminent reality?Clin. Pharmacol. Ther.200781680781610.1038/sj.clpt.6100204 17505496
    [Google Scholar]
  55. GinsburgG.S. WillardH.F. Genomic and personalized medicine: Foundations and applications.Transl. Res.2009154627728710.1016/j.trsl.2009.09.005 19931193
    [Google Scholar]
  56. KellyT.K. De CarvalhoD.D. JonesP.A. Epigenetic modifications as therapeutic targets.Nat. Biotechnol.201028101069107810.1038/nbt.1678 20944599
    [Google Scholar]
  57. García-GiménezJ.L. Seco-CerveraM. TollefsbolT.O. Epigenetic biomarkers: Current strategies and future challenges for their use in the clinical laboratory.Crit. Rev. Clin. Lab. Sci.2017547-852955010.1080/10408363.2017.1410520 29226748
    [Google Scholar]
  58. SzyfM. Epigenetics, DNA methylation, and chromatin modifying drugs.Annu. Rev. Pharmacol. Toxicol.200949124326310.1146/annurev‑pharmtox‑061008‑103102 18851683
    [Google Scholar]
  59. HunterP. The second coming of epigenetic drugs.EMBO Rep.201516327627910.15252/embr.201540121 25662153
    [Google Scholar]
  60. DeWoskinV.A. MillionR.P. The epigenetics pipeline.Nat. Rev. Drug Discov.201312966166210.1038/nrd4091 23989788
    [Google Scholar]
  61. EstellerM. Garcia-FoncillasJ. AndionE. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents.N. Engl. J. Med.2000343191350135410.1056/NEJM200011093431901 11070098
    [Google Scholar]
  62. WangY. KrishnanH.R. GhezziA. YinJ.C.P. AtkinsonN.S. Drug-induced epigenetic changes produce drug tolerance.PLoS Biol.2007510e26510.1371/journal.pbio.0050265 17941717
    [Google Scholar]
  63. HorvathS. DNA methylation age of human tissues and cell types.Genome Biol.20131410R11510.1186/gb‑2013‑14‑10‑r115 24138928
    [Google Scholar]
  64. JohnsonK.B. WeiW.Q. WeeraratneD. Precision medicine, AI, and the future of personalized health care.Clin. Transl. Sci.2021141869310.1111/cts.12884 32961010
    [Google Scholar]
  65. SubramanianM. WojtusciszynA. FavreL. Precision medicine in the era of artificial intelligence: Implications in chronic disease management.J. Transl. Med.202018147210.1186/s12967‑020‑02658‑5 33298113
    [Google Scholar]
  66. QuaziS. Artificial intelligence and machine learning in precision and genomic medicine.Med. Oncol.202239812010.1007/s12032‑022‑01711‑1 35704152
    [Google Scholar]
  67. BarreraF.J. BrownE.D.L. RojoA. Application of machine learning and artificial intelligence in the diagnosis and classification of polycystic ovarian syndrome: A systematic review.Front. Endocrinol. (Lausanne)202314110662510.3389/fendo.2023.1106625 37790605
    [Google Scholar]
  68. Gibson-HelmM. TeedeH. DunaifA. DokrasA. Delayed diagnosis and a lack of information associated with dissatisfaction in women with polycystic ovary syndrome.J. Clin. Endocrinol. Metab.201620162016296310.1210/jc.2016‑2963
    [Google Scholar]
  69. KhannaV.V. ChadagaK. SampathilaN. PrabhuS. BhandageV. HegdeG.K. A distinctive explainable machine learning framework for detection of polycystic ovary syndrome.Appl. Syst. Innov.2023623210.3390/asi6020032
    [Google Scholar]
  70. ElmannaiH. El-RashidyN. MashalI. Polycystic ovary syndrome detection machine learning model based on optimized feature selection and explainable artificial intelligence.Diagnostics (Basel)2023138150610.3390/diagnostics13081506 37189606
    [Google Scholar]
  71. NaveO.P. Modification of semi-analytical method applied system of ODE.Mod. Appl. Sci.20201467510.5539/mas.v14n6p75
    [Google Scholar]
  72. VermaP. MaanP. GautamR. AroraT. Unveiling the role of artificial intelligence (AI) in polycystic ovary syndrome (PCOS) diagnosis: A comprehensive review.Reprod. Sci.2024(Jun):10.1007/s43032‑024‑01615‑7 38907128
    [Google Scholar]
  73. YanS.K. LiuR.H. JinH.Z. Omics in pharmaceutical research: Overview, applications, challenges, and future perspectives.Chin. J. Nat. Med.201513132110.1016/S1875‑5364(15)60002‑4 25660284
    [Google Scholar]
  74. D’AdamoG.L. WiddopJ.T. GilesE.M. The future is now? Clinical and translational aspects of Omics technologies.Immunol. Cell Biol.202199216817610.1111/imcb.12404 32924178
    [Google Scholar]
  75. HartlD. de LucaV. KostikovaA. Translational precision medicine: An industry perspective.J. Transl. Med.202119124510.1186/s12967‑021‑02910‑6 34090480
    [Google Scholar]
  76. HasinY. SeldinM. LusisA. Multi-omics approaches to disease.Genome Biol.20171818310.1186/s13059‑017‑1215‑1 28476144
    [Google Scholar]
  77. KhodadadianA. Genomics and transcriptomics: The powerful technologies in precision medicine.Int. J. Gen. Med.20201362764010.2147/IJGM.S249970
    [Google Scholar]
  78. HorganR.P. KennyL.C. Omic technologies: Genomics, transcriptomics, proteomics and metabolomics.Obstet. Gynaecol.201113318919510.1576/toag.13.3.189.27672
    [Google Scholar]
  79. HolmesC. CarlsonS.M. McDonaldF. JonesM. GrahamJ. Exploring the post-genomic world: Differing explanatory and manipulatory functions of post-genomic sciences.New Genet. Soc.2016351496810.1080/14636778.2015.1133280 27134568
    [Google Scholar]
  80. HasanzadM. SarhangiN. Ehsani ChimehS. Precision medicine journey through omics approach.J. Diabetes Metab. Disord.202121188188810.1007/s40200‑021‑00913‑0 35673436
    [Google Scholar]
  81. ClishC.B. Metabolomics: An emerging but powerful tool for precision medicine.Molecular Case Studies201511a00058810.1101/mcs.a000588 27148576
    [Google Scholar]
  82. Puchades-CarrascoL. Pineda- Lucena A. Metabolomics applications in precision medicine: An oncological perspective.Curr. Top. Med. Chem.201717242740275110.2174/1568026617666170707120034 28685691
    [Google Scholar]
  83. BekriS. The role of metabolomics in precision medicine.Expert Rev. Precis. Med. Drug Dev.20161651753210.1080/23808993.2016.1273067
    [Google Scholar]
  84. AzzizR. MarinC. HoqL. BadamgaravE. SongP. Health care-related economic burden of the polycystic ovary syndrome during the reproductive life span.J. Clin. Endocrinol. Metab.20059084650465810.1210/jc.2005‑0628 15944216
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921331801240820115132
Loading

  • Article Type:
    Review Article
Keyword(s): AI; epigenetics; ML; PCOS; PCOS treatment; Precision medicine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test