Skip to content
2000
image of Parasitic Resistance Impacting Fill Factor of a GaAs Solar Cell

Abstract

The efficiency of a photovoltaic cell is determined by the maximum power it can deliver to a load. Power output is a function of the fill factor. The fill factor determines the shape of the I-V characteristics of a solar cell. It is dependent on various environmental as well as internal parameters. Two major parameters that influence the fill factor are the parasitic series and shunt resistances ( and ) present in a photovoltaic device.

In this regard, numerical analysis has been carried out to determine the effect of these parasitic influences on the I-V characteristics of a solar cell and to analyze the variation of the fill factor with the two parasitic resistances.

The highest recorded efficiency and other corresponding parameters for a GaAs (multicrystalline) solar cell have been used for reference while conducting the analysis. It is observed that the I-V curve flattens for decreasing values of , and the fill factor decreases considerably.

It is envisioned that the attained results will pave the way for implementations ensuring higher efficiency of GaAs solar cells.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348374213250116070814
2025-01-22
2025-07-11
Loading full text...

Full text loading...

References

  1. Biswas R. Hybrid solar cells: A step closer to smart life. J. Phys. Optics Sci. 2022 4 3 1 2 10.47363/JPSOS/2022(4)165
    [Google Scholar]
  2. Huang X. Han S. Huang W. Liu X. Enhancing solar cell efficiency: The search for luminescent materials as spectral converters. Chem. Soc. Rev. 2013 42 1 173 201 10.1039/C2CS35288E 23072924
    [Google Scholar]
  3. Kabir E. Kumar P. Kumar S. Adelodun A.A. Kim K.H. Solar energy: Potential and future prospects. Renew. Sustain. Energy Rev. 2018 82 894 900 10.1016/j.rser.2017.09.094
    [Google Scholar]
  4. Dittrich T. Basic characteristics and characterization of solar cells. Helmholtz Center Berlin for Materials and Energy Germany 2018 3 43 10.1142/9781786344496_0001
    [Google Scholar]
  5. Green M. Dunlop E. Hohl‐Ebinger J. Yoshita M. Kopidakis N. Hao X. Solar cell efficiency tables (version 57). Prog. Photovolt. Res. Appl. 2020 29 1 3 15 10.1002/pip.3371
    [Google Scholar]
  6. Rezk H. Fathy A. Aly M. A robust photovoltaic array reconfiguration strategy based on coyote optimization algorithm for enhancing the extracted power under partial shadow condition. Energy Rep. 2021 7 109 124 10.1016/j.egyr.2020.11.035
    [Google Scholar]
  7. Cherukuri S.K. Balachandran P.K. Kaniganti K.R. Buddi M.K. Butti D. Devakirubakaran S. Babu T.S. Alhelou H.H. Power enhancement in partial shaded photovoltaic system using spiral pattern array configuration scheme. IEEE Access 2021 9 123103 123116 10.1109/ACCESS.2021.3109248
    [Google Scholar]
  8. Sengupta S. Sengupta S. Chanda C.K. Saha H. Modeling the effect of relative humidity and precipitation on photovoltaic dust accumulation processes. IEEE J. Photovolt. 2021 99 1 9 10.1109/JPHOTOV.2021.3074071
    [Google Scholar]
  9. Lipták R. Bodnár I. Simulation of fault detection in photovoltaic arrays. Analecta Technica Szegedinensia 2021 15 2 31 40 10.14232/analecta.2021.2.31‑40
    [Google Scholar]
  10. Saranchimeg S. Nair N.K.C. A novel framework for integration analysis of large-scale photovoltaic plants into weak grids. Appl. Energy 2021 282 116141 10.1016/j.apenergy.2020.116141
    [Google Scholar]
  11. Krohn J. Ruden P. Parasitic resistance effects of split-spectrum solar cell performance. 2010 https://hdl.handle.net/11299/101888
  12. Kar S. Banerjee S. Chanda C.K. Effect of parasitic resistances on CdTe solar cell and validation with datasheet of FS-6450A in matlab/simulink. J. Phys. Conf. Ser. 2021 2070 1 012106 10.1088/1742‑6596/2070/1/012106
    [Google Scholar]
  13. Available from: https://conservancy.umn.edu/server/api/core/bitstreams/9a35d554-4a5b-4af4-9c74-e87fca26b85c/content(Accessed on 26 th Dec, 2024)
  14. Mesquita I. Andrade L. Mendes A. Effect of relative humidity during the preparation of perovskite solar cells: Performance and stability Solar Energy 2020 199 474 483 10.1016/j.solener.2020.02.052
    [Google Scholar]
  15. Sohani A. Shahverdian M.H. Sayyaadi H. Garcia D.A. Impact of absolute and relative humidity on the performance of mono and poly crystalline silicon photovoltaics; Applying artificial neural network. J. Clean. Prod. 2020 276 123016 10.1016/j.jclepro.2020.123016
    [Google Scholar]
  16. Ali H. Khan H.A. Analysis on inverter selection for domestic rooftop solar photovoltaic system deployment. Int. Trans. Electr. Energy Syst. 2020 30 5 e12351 10.1002/2050‑7038.12351
    [Google Scholar]
  17. Konyu M. Ketjoy N. Sirisamphanwong C. Effect of dust on the solar spectrum and electricity generation of a photovoltaic module. IET Renew. Power Gener. 2020 14 14 2759 2764 10.1049/iet‑rpg.2020.0456
    [Google Scholar]
  18. Wang X. Khan M.R. Gray J.L. Alam M.A. Lundstrom M.S. Design of gaas solar cells operating close to the shockley–queisser limit. IEEE J. Photovolt. 2013 3 2 737 744 10.1109/JPHOTOV.2013.2241594
    [Google Scholar]
  19. Li Q. Shen K. Yang R. Zhao Y. Lu S. Wang R. Dong J. Wang D. Comparative study of GaAs and CdTe solar cell performance under low-intensity light irradiance. Sol. Energy 2017 157 157 216 226 10.1016/j.solener.2017.08.023
    [Google Scholar]
  20. D’Rozario J.R. Polly S.J. Nelson G.T. Hubbard S.M. Thin gallium arsenide solar cells with maskless back surface reflectors. IEEE J. Photovolt. 2020 10 6 1681 1688 10.1109/JPHOTOV.2020.3019950
    [Google Scholar]
  21. Dalal V.L. Moore A.R. Design considerations for high-intensity solar cells. J. Appl. Phys. 1977 48 3 1244 1251 10.1063/1.323766
    [Google Scholar]
  22. Khan A.D. Khan A.D. Optimization of highly efficient GaAs–silicon hybrid solar cell. Appl. Phys., A Mater. Sci. Process. 2018 124 12 851 10.1007/s00339‑018‑2279‑9
    [Google Scholar]
  23. Gruginskie N. Cappelluti F. Bauhuis G. Tibaldi A. Giliberti G. Mulder P. Vlieg E. Schermer J. Limiting mechanisms for photon recycling in thin‐film GaAs solar cells. Prog. Photovolt. Res. Appl. 2021 29 3 379 390 10.1002/pip.3378
    [Google Scholar]
  24. Outes C. Fernández E.F. Seoane N. Almonacid F. García-Loureiro A.J. Dependence of the vertical‐tunnel‐junction GaAs solar cell on concentration and temperature. IET Renew. Power Gener. 2022 16 8 1577 1588 10.1049/rpg2.12456
    [Google Scholar]
  25. Beemkumar N. Harikrishnan S. Ali H.M. A review on factors influencing the mismatch losses in solar photovoltaic system. Int. J. Photoenergy 2022 2022 1 2986004
    [Google Scholar]
  26. Arulanandam M.K. Steiner M.A. Tervo E.J. Young A.R. Kuritzky L.Y. Perl E.E. Narayan T.C. Kayes B.M. Briggs J.A. King R.R. GaAs thermophotovoltaic patterned dielectric back contact devices with improved sub-bandgap reflectance. Sol. Energy Mater. Sol. Cells 2022 238 111545 111545 10.1016/j.solmat.2021.111545
    [Google Scholar]
  27. Díaz S.R. A generalized theoretical approach for solar cells fill factors by using shockley diode model and lambert w-function: A review comparing theory and experimental data. Physica B 2022 624 413427 413427 10.1016/j.physb.2021.413427
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348374213250116070814
Loading
/content/journals/cphs/10.2174/0127723348374213250116070814
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test