Skip to content
2000
image of Quantum-Mechanical Explanation of Young’s double slit Experiment through Simulation of the Photon Coordinate Wave Function

Abstract

Background

In the rapidly developing areas of photonics associated with quantum teleportation of photons, quantum cryptography, and quantum computing, ideas are becoming increasingly relevant about the certain localized states of single or several entangled photons moving in space and time. As is known, in quantum mechanics, localized states of particles can only be described using wave functions in coordinate representation – the corresponding wave packets.

Aims

To explain Young's one- and two-photon experiments using coordinate 6-component quantum mechanical and 1-component quasi-classical photon wave functions.

Methods

The article outlines the method developed in authors' previous work in constructing the 6-component coordinate wave function of free photons in the form of the wave packet (an integral over the entire momentum space and sum over two possible values +1 and -1 of the helicity). The basis functions are the circularly polarized monochromatic waves, corresponding to certain values of the momentum, helicity, and photon energy operators and forming a complete orthonormal set of generalized eigenfunctions of these operators. This photon wave function (PWF) is normalized to the unit probability of finding the photon anywhere in space. Both the basis functions and the coordinate PWF satisfy a Schrödinger-type equation derived from the Maxwell-Lorentz equations written in quantum mechanical form first introduced by Majorana. Then the results of modeling and consideration of the space-time evolution of the wave packet with Gaussian momentum distribution corresponding to the directed photon emission for 80 fs are briefly presented. Further, in view of the possibility of constructing the coordinate PWF, the basic formula for the wave-particle duality of photons and particles is formulated. It is emphasized that the photon is fundamentally different from “ordinary” particles, since, according to the authors, the photon is the result of the propagation of a certain complex spin wave in a physical vacuum, the details of which can only be considered simultaneously with the study of the structure of the physical vacuum at Planckian distances.

Results

Young's one- and two-photon experiments are explained using various options for modeling 6-component coordinate PWFs, including approximate functions corresponding to spherically symmetric and electric dipole photon radiation.

Conclusion

This explanation is illustrated using specific examples of radiation and, at the same time, is compared with numerical simulations for spherically symmetric radiation and the use of 1-component quasi-classical PWFs.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348341614241206215545
2024-12-23
2025-01-15
Loading full text...

Full text loading...

References

  1. Aspect A. Grangier P. Roger G. Experimental realization of einstein-podolsky-rosen-bohm gedankenexperiment: A new violation of Bell’s inequalities. Phys. Rev. Lett. 1982 49 2 91 94 10.1103/PhysRevLett.49.91
    [Google Scholar]
  2. Aspect A. Dalibard J. Roger G. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 1982 49 25 1804 1807 10.1103/PhysRevLett.49.1804
    [Google Scholar]
  3. Weihs G. Jennewein T. Simon C. Weinfurter H. Zeilinger A. Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 1998 81 23 5039 5043 10.1103/PhysRevLett.81.5039
    [Google Scholar]
  4. Scheidl T. Ursin R. Kofler J. Ramelow S. Ma X.S. Herbst T. Ratschbacher L. Fedrizzi A. Langford N.K. Jennewein T. Zeilinger A. Violation of local realism with freedom of choice. Proc. Natl. Acad. Sci. USA 2010 107 46 19708 19713 10.1073/pnas.1002780107 21041665
    [Google Scholar]
  5. Merali Z. Quantum ‘spookiness’ passes toughest test yet. Nature 2015 525 7567 14 15 10.1038/nature.2015.18255 26333448
    [Google Scholar]
  6. Gröblacher S. Paterek T. Kaltenbaek R. Brukner Č. Żukowski M. Aspelmeyer M. Zeilinger A. An experimental test of non-local realism. Nature 2007 446 7138 871 875 10.1038/nature05677 17443179
    [Google Scholar]
  7. Romero J. Leach J. Jack B. Barnett S.M. Padgett M.J. Franke-Arnold S. Violation of Leggett inequalities in orbital angular momentum subspaces. New J. Phys. 2010 12 12 123007 10.1088/1367‑2630/12/12/123007
    [Google Scholar]
  8. Leggett A.J. Garg A. Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Phys. Rev. Lett. 1985 54 9 857 860 10.1103/PhysRevLett.54.857 10031639
    [Google Scholar]
  9. Grangier P. Roger G. Aspect A. Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences. Europhys. Lett. 1986 1 4 173 179 10.1209/0295‑5075/1/4/004
    [Google Scholar]
  10. Jacques V. Wu E. Grosshans F. Treussart F. Grangier P. Aspect A. Roch J.F. Experimental realization of Wheeler’s delayed-choice gedanken experiment. Science 2007 315 5814 966 968 10.1126/science.1136303 17303748
    [Google Scholar]
  11. Peruzzo A. Shadbolt P. Brunner N. Popescu S. O’Brien J.L. A quantum delayed-choice experiment. Science 2012 338 6107 634 637 10.1126/science.1226719 23118183
    [Google Scholar]
  12. Ma X.S. Kofler J. Qarry A. Tetik N. Scheidl T. Ursin R. Ramelow S. Herbst T. Ratschbacher L. Fedrizzi A. Jennewein T. Zeilinger A. Quantum erasure with causally disconnected choice. Proc. Natl. Acad. Sci. USA 2013 110 4 1221 1226 10.1073/pnas.1213201110 23288900
    [Google Scholar]
  13. Manning A.G. Khakimov R.I. Dall R.G. Truscott A.G. Wheeler’s delayed-choice gedanken experiment with a single atom. Nat. Phys. 2015 11 7 539 542 10.1038/nphys3343
    [Google Scholar]
  14. Ma X. Kofler J. Zeilinger A. Delayed-choice gedanken experiments and their realizations. Rev. Mod. Phys. 2016 88 1 015005 10.1103/RevModPhys.88.015005
    [Google Scholar]
  15. Vedovato F. Agnesi C. Schiavon M. Dequal D. Calderaro L. Tomasin M. Marangon D.G. Stanco A. Luceri V. Bianco G. Vallone G. Villoresi P. Extending Wheeler’s delayed-choice experiment to space. Sci. Adv. 2017 3 10 e1701180 10.1126/sciadv.1701180 29075668
    [Google Scholar]
  16. Lundeen J.S. Sutherland B. Patel A. Stewart C. Bamber C. Direct measurement of the quantum wavefunction. Nature 2011 474 7350 188 191 10.1038/nature10120 21654800
    [Google Scholar]
  17. Chrapkiewicz R. Jachura M. Banaszek K. Wasilewski W. Hologram of a single photon. Nat. Photonics 2016 10 9 576 579 10.1038/nphoton.2016.129
    [Google Scholar]
  18. Landau L. Peierls R. Quantum electrodynamics in configuration space. Z. Phys. 1930 62 188 200
    [Google Scholar]
  19. Kramers H.A. Quantum Mechanics North- Holland Amsterdam 1958
    [Google Scholar]
  20. Newton T.D. Wigner E.P. Localized states for elementary systems. Rev. Mod. Phys. 1949 21 3 400 406 10.1103/RevModPhys.21.400
    [Google Scholar]
  21. Bohm D. Quantum Theory. London Constable 1954
    [Google Scholar]
  22. Power E.A. Introductory Quantum Electrodynamics. London Longmans 1964
    [Google Scholar]
  23. Berestetskii V.B. Lifshitz E.M. Pitaevskii L.P. Quantum electrodynamics Nauka Moscow 1982
    [Google Scholar]
  24. Ahiezer A.I. Beresteckij V.B. Quantum electrodynamics. Moscow Nauka 1981
    [Google Scholar]
  25. Levich V.G. Vdovin Ju. Course of theoretical physics. Moscow Nauka 1971 II
    [Google Scholar]
  26. Chiao R.Y. Kwiat P.G. Steinberg A.M. Quantum and semiclassical optics: Journal of the European Optical Society. Part B 1995 7 3 259 278 10.1088/1355‑5111/7/3/006
    [Google Scholar]
  27. Scully M.O. Zubairy M.S. Quantum Optics. Cambridge Cambridge Univ. Press 1997 10.1017/CBO9780511813993
    [Google Scholar]
  28. Białynicki-Birula I. On the wave function of the photon. Acta Phys. Pol. A 1994 86 1-2 97 116 10.12693/APhysPolA.86.97
    [Google Scholar]
  29. Mandel M. Wolf E. Optical coherence and quantum optics. Cambridge Cambridge Univ. Press 1995 10.1017/CBO9781139644105
    [Google Scholar]
  30. Sipe J.E. Photon wave functions. Phys. Rev. A 1995 52 3 1875 1883 10.1103/PhysRevA.52.1875 9912446
    [Google Scholar]
  31. Davydov A.P. Quantum mechanics of photon. Science and school: Abstracts of the XXXIII scientific conf. of MSPI Publishing House of MSPI: Magnitogorsk, Russia, 1995, pp. 206-207.
    [Google Scholar]
  32. Klyshko D.N. Quantum optics: Quantum, classical, and metaphysical aspects. Phys. Uspekhi 1994 37 11 1097 1122 10.1070/PU1994v037n11ABEH000054
    [Google Scholar]
  33. Gisin N. Ribordy G. Tittel W. Zbinden H. Quantum cryptography. Rev. Mod. Phys. 2002 74 1 145 195 10.1103/RevModPhys.74.145
    [Google Scholar]
  34. Scarani V. Bechmann-Pasquinucci H. Cerf N.J. Dušek M. Lütkenhaus N. Peev M. The security of practical quantum key distribution. Rev. Mod. Phys. 2009 81 3 1301 1350 10.1103/RevModPhys.81.1301
    [Google Scholar]
  35. Fulconis J. Alibart O. O’Brien J.L. Wadsworth W.J. Rarity J.G. Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source. Phys. Rev. Lett. 2007 99 12 120501 10.1103/PhysRevLett.99.120501 17930484
    [Google Scholar]
  36. Liang C. Xiao-Ying L. Hai-Yang F. Lei Y. Xiao-Xin M. Photonic crystal fiber source of quantum correlated photon pairs in the 1550 nm telecom band. Chin. Phys. Lett. 2009 26 4 044209 10.1088/0256‑307X/26/4/044209
    [Google Scholar]
  37. Waks E. Inoue K. Oliver W.D. Diamanti E. Yamamoto Y. High-efficiency photon-number detection for quantum information processing. IEEE J. Sel. Top. Quantum Electron. 2003 9 6 1502 1511 10.1109/JSTQE.2003.820917
    [Google Scholar]
  38. Procházka I. Hamal K. Sopko B. Recent achievements in single photon detectors and their applications. J. Mod. Opt. 2004 51 9-10 1289 1313 10.1080/09500340408235273
    [Google Scholar]
  39. Gansen E.J. Rowe M.A. Greene M.B. Rosenberg D. Harvey T.E. Su M.Y. Hadfield R.H. Nam S.W. Mirin R.P. Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor. Nat. Photonics 2007 1 10 585 588 10.1038/nphoton.2007.173
    [Google Scholar]
  40. Jiang L.A. Dauler E.A. Chang J.T. Photon-number-resolving detector with 10 bits of resolution. Phys. Rev. A 2007 75 6 062325 10.1103/PhysRevA.75.062325
    [Google Scholar]
  41. Kardynał B.E. Yuan Z.L. Shields A.J. An avalanche‐photodiode-based photon-number-resolving detector. Nat. Photonics 2008 2 7 425 428 10.1038/nphoton.2008.101
    [Google Scholar]
  42. Bialynicki-Birula I. The photon wave function. Coherence and Quantum Optics VII. Eberly J.H. New York Plenum Press 1996 313 323 10.1007/978‑1‑4757‑9742‑8_38
    [Google Scholar]
  43. Bialynicki-Birula I. Photon wave function. Progress in Optics. Wolf E. Amsterdam Elsevier: North-Holland 1996 XXXVI 248 294
    [Google Scholar]
  44. Hawton M. Photon wave functions in a localized coordinate space basis. Phys. Rev. A 1999 59 5 3223 3227 10.1103/PhysRevA.59.3223
    [Google Scholar]
  45. Davydov A.P. Photon wave function in coordinate representation. Magnitogorsk State University Bulletin MaSU: Magnitogorsk Russia 2004
    [Google Scholar]
  46. Cugnon J. The photon wave function. Open J. Microphys. 2011 1 3 41 52
    [Google Scholar]
  47. Saari P. Photon localization revisited. Quantum Optics and Laser Experiments. Lyagushyn S. Croatia InTech – Open Access Publisher 2012 49 66 10.5772/29895
    [Google Scholar]
  48. Davydov A.P. Quantum mechanics of the photon: Wave function in the coordinate representation. Electromagn. Waves Electron. Syst. 2015 20 5 43 61
    [Google Scholar]
  49. Davydov A.P. Zlydneva T.P. On the relativistic invariance of the continuity equation in quantum mechanics of the photon. International Research Journal 2016 4-6 46 134 137 10.18454/IRJ.2016.46.145
    [Google Scholar]
  50. Davydov A.P. Zlydneva T.P. On the photon wave function in coordinate and momentum representations. Int. Res. J. 2016 11 4 152 156 10.18454/IRJ.2016.53.104
    [Google Scholar]
  51. Davydov A.P. Photon wave function in the coordinate representation. Magnitogorsk, Russia Publishing House of Nosov MSTU 2015
    [Google Scholar]
  52. Davydov A.P. Evolution in space and time of the wave packet of a photon of femtosecond radiation from the point of view of quantum mechanics. Modern problems of science and education Abstracts of XLIII sci. conf. of teachers of MaSU MaGU: Magnitogorsk, Russia, 2005, pp. 269-270.
    [Google Scholar]
  53. Davydov A.P. Modeling the propagation of a photon wave packet in three-dimensional space. Actual problems of modern science, technology and education — materials of the 73rd Intern. scientific and technical conf. Publishing House of Nosov MSTU: Magnitogorsk, Russia, 2015, vol. 3, pp. 133-137.
    [Google Scholar]
  54. Davydov A.P. Zlydneva T.P. Single-photon approach to the modeling short-pulse laser radiation. Bull. Sci. Educ. North-West Russia 2015 1 4 97 111
    [Google Scholar]
  55. Davydov A.P. Zlydneva T.P. Modeling of short-pulse laser radiation in terms of photon wave function in coordinate representation. Instrumentation engineering, electronics and telecommu-nications — Paper book of the Internat. Forum IEET-2015. Izhevsk, Russia Publishing House of Kalashnikov ISTU 2016 51 63
    [Google Scholar]
  56. Davydov A.P. Zlydneva T.P. The Young’s interference experiment in the light of the single-photon modeling of the laser radiation. Information Technologies in Science, Management, Social Sphere and Medicine (ITSMSSM 2016) – Proc. of the 2016 Conf, Atlantis Press, January 2016, pp. 208-215. 10.2991/itsmssm‑16.2016.100
    [Google Scholar]
  57. Davydov A.P. Zlydneva T.P. On the reduction of free photons speed in modeling of their propagation in space by the wave function in coordinate representation. 2016 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), Novosibirsk, Russia, 03-06 October 2016, pp. 233-240.
    [Google Scholar]
  58. Giovannini D. Romero J. Potoček V. Ferenczi G. Speirits F. Barnett S.M. Faccio D. Padgett M.J. Spatially structured photons that travel in free space slower than the speed of light. Science 2015 347 6224 857 860 10.1126/science.aaa3035 25612608
    [Google Scholar]
  59. Gouesbet G. Lock J.A. On light traveling in free space slower than the speed of light and other curiosities associated to light propagation and light scattering. Available from: http://meetingorganizer.copernicus.org/ELS-XV-2015/ELS-XV-2015-16.pdf
  60. Mignani E. Recami E. Baldo M. About a dirac-like equation for the photon according to ettore majorana. Lett. Nuovo Cimento 1974 11 12 568 572 10.1007/BF02812391
    [Google Scholar]
  61. Davydov A.P. On the elaboration of Special Relativity (SR) proceeding from the space and time symmetry – Without applying the SR postulates. Electromagn. Waves Electron. Syst. 2003 8 1 49 58
    [Google Scholar]
  62. Davydov A.P. A course of lectures on quantum mechanics. The mathematical apparatus of quantum mechanics. Magnitogorsk, Russia Nosov MSTU 2014
    [Google Scholar]
  63. Davydov A.P. Dispersion interpretation of energy-time uncertainty relation and shot-time impulse laser radiation. Bull. Sci. Educ. North-West Russia 2017 3 4 131 145
    [Google Scholar]
  64. Davydov A.P. Possibility of quantum nonsingular black holes with Planck's parameters and extreme metric in physics and cosmology. Electromagn. Waves Electron. Syst. 1998 3 2 67 78
    [Google Scholar]
  65. Davydov A.P. The extreme maximons, the structure of the fundamental particles, quantum electrodynamics, general relativity and Logunov's relativistic theory of gravitation. Electromagn. Waves Electron. Syst. 2001 6 5 4 13
    [Google Scholar]
  66. Davydov A.P. Zlydneva T.P. The Modeling of the Young’s interference experiment in terms of single-photon wave function in the coordinate representation. Information technologies in Science, Management, Social sphere and Medicine (ITSMSSM 2017) – Proc. of the IV International research conf. Shenzhen Atlantis Press 2017 72 257 265
    [Google Scholar]
  67. Davydov A.P. Zlydneva T.P. On the interference of light from the point of view of the photon wave function in the coordinate representation. Actual problems of modern science, technology and education — materials of the 75rd Intern. scientific and technical conf, Publishing House of Nosov MSTU: Magnitogorsk, Russia, 2017, vol. 2, pp. 109-112.
    [Google Scholar]
  68. Davydov A.P. Zlydneva T.P. Space-time probability density of detection of a photon in laser beam of the femtosecond range. 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE) Novosibirsk, Russia, 02-06 October 2018, pp. 58-69.
    [Google Scholar]
  69. Davydov A.P. Zlydneva T.P. Interference of electromagnetic waves from the point of view of photon wave function in coordinate representation. Electromagn. Waves Electron. Syst. 2018 23 8 27 40
    [Google Scholar]
  70. Davydov A.P. Zlydneva T.P. On simulation of the photon wave function to explain the Young’s experiment and prospects for its use in quantum cryptography. J. Phys. Conf. Ser. 2020 1661 1 012028 10.1088/1742‑6596/1661/1/012028
    [Google Scholar]
  71. Davydov A.P. Zlydneva T.P. Analytical modeling of Young's single-photon experiment using quasi-classical and approximate quantum-mechanical coordinate wave functions of photon. Inzhenernaya Fizika 2023 9 45 56
    [Google Scholar]
  72. Davydov A.P. Zlydneva T.P. Analytical modeling of the Young’s single-photon experiment using the quasi-classical and approximate quantum-mechanical coordinate photon wave functions. Opt. Spectrosc. 2023 131 11 1148 1156 10.1134/S0030400X24700140
    [Google Scholar]
  73. Clauser J.F. Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect. Phys. Rev. D Part. Fields 1974 9 4 853 860 10.1103/PhysRevD.9.853
    [Google Scholar]
  74. Feynman R.P. Leighton R.B. Sands M. The Feynman Lectures on Physics: Quantum Mechanics. Reading, MA Addison-Wesley 1965 3
    [Google Scholar]
  75. Taylor G.I. Interference fringes with feeble light. Proc. Camb. Philos. Soc. 1909 15 114 115
    [Google Scholar]
  76. Qian X.F. Agarwal G.S. Quantum duality: A source point of view. Phys. Rev. Res. 2020 2 1 012031 10.1103/PhysRevResearch.2.012031
    [Google Scholar]
  77. Yoon T.H. Cho M. Quantitative complementarity of wave-particle duality. Sci. Adv. 2021 7 34 eabi9268 10.1126/sciadv.abi9268 34407933
    [Google Scholar]
  78. Turek Y. Ren Y.F. Separating the wave and particle attributes of two entangled photons. Preprints 2312.01316 2023
    [Google Scholar]
  79. Jönsson C. Electron interference at several artificially created fine slits. Z. Phys. 1961 161 4 454 474 10.1007/BF01342460
    [Google Scholar]
  80. Tonomura A. Endo J. Matsuda T. Kawasaki T. Ezawa H. Demonstration of single-electron buildup of an interference pattern. Am. J. Phys. 1989 57 2 117 120 10.1119/1.16104
    [Google Scholar]
  81. Hackermüller L. Hornberger K. Brezger B. Zeilinger A. Arndt M. Decoherence of matter waves by thermal emission of radiation. Nature 2004 427 6976 711 714 10.1038/nature02276 14973478
    [Google Scholar]
  82. Fein Y.Y. Geyer P. Zwick P. Kiałka F. Pedalino S. Mayor M. Gerlich S. Arndt M. Quantum superposition of molecules beyond 25 kDa. Nat. Phys. 2019 15 12 1242 1245 10.1038/s41567‑019‑0663‑9
    [Google Scholar]
  83. Denkmayr T. Geppert H. Sponar S. Lemmel H. Matzkin A. Tollaksen J. Hasegawa Y. Observation of a quantum Cheshire Cat in a matter-wave interferometer experiment. Nat. Commun. 2014 5 1 4492 10.1038/ncomms5492 25072171
    [Google Scholar]
  84. Dirac P.A.M. The Principles of Quantum Mechanics. Fourth ed., revised Oxford Clarendon Press 1967
    [Google Scholar]
  85. Davydov A.P. Zlydneva T.P. On the wave-particle duality within the framework of modeling single-photon interference. J. Phys. Conf. Ser. 2019 1399 2 022019 10.1088/1742‑6596/1399/2/022019
    [Google Scholar]
  86. Davydov A.P. Zlydneva T.P. Single- and two-photon interference within the simulated photon wave function in coordinate representation. J. Phys. Conf. Ser. 2020 1679 2 022051 10.1088/1742‑6596/1679/2/022051
    [Google Scholar]
  87. Davydov A.P. Zlydneva T.P. Simulation of the two-photon Young's experiment in the framework of the photons quantum mechanics and in the quasi-classical approach in the electric dipole approximation. Inzhenernaya Fizika 2022 6 15 23
    [Google Scholar]
  88. Davydov A.P. Zlydneva T.P. Simulation of the two-photon Young’s experiment within the framework of the photon quantum mechanics and in the quasi-classical approach in the electric-dipole approximation. Opt. Spectrosc. 2023 131 11 1157 1163 10.1134/S0030400X24700152
    [Google Scholar]
  89. Davydov A. Zlydneva T. On numerical modeling of the Young’s experiment with two sources of single-photon spherical coordinate wave functions. Lecture Notes in Networks and Systems 2022 424 327 335 10.1007/978‑3‑030‑97020‑8_30
    [Google Scholar]
  90. Davydov A.P. Dolgushin D.M. Zlydneva T.P. Faizrakhmanov N.R. Single- and two-photon Young's experiments from the point of view of Feynman amplitudes, Green functions and photon coordinate wave functions. Inzhenernaya Fizika 2024 1 32 48
    [Google Scholar]
  91. Davydov A.P. Dolgushin D.M. Zlydneva T.P. Faizrakhmanov N.R. Young’s single- and double-slit experiments in terms of the Feynman amplitudes, Green’s functions, and photon coordinate wave functions. Opt. Spectrosc. 2023 131 11 1164 1177 10.1134/S0030400X24700164
    [Google Scholar]
  92. Davydov A.P. Zlydneva T.P. On numerical and approximate analytical modeling of single- and two-photon Young's experiment using the photon coordinate wave function. E3S Web Conf. 2024 474 02026 10.1051/e3sconf/202447402026
    [Google Scholar]
  93. Davydov A.P. Zlydneva T.P. Two-photon interference from two independent sources in the scheme of Young's experiment in the framework of modeling the coordinate wave function of the photon. Inzhenernaya Fizika 2021 11 9 15
    [Google Scholar]
  94. Smith B.J. Killett E. Raymer M.G. Walmsley I.A. Banaszek K. Measurement of the transverse spatial quantum state of light at the single-photon level: publisher’s note. Opt. Lett. 2021 46 9 2151 2151 10.1364/OL.427096 33929435
    [Google Scholar]
  95. Mirhosseini M. Magaña-Loaiza O.S. Hashemi Rafsanjani S.M. Boyd R.W. Compressive direct measurement of the quantum wave function. Phys. Rev. Lett. 2014 113 9 090402 10.1103/PhysRevLett.113.090402 25215964
    [Google Scholar]
  96. Lam B. ElKabbash M. Zhang J. Guo C. Spatial wavefunction characterization of femtosecond pulses at single-photon level. Research 2020 2020 2020/2421017 10.34133/2020/2421017 32607496
    [Google Scholar]
  97. Devrari V. Singh M. Quantum double slit experiment with reversible detection of photons. Sci. Rep. 2024 14 1 20438 10.1038/s41598‑024‑71091‑1 39227623
    [Google Scholar]
  98. Qureshi T. Understanding modified two-slit experiments using path markers. Found. Phys. 2023 53 2 38 10.1007/s10701‑023‑00684‑z
    [Google Scholar]
  99. Li J.K. Sun K. Wang Y. Hao Z.Y. Liu Z.H. Zhou J. Fan X.Y. Chen J.L. Xu J.S. Li C.F. Guo G.C. Experimental demonstration of separating the wave‒particle duality of a single photon with the quantum Cheshire cat. Light Sci. Appl. 2023 12 1 18 10.1038/s41377‑022‑01063‑5 36599829
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348341614241206215545
Loading
/content/journals/cphs/10.2174/0127723348341614241206215545
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test