Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

Objective

An alternative way to construct a quantum model of gravity is described in this paper, not by quantizing the classical model, but by introducing a graviton background, which has a low temperature, but strongly interacts with any particle.

Methods

Gravity in this case is the effect of screening the background of gravitons by bodies; several additional effects appear when photons or bodies move through the background.

Results

Using Planck's formula for the graviton spectrum and taking into account the pairing effect for some of the gravitons, Newton's constant can be calculated and the magnitudes of the additional effects can be estimated.

Conclusion

These small additional effects can be important for cosmology since they allow to describe the results of cosmological observations without dark energy.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348344123241030061731
2024-01-01
2026-02-22
Loading full text...

Full text loading...

References

  1. RovelliC. Notes for a brief history of quantum gravity.Gen. Rel. Quan. Cosmol20221610.1142/9789812777386_0059
    [Google Scholar]
  2. IvanovM.A. Gravitons as super-strong interacting particles, and low-energy quantum gravity. Focus on Quantum Gravity Research. MooreD.C. Nova Science, New York200689120
    [Google Scholar]
  3. IvanovM.A. Selected papers on low-energy quantum gravity.Available from: ivanovma.narod.ru/selected-papers-Ivanov2018.pdf (Accessed February 27, 2018).
  4. IvanovM.A. Low-energy quantum gravity and cosmology without dark energy.Adv. Astrophy.201941110.22606/adap.2019.41001
    [Google Scholar]
  5. MagañaJ. AmanteM.H. AspeitiaG.M.A. MottaV. The Cardassian expansion revisited: Constraints from updated Hubble parameter measurements and type Ia supernova data.Mon. Not. R. Astron. Soc.201847611036104910.1093/mnras/sty260
    [Google Scholar]
  6. BautistaJ.E. BuscaN.G. GuyJ. RichJ. BlomqvistM. BourbouxD.M.D.H. PieriM.M. RiberaF.A. BaileyS. DelubacT. KirkbyD. GoffL.J-M. MargalaD. SlosarA. VazquezJ.A. BrownsteinJ.R. DawsonK.S. EisensteinD.J. EscudéM.J. NoterdaemeP. DelabrouilleP.N. PârisI. PetitjeanP. RossN.P. SchneiderD.P. WeinbergD.H. YècheC. Measurement of baryon acoustic oscillation correlations at z = 2.3 with SDSS DR12 Ly α -Forests. z = 2.3 α.Astron. Astrophys.2017603A1210.1051/0004‑6361/201730533
    [Google Scholar]
  7. DelubacT. BautistaJ.E. BuscaN.G. RichJ. KirkbyD. BaileyS. RiberaF.A. SlosarA. LeeK-G. PieriM.M. HamiltonJ-C. AubourgÉ. BlomqvistM. BovyJ. BrinkmannJ. CarithersW. DawsonK.S. EisensteinD.J. GontchoG.A.S. KneibJ-P. GoffL.J-M. MargalaD. EscudéM.J. MyersA.D. NicholR.C. NoterdaemeP. O’ConnellR. OlmsteadM.D. DelabrouilleP.N. PârisI. PetitjeanP. RossN.P. RossiG. SchlegelD.J. SchneiderD.P. WeinbergD.H. YècheC. YorkD.G. Baryon acoustic oscillations in the Ly α forest of BOSS DR11 quasars. α.Astron. Astrophys.2015574A5910.1051/0004‑6361/201423969
    [Google Scholar]
  8. RiberaF.A. Quasar-lyman-α forest cross-correlation from boss DR11: Baryon acoustic oscillations.J. Cosmol. Astropart. Phy.201416
    [Google Scholar]
  9. AdameA.G. AguilarJ. AhlenS. AlamS.S. AlexanderD.M. DESI 2024 VI: Cosmological constraints from the measurements of baryon acoustic oscillations.Astrophy. Cosmol. Nongal. Astrophy202416
    [Google Scholar]
  10. Planck 2018 results. VI. Cosmological parameters.Astron. Astrophys.2020•••16
    [Google Scholar]
  11. BetouleM. KesslerR. GuyJ. MosherJ. HardinD. BiswasR. AstierP. HageE.P. KonigM. KuhlmannS. MarrinerJ. PainR. RegnaultN. BallandC. BassettB.A. BrownP.J. CampbellH. CarlbergR.G. HolzemC.F. CinabroD. ConleyA. D’AndreaC.B. DePoyD.L. DoiM. EllisR.S. FabbroS. FilippenkoA.V. FoleyR.J. FriemanJ.A. FouchezD. GalbanyL. GoobarA. GuptaR.R. HillG.J. HlozekR. HoganC.J. HookI.M. HowellD.A. JhaS.W. GuillouL.L. LeloudasG. LidmanC. MarshallJ.L. MöllerA. MourãoA.M. NeveuJ. NicholR. OlmsteadM.D. DelabrouilleP.N. PerlmutterS. PrietoJ.L. PritchetC.J. RichmondM. RiessA.G. KleiderR.V. SakoM. SchahmanecheK. SchneiderD.P. SmithM. SollermanJ. SullivanM. WaltonN.A. WheelerC.J. Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples.Astron. Astrophys.2014568A2210.1051/0004‑6361/201423413
    [Google Scholar]
  12. LinH.N. LiX. ChangZ. Effect of gamma-ray burst (GRB) spectra on the empirical luminosity correlations and the GRB Hubble diagram.Mon. Not. R. Astron. Soc.201645932501251210.1093/mnras/stw817
    [Google Scholar]
  13. IvanovM.A. Three different effects of the same quantum nature.The European Physical Society Conference on High Energy Physics (EPS-HEP2021) - T02: Cosmology202210.22323/1.398.0114
    [Google Scholar]
  14. LauerT.R. PostmanM. WeaverH.A. SpencerJ.R. SternS.A. BuieM.W. DurdaD.D. LisseC.M. PoppeA.R. BinzelR.P. BrittD.T. BurattiB.J. ChengA.F. GrundyW.M. HorányiM. KavelaarsJ.J. LinscottI.R. McKinnonW.B. MooreJ.M. NúñezJ.I. OlkinC.B. ParkerJ.W. PorterS.B. ReuterD.C. RobbinsS.J. SchenkP. ShowalterM.R. SingerK.N. VerbiscerA.J. YoungL.A. New horizons observations of the cosmic optical background.Astrophys. J.202190627710.3847/1538‑4357/abc881
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348344123241030061731
Loading
/content/journals/cphs/10.2174/0127723348344123241030061731
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test