Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

Elliptical galaxies, as one of the fundamental types of galaxies, have attracted astronomers due to their intriguing properties. In this review, we explore the intrinsic shape of elliptical galaxies, a field that plays a pivotal role in understanding their formation, evolution, and interactions within the cosmos. Methods for intrinsic shape determination using photometric and kinematic methods are extensively discussed. The use of photometric data and surface brightness profiles to derive the intrinsic shapes of elliptical galaxies is examined and triaxial models are reviewed. Constraining the intrinsic shapes of elliptical galaxies is crucial to understanding their formation histories. Elliptical galaxies are characterized by their ellipsoidal, rather than disk-like, shapes, and understanding the underlying factors and their intrinsic shapes of elliptical galaxies determination provides valuable insights into their formation, evolution, and the broader context of galaxy morphology. One key aspect of studying the intrinsic shape of elliptical galaxies involves the analysis of their axial ratios, which describe the flattening of the galaxy along different axes. The axial ratio is defined as the ratio of the semi-minor axis to the semi-major axis of the ellipse representing the galaxy's cross-section. The intrinsic shape can vary from nearly spherical (axial ratio close to 1) to highly elongated (axial ratio significantly different from 1).

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348299504240828154545
2024-09-10
2025-01-31
Loading full text...

Full text loading...

References

  1. SinghA.K. Distribution of the intrinsic shapes of elliptical galaxies.AIP Conf. Proc.20091150241244
    [Google Scholar]
  2. SinghA.K. Intrinsic shapes of elliptical galaxies: NGC 5638 and NGC 5813 using modified prior.Int. J. Sci. Res. Technol.2015115158
    [Google Scholar]
  3. SinghA.K. Intrinsic shapes determination of the flat elliptical galaxies using modified prior, International Journal of Management.Technology And Engineering2019IXIII11611168
    [Google Scholar]
  4. SinghA.K. Intrinsic shapes of elliptical galaxies NGC 4374 using modified prior by photometry.Int. J. Emerg. Technol. Adv. Eng.2019IXX345349[IJETAE]
    [Google Scholar]
  5. Singh, Arun Kumar Study of intrinsic parameters of elliptical galaxy NGC 1600.Int. J. Sci. Eng. Res.20201112214219
    [Google Scholar]
  6. Singh, Arun Kumar Two and three dimensional shape distribution of elliptical galaxy NGC 315 using photometry.IJIRT202186432435
    [Google Scholar]
  7. Singh, Arun Kumar Determination of intrinsic shape of elliptical galaxy: NGC 32768 using modified prior.Int. Eng. J. Res. Dev.20216615
    [Google Scholar]
  8. BakJ. StatlerT.S. The intrinsic shape distribution of a sample of elliptical galaxies.Astron. J.20001201110122[AJ]10.1086/301437
    [Google Scholar]
  9. BarbaraS. Ryden, the shapes of elliptical galaxies with central density cusps and massive dark objects.Astrophys. J.19981127
    [Google Scholar]
  10. BinneyJ. The intrinsic shapes of elliptical galaxies.Mon. Not. R. Astron. Soc.19952123767784
    [Google Scholar]
  11. ChakrabortyD. K. Ellipsoidal mass models with varying axial ratios. A&A,2004423501
    [Google Scholar]
  12. ChakrabortyD.K. SinghA.K. GaffarF. Variation in the intrinsic shapes of elliptical galaxies.Mon. Not. R. Astron. Soc.200838341477148410.1111/j.1365‑2966.2007.12646.x
    [Google Scholar]
  13. ChakrabortyD.K. DiwakarA.K. PandeyS.K. Intrinsic shapes of very flat elliptical galaxies.Mon. Not. R. Astron. Soc.2011412158559010.1111/j.1365‑2966.2010.17930.x
    [Google Scholar]
  14. StatlerT.S. Uncovering the intrinsic shapes of elliptical galaxies, 3: Practical modeling.Astrophys. J.1994425500
    [Google Scholar]
  15. TenjesP. BusarelloG. LangoG. ZaggiaS. On the intrinsic shape of elliptical galaxies. A&A,199327561
    [Google Scholar]
  16. StarkA.A. Triaxial models of the bulge of M31.Astrophys. J.197721336810.1086/155164
    [Google Scholar]
  17. GadottiD.A. Structural properties of pseudo-bulges, classical bulges and elliptical galaxies: A sloan digital sky survey perspective.Mon. Not. R. Astron. Soc.200939341531155210.1111/j.1365‑2966.2008.14257.x
    [Google Scholar]
  18. BinggeliB. On the intrinsic shape of elliptical galaxies.Astron. Astrophys.1980823289294
    [Google Scholar]
  19. BenacchioL. GallettaG. Triaxiality in elliptical galaxies.Mon. Not. R. Astron. Soc.1980193488589410.1093/mnras/193.4.885
    [Google Scholar]
  20. BinneyJ. de VaucouleursG. The apparent and true ellipticities of galaxies of different hubble types in the second reference catalogue.Mon. Not. R. Astron. Soc.1981194367969110.1093/mnras/194.3.679
    [Google Scholar]
  21. FranxM. IllingworthG. de ZeeuwT. The ordered nature of elliptical galaxies - Implications for their intrinsic angular momenta and shapes.Astrophys. J.199138311210.1086/170769
    [Google Scholar]
  22. StatlerT.S. FryA.M. Uncovering the intrinsic shapes of elliptical galaxies. 2: Approximate kinematic shape indicators.Astrophys. J.199442548110.1086/174002
    [Google Scholar]
  23. BinneyJ. Is the flattening of elliptical galaxies necessarily due to rotation?Mon. Not. R. Astron. Soc.19761771192910.1093/mnras/177.1.19
    [Google Scholar]
  24. DavisM.H. Measuring individual differences in empathy: Evidence for a multidimensional approach.J. Pers. Soc. Psychol.198344111312610.1037/0022‑3514.44.1.113
    [Google Scholar]
  25. VincentR.A. RydenB.S. The dependence of galaxy shape on luminosity and surface brightness profile.Astrophys. J.2005623113714710.1086/428765
    [Google Scholar]
  26. BinneyJ. MerrifieldM. AstronomyG. Galactic Astronomy; Princeton University Press: Princeton,NJ1998QB857.B522
    [Google Scholar]
  27. Méndez-AbreuJ. Structural properties of disk galaxies. I. The intrinsic equatorial ellipticity of bulges. A&A,20084782353:369
    [Google Scholar]
  28. HubbleE. The Realm of the Nebulae.Yale University Press1926
    [Google Scholar]
  29. HusseinM.M. SaafanS.A. AbosheiashaH.F. ZhouD. TishkevichD.I. AbmiotkaN.V. TrukhanovaE.L. TrukhanovA.V. TrukhanovS.V. HossainM.K. DarwishM.A. Preparation, structural, magnetic, and AC electrical properties of synthesized CoFe2O4 nanoparticles and its PVDF composites.Mater. Chem. Phys.202431712904110.1016/j.matchemphys.2024.129041
    [Google Scholar]
  30. MigasD.B. TurchenkoV.A. RutkauskasA.V. TrukhanovS.V. ZubarT.I. TishkevichD.I. TrukhanovA.V. SkorodumovaN.V. Temperature induced structural and polarization features in BaFe 12 O 19. J. Mater. Chem. C Mater. Opt. Electron. Devices,2023113612406-1241412406-1241410.1039/D3TC01533E
    [Google Scholar]
  31. HolmbergE. A study of the spiral nebulae NGC 4102 and 4559.Annals of Harvard College Observatory1940105122
    [Google Scholar]
  32. De VaucouleursG. Classification and morphology of external galaxies.Handb. Phys.19591127531010.1007/978‑3‑642‑45932‑0_7
    [Google Scholar]
  33. TullyR.B. FisherJ.R. A new method of determining distances to galaxies.Astron. Astrophys.1977543661673
    [Google Scholar]
  34. BinneyJ. Testing for triaxiality with kinematic data.Mon. Not. R. Astron. Soc.1985212476778110.1093/mnras/212.4.767
    [Google Scholar]
  35. BertolaF. CapaccioliM. Internal kinematics of elliptical galaxies.Astrophys. J.197520043944810.1086/153808
    [Google Scholar]
  36. TonryJ. SchneiderD. Irregularities in the redshift distribution of distant galaxies.Astrophys. J.1988328500506
    [Google Scholar]
  37. DresslerA. Lynden-BellD. BursteinD. DaviesR.L. FaberS.M. TerlevichR. WegnerG. Spectroscopy and photometry of elliptical galaxies. I - A new distance estimator.Astrophys. J.1987313425810.1086/164947
    [Google Scholar]
  38. DjorgovskiS. DavisM. Fundamental properties of elliptical galaxies.Astrophys. J.1987313597010.1086/164948
    [Google Scholar]
  39. Van der MarelR.P. The dynamics of globular clusters in the core of M87.Astrophys. J.19903527787
    [Google Scholar]
  40. DehnenW. A family of potential-density pairs for spherical galaxies and bulges.Mon. Not. R. Astron. Soc.19932651250256
    [Google Scholar]
  41. de ZeeuwP.T. CarolloC.M. A family of triaxial mass models with central cusps.Mon. Not. R. Astron. Soc.199628141333134010.1093/mnras/281.4.1333
    [Google Scholar]
  42. FaberS.M. TremaineS. AjharE.A. ByunY.I. DresslerA. GebhardtK. GrillmairC. KormendyJ. LauerT.R. RichstoneD. The centers of early-type galaxies with HST. IV. Central parameter relations.Astron. J.1997114177110.1086/118606
    [Google Scholar]
  43. GeraldD. The dynamical evolution of massive black hole binaries — II. Self-consistent N-body integrations.Mon. Not. R. Astron. Soc.199726533554
    [Google Scholar]
  44. MagorrianJ. TremaineS. RichstoneD. BenderR. BowerG. DresslerA. FaberS.M. GebhardtK. GreenR. GrillmairC. KormendyJ. LauerT. The demography of massive dark objects in galaxy centers.Astron. J.199811562285230510.1086/300353
    [Google Scholar]
  45. MerrittD. Intrinsic shapes of elliptical galaxies.Astrophys. J.2009694295997410.1088/0004‑637X/694/2/959
    [Google Scholar]
  46. van den BoschR.C.E. van de VenG. Recovering the intrinsic shape of early-type galaxies.Mon. Not. R. Astron. Soc.200939831117112810.1111/j.1365‑2966.2009.15177.x
    [Google Scholar]
  47. SinghA.K. Study of the intrinsic parameters of some mass models of elliptical galaxies.ASI Conf. Ser.201139194
    [Google Scholar]
  48. Rodríguez, Silvio The intrinsic shape of galaxies in SDSS/Galaxy Zoo.Mon. Not. R. Astron. Soc.201343432153216610.1093/mnras/stt1168
    [Google Scholar]
  49. JacobD. The massive survey. XVII. A triaxial orbit-based determination of the black hole mass and intrinsic shape of elliptical galaxy NGC 2693.Astrophys. J.202292817810.3847/1538‑4357/ac58fd
    [Google Scholar]
  50. Fasano,G.Fresh views of elliptical galaxies.ASP Conf. Ser.199537
    [Google Scholar]
  51. ThakurP. ChakrabortyD.K. Correlated projected properties of some triaxial mass models: Implications for their intrinsic shapes.Mon. Not. R. Astron. Soc.2001328133033810.1046/j.1365‑8711.2001.04794.x
    [Google Scholar]
  52. SchwarzschildM. A numerical model for stationary triaxial stellar systems.Astrophys. J.197923223624710.1086/157282
    [Google Scholar]
  53. Modern galaxy composition. Available from:https://www.freepik.com/free-vector/modern-galaxy-composition_3345429.htm#fromView=search&page=2&position=7&uuid=0322b900-02c7-4f94-9b78-1cb7dd52ad14
  54. Aesthetic galaxy element vector set. Available from:https://www.freepik.com/free-vector/aesthetic-galaxy-element-vector-set_17221408.htm#fromView=search&page=1&position=14&uuid=9093b085-dd88-4eb1-a648-6fd5ecefa3f3
/content/journals/cphs/10.2174/0127723348299504240828154545
Loading
/content/journals/cphs/10.2174/0127723348299504240828154545
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test