Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

Background

This paper presents a model for sputtering heterogeneous two-component materials with light ions.

Methods

The model, based on two sputtering mechanisms, makes it possible to calculate the total sputtering coefficients of the target components, and it is easily transformed for the case of sputtering different types of targets. Model testing was conducted for the case of sputtering homogeneous tungsten carbide targets with ions of different energies.

Results

The results of the calculations are given in comparison with experimental data and the results of computer simulation. The comparison shows good agreement of the calculated values with the data of other authors. The proposed model was used to describe stationary (stoichiometric) sputtering of tungsten carbide targets. Using this model, the concentrations of components in the modified target layer were calculated, and the thickness of the modified layer was also estimated.

Conclusion

The method of calculating the concentration of target components in the modified layer and the thickness of this layer can be the basis of the technology of creating materials with given properties of the surface layer.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348263205231003062152
2024-01-01
2024-11-07
Loading full text...

Full text loading...

References

  1. BehrischR. Sputtering by Particle Bombardment I: Physical Sputtering of Single-Element Solids.New YorkSpringer198110.1007/3‑540‑10521‑2
    [Google Scholar]
  2. BehrischR. Sputtering by Particle Bombardment II: Sputtering of Alloys and Compounds, Electron and Neuron Sputtering, Surface Topography.New YorkSpringer198310.1007/3‑540‑12593‑0
    [Google Scholar]
  3. WiederishH. Surface Modification and Alloying.New YorkSpringer1983
    [Google Scholar]
  4. ZhengmingL. ShimingW. Bipartition model of ion transport: An outline of new range theory for light ions.Phys. Rev. B Condens. Matter19873641885189310.1103/PhysRevB.36.1885 9943032
    [Google Scholar]
  5. KellyR. OlivaA. New estimates of the characteristic depth of sputtering and of the bombardment-induced segregation ratio.Nucl. Instrum. Methods Phys. Res. B1986131-328329410.1016/0168‑583X(86)90515‑X
    [Google Scholar]
  6. VicanekM. RodriguezJ.J.J. SigmundP. Depth of origin and angular spectrum of sputtered atoms.Nucl. Instrum. Methods Phys. Res. B198936212413610.1016/0168‑583X(89)90574‑0
    [Google Scholar]
  7. EcksteinW. BiersackJ.P. Computer simulation of two-component target sputtering.Appl. Phys., A Solids Surf.19853729510810.1007/BF00618859
    [Google Scholar]
  8. VargaP. TaglauerE. Preferential sputtering of compounds due to light ion bombardment.J. Nucl. Mater.1982111-11272673110.1016/0022‑3115(82)90296‑3
    [Google Scholar]
  9. TaglauerE. HeilandW. Changes of the surface composition of compounds due to light ion bombardment.Proc. Symp. Sputtering1980423432
    [Google Scholar]
  10. RothJ. BohdanskyJ. EcksteinW. Angular distributions and differential sputtering yields of binary compounds as a function of angle of incidence.Nucl. Instrum. Methods Phys. Res.19832181-375175610.1016/0167‑5087(83)91077‑3
    [Google Scholar]
  11. PattersonW.L. ShirnG.A. The sputtering of nickel-chromium alloys.J. Vac. Sci. Technol.19674634334610.1116/1.1492560
    [Google Scholar]
  12. SaikiK. TanakaH. TanakaS. Surface composition change of tic and sic under hydrogen ion bombardment.J. Nuclear Mater.1984128-12974474810.1016/0022‑3115(84)90449‑5
    [Google Scholar]
  13. HofmannS. LiuY. WangJ.Y. KovacJ. Analytical and numerical depth resolution functions in sputter profiling.Appl. Surf. Sci.201431494295510.1016/j.apsusc.2014.06.159
    [Google Scholar]
  14. LianS. YangH. TerblansJ.J. SwartH.C. WangJ. XuC. Preferential sputtering in quantitative sputter depth profiling of multi-element thin films.Thin Solid Films202172113854510.1016/j.tsf.2021.138545
    [Google Scholar]
  15. BergS. KatardjievI.V. Preferential sputtering effects in thin film processing.J. Vac. Sci. Technol. A19991741916192510.1116/1.581704
    [Google Scholar]
  16. ChandrasekharS. Radiative Transfer.OxfordClarendon Press1950
    [Google Scholar]
  17. ManukhinV.V. Self-sputtering of thin films (Application of the invariant immersion method).Tech. Phys.200752896897510.1134/S1063784207080026
    [Google Scholar]
  18. ManukhinV.V. Sputtering binary alloys by light ions bombardment.Appl. Phys.201866973
    [Google Scholar]
  19. ManukhinV.V. Calculation of total sputtering coefficients of layered heterogeneous structures at bombarding a target by light ions.Appl. Phys.2016559
    [Google Scholar]
  20. ManukhinV.V. Sputtering of carbide films from the surface of the metal by helium ions bombardment.Tech. Phys.202267111500150310.21883/TP.2022.11.55182.48‑22
    [Google Scholar]
  21. ManukhinV.V. Model of sputtering of binary homogeneous targets by light ions bombardment.J. Phys. Conf. Ser.20191370101203910.1088/1742‑6596/1370/1/012039
    [Google Scholar]
  22. ManukhinV.V. Study of the dependence of light ion sputtering yields of carbon-modified surface titanium layers on their thickness.J. Phys. Conf. Ser.20222388101200910.1088/1742‑6596/2388/1/012009
    [Google Scholar]
  23. BiersackJ.P. Light ion sputtering of metals and low Z compounds as studied with the monte-carlo code trim.Fusion Technol.19846475482
    [Google Scholar]
  24. ManukhinV.V. Determination of the exponent in the power cross-section. Abstracts of the XXXII All-Union Conference on physics of particle interaction with crystals TulinovA.F. MSU: Moscow2002206
    [Google Scholar]
  25. RothJ. BohdanskyJ. MartinelliA.P. Low energy light ion sputtering of metals and carbides.Radiat. Eff.1980481-421321910.1080/00337578008209256
    [Google Scholar]
  26. EcksteinW. Computer Simulation of Ion-Solid Interaction, Springer Series in Materials Science.Berlin, Heidelberg, N.Y.Springer1991Vol. 1010.1007/978‑3‑642‑73513‑4
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348263205231003062152
Loading
/content/journals/cphs/10.2174/0127723348263205231003062152
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test