- Home
- A-Z Publications
- Current Pharmaceutical Design
- Previous Issues
- Volume 20, Issue 11, 2014
Current Pharmaceutical Design - Volume 20, Issue 11, 2014
Volume 20, Issue 11, 2014
-
-
Hypomethylation and Activation of Syncytin-1 Gene in Endometriotic Tissue
Authors: Hongyuan Zhou, Jinping Li, Karl C. Podratz, Tracy Tipton, Susan Marzolf, Hai Bin Chen and Shi-Wen JiangSyncytin-1 plays a critical role in the maintenance of normal pregnancy by mediating the formation of syncytiotrophoblasts through a fosugenic action. Encoded by the human endogenous retrovirus envelope gene HERV-W, syncytin-1 trophoblast-specific expression is controlled by epigenetic mechanisms. In non-placental tissues, the syncytin-1 gene is suppressed by hypermethylation in the LTR promoter region. Hypomethylated and activated syncytin-1 gene is found in placental trophoblast lineages and malignant cells. We here demonstrate that while syncytin-1 gene remains silenced in the eutopic endometrium from endometriotic patients, syncytin-1 mRNA and protein are detected in ectopic, endometriotic lesions; particularly the endometrioid glandular endothelial cells. LINE-1 COBRA assay and immunohistochemistry using the 5-MC-specific antibody did not detect any changes in global DNA methylation in the endometriotic tissues. However, results from COBRA and bisulfite sequencing indicated that the LTR region of the syncytin-1 promoter is hypomethylated in endometriotic tissues, highlighting the significance of DNA demethylation in syncytin-1 gene activation. Analysis of DNA methyltransferase 3B (DNMT3B) mRNA levels revealed that DNMT3B3, an isoform carrying methyltransferase activity, is downregulated; whereas DNMT3B7, the isoform without enzymatic activity, is upregulated in the endometriotic tissues, pointing to positive and negative regulatory functions, respectively, of these isoforms on syncytin-1 methylation. These results have provided the first evidence supporting the involvement of epigenetic mechanisms for syncytin-1 upregulation in endometriotic tissues. Considering recent findings on the nonfusogenic activity of syncytin-1, its expression in endometriotic tissues suggests that this multifunctional protein may be implicated in the pathogenesis and/or progression of endometriosis.
-
-
-
Decreased Expression and Altered Methylation of Syncytin-1 Gene in Human Placentas Associated with Preeclampsia
Authors: Xue-Wei Zhuang, Jinping Li, Brian C. Brost, Xi-Yan Xia, Hai Bin Chen, Chuan-Xin Wang and Shi-Wen JiangSyncytin-1 is a protein coded by a human endogenous retrovirus (HERV) gene of the HERV-W family (HERVWE1). Syncytin- 1 mediates formation of syncytiotrophoblasts through fusion of cytotrophoblasts, a hallmark of terminal differentiation of placental trophoblast linage. Syncytin-1 also possesses nonfusogenic functions and regulates cell cycle progression. While decreased syncytin-1 expression and syncytium deficiency are considered important pathological changes in preeclampsia, the molecular mechanism(s) underlying syncytin-1 downregulation remains unclear. In this study, we confirmed that expression levels of syncytin-1 mRNA and protein were significantly lower in preeclamptic placentas compared to normal controls. Human chorionic somatomammotropin expression, a marker for syncytium function, was also decreased in preeclamptic placentas. The mRNA levels of ASCT2, the syncytin-1 receptor involved in cell fusion process, and GCMa, a transcriptional factor known to regulate syncytin-1 expression, were not significantly altered. Methylation in the 5’LTR of syncytin-1 promoter was quantified by COBRA, methylation-specific PCR, and DNA sequencing. Results from all three assays indicated significantly hypermethylated syncytin-1 promoter in preeclamptic placentas compared to normal controls. Methylation levels were inversely correlated with syncytin-1 mRNA levels, suggesting that hypermethylation may lead to syncytin-1 downregulation. Further experiments indicated that DNMT1 and DNMT3B3 mRNA and protein levels were increased in preeclamptic placentas, suggesting that higher DNA methyltransferase activity may contribute to the hypermethylation of syncytin-1 in preeclamptic placentas. These results indicated that aberrant hypermethylation is involved in downregulation of syncytin-1, and epigenetic alterations may play a significant role in the development of preeclampsia.
-
-
-
Anti-Tumoral Effect of the Non-Nucleoside DNMT Inhibitor RG108 in Human Prostate Cancer Cells
Background: Current therapeutic strategies for advanced prostate cancer (PCa) are largely ineffective. Because aberrant DNA methylation associated with inappropriate gene-silencing is a common feature of PCa, DNA methylation inhibitors might constitute an alternative therapy. In this study we aimed to evaluate the anti-cancer properties of RG108, a novel non-nucleoside inhibitor of DNA methyltransferases (DNMT), in PCa cell lines. Methods: The anti-tumoral impact of RG108 in LNCaP, 22Rv1, DU145 and PC-3 cell lines was assessed through standard cell viability, apoptosis and cell cycle assays. Likewise, DNMT activity, DNMT1 expression and global levels of DNA methylation were evaluated in the same cell lines. The effectiveness of DNA demethylation was further assessed through the determination of promoter methylation and transcript levels of GSTP1, APC and RAR-β2, by quantitative methylation-specific PCR and RT-PCR, respectively. Results: RG108 led to a significant dose and time dependent growth inhibition and apoptosis induction in LNCaP, 22Rv1 and DU145. LNCaP and 22Rv1 also displayed decreased DNMT activity, DNMT1 expression and global DNA methylation. Interestingly, chronic treatment with RG108 significantly decreased GSTP1, APC and RAR-β2 promoter hypermethylation levels, although mRNA reexpression was only attained for GSTP1 and APC. Conclusions: RG108 is an effective tumor growth suppressor in most PCa cell lines tested. This effect is likely mediated by reversion of aberrant DNA methylation affecting cancer related-genes epigenetically silenced in PCa. However, additional mechanism might underlie the anti-tumor effects of RG108. In vivo studies are now mandatory to confirm these promising results and evaluate the potential of this compound for PCa therapy.
-
-
-
De Novo DNMTs and DNA Methylation: Novel Insights into Disease Pathogenesis and Therapy from Epigenomics
Authors: Sylwia Leppert and Maria R. MatarazzoDNA methylation plays an important role in epigenetics signaling, having an impact on gene regulation, chromatin structure and development. Within the family of de novo DNA methyltransferases two active enzymes, DNMT3A and DNMT3B, are responsible for the establishment of the proper cytosine methylation profile during development. Defects in DNMT3s function correlate with pathogenesis and progression of monogenic diseases and cancers. Among monogenic diseases, Immunodeficiency, Centromeric instability and Facial anomalies (ICF) syndrome is the only Mendelian disorder associated with DNMT3B mutations and DNA methylation defects of satellite and non-satellite regions. Similar CpG hypomethylation of the repetitive elements and gene-specific hypermethylation are observed in many types of cancer. DNA hyper-methylation sites provide targets for the epigenetic therapy. Generally, we can distinguish two groups of epi-drugs affecting DNMTs activity, i) nucleoside inhibitors, covalently trapping the enzymes, and bringing higher cytotoxic effect and (ii) nonnucleoside inhibitors, which block their active sites, showing less side-effects. Moreover, combining drugs targeting chromatin and those targeting DNA methylation enhances the efficacy of the therapy and gives more chances of patient recovery. However, development of more specific and effective epigenetic therapies requires more complete understanding of epigenomic landscapes. Here, we give an overview of the recent findings in the epigenomics field, focusing on those related to DNA methylation defects in disease pathogenesis and therapy.
-
-
-
Pharmacoepigenomics: An Interplay of Epigenetic Modulation of Drug Response and Modulation of the Epigenome by Drugs
Authors: Shweta Mendiratta, Shruti Jain, Jayant Maini and Vani BrahmachariEpigenetic modulation captures the lack of correlation between the genotype and the phenotype. It also provides an interface between environment and the genotype leading to functional plasticity of the genome. While drug response can be modulated by the epigenome, the therapeutic intervention by drugs can also be considered as an environmental cue for epigenetic alterations. The effect of genetic polymorphism has accrued considerable interest and population polymorphism leading to variation in drug response is being studied extensively. The available data on the epigenetic marking of the whole genome in different contexts implies that no biological pathway or process in the mammalian system is free of epigenetic influence and thus, drug metabolism would not be an exception. In the light of the fact that the epigenome is not only variable between individuals, but that it also varies between different tissues of the same individual and with the age of the individual, it is still a long journey to transit from the correlation to causal relationship between drug response and the epigenomic variations. The present review is focused on recent developments in the area and a brief discussion of the future prospects and challenges.
-
-
-
Novel Therapeutic Targets in Neuropsychiatric Disorders: The Neuroepigenome
The neuroepigenome, i.e., the epigenome of the nervous system, has become interesting for therapeutics in the last years due to widespread availability of dedicated drugs. A pivotal role for neuroepigenetics is certainly implied, both in physiology and pathology, by the highly dynamic structural and functional rearrangements that constantly occur into the nervous system, globally known as plasticity. Moreover, the idea that the pathophysiology of several neuropsychiatric disorders might involve epigenetic mechanisms is increasingly taking place due to accumulating experimental data and by the evidence of a synergistic interaction between genes and environment beneath most sporadic forms of these diseases. In this paper we will review the available evidence on the use of epigenome-modifying drugs in the field of neuropsychiatry, shortly describing for each disease the underlying assumptions of an epigenetic dysregulation.
-
-
-
Epigenetic Drugs in Cognitive Disorders
More LessCognitive disorders are an important group of disorders affecting the brain for which currently used drugs are often of low efficacy and mainly of symptomatic value. There is increasing evidence suggesting that epigenetic changes in gene expression underlie cognitive disorders. Advances in epigenetics have given rise to a new class of drugs, epigenetic drugs, that reverse epigenetic changes in gene expression. At present most work on epigenetic drugs focuses on two types of drugs: histone deacetylase (HDAC) inhibitors, and drugs targeting DNA methylation. This article describes the role of epigenetic drugs in treating cognitive disorders, focusing on Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease. Epigenetic drugs may improve the clinical management of patients with cognitive disorders.
-
-
-
HDAC as a Therapeutic Target for Treatment of Endometrial Cancers
Authors: Juan Ren, Jia Zhang, Hui Cai, Yi Li, Yuelang Zhang, Xiaozhi Zhang, Dongli Zhao, Zongfang Li, Hongbing Ma, Jiansheng Wang, Yan-e Gao, Lisha Xiao, Rui Liu, Jiansheng Qian, Yan Liu, Hongxia Wei and Jinping LiAccumulating evidence suggested that epigenetic changes such as promoter-specific DNA hypermethylation and histone deacetylation cause tumor suppressor gene silencing and contribute to malignant transformation. Treatment of cancer cells with HDAC inhibitors can reactivate the expression of silenced genes, block the cell cycle, and induce cell apoptosis. In vitro experiments in cancer cell cultures and in vivo studies using mouse xynograft model have shown that HDAC inhibitors deliver potent anti-cancer effects. Clinical trials have led to approval of SAHA (Vorinostat) for treatment of lymphoma. Endometrial cancer (EC) is the most frequent malignancy in women’s reproductive tract. EC is known for extensive epigenetic alterations, including overexpression of HDAC and DNMT enzymes, and the frequent epigenetic silencing of DNA repair genes such as MLH1, tumor suppressor genes PTEN, and progesterone receptor, which suggests a potentially high sensitivity of this type of cancer to HDAC inhibitors. Indeed, studies from many laboratories using various models have shown that HDAC inhibitors are promising chemotherapy reagents for endometrial cancers. This review summarizes the results from these studies, with an emphasis to provide an update on the new findings from new drugs. Background information on HDAC expression in EC, and features of HDAC inhibitors are presented based on their relevance to our focused topic. The combined application of HDAC inhibitors with radiation therapy and other conventional therapeutic reagents are also discussed.
-
-
-
Epigenetic Interventions Increase the Radiation Sensitivity of Cancer Cells
Epigenetic changes including DNA methylation, histone modifications, chromatin remodeling and microRNAs play critical roles in tumorigenesis and tumor development. Reversal of epigenetic changes sensitizes some tumor cells to radiation. DNMT-I enhances the response of tumor cells to radiotherapy. AZA demethylated promoters of genes related to ionizing radiation response, such as p16 and hMLH1. The genes expression of the p53, RASSF1, and DAPK gene families was increased by 5-aza-CdR, which induces G2-M phase arrest and increased apoptosis. HDAC-I has both anti-tumor activity and radiation sensitization activity. HDAC-I disrupts both DNA damage sensing and repair processes: HDAC-I disrupts the association between HDAC enzyme and DNA sensor proteins 53BP1 and ATM. HDAC-I changes the acetylation status of both proteins involved in homologous recombination (HR) repair pathway which include BRCA1, Rad51, and Rad50, and proteins involved in non-homologous end joining (NHEJ) repair pathway which include Ku70, and DNA-PK. HDACs are also implicated as essential components in the DNA repair process itself. Besides the radiosensitizing mechanism of intervention of DNA repair, other possible mechanisms including cell cycle redistribution, acetylation of Hsp90, increased apoptosis, and decreased survival signals are also suggested. Some miRNAs also regulate the radiosensitivity of tumor cells. Inhibition of miR-34 expression or function, downregulation of miR-155, upregulation of miR-18a, Overexpression let-7g or knocking down LIN28B, and ectopically overexpressed miR-10 in cells with low endogenous miR-101 level increase the response of cells to irradiation. For radiation-resistant cancer cells, miR-7 sensitizes the radiation for cells which activated EGFR-PI3K-AKT signaling pathway;
-
-
-
Comprehensive Analysis for Histone Acetylation of Human Colon Cancer Cells Treated with a novel HDAC Inhibitor
Authors: Yunlong Zhao, Xiuli Fang, Ye Wang, Junmei Zhang, Sheng Jiang, Zhe Liu, Zhenyi Ma, Liyan Xu, Enmin Li and Kai ZhangExtensive evidence suggests that dysregulation of histone lysine acetylation is intimately linked with the development of cancer in epigenetic level. Histone acetylation on lysine is regulated mainly by the "pencil" ---Histone acetyltransferases (HATs) and the "eraser" –Histone deacetylases HDACs. Dramatic elevation of global histone deacetylation is considered as a biomarker for cancer. Therefore, current antitumor drug design often targets HDACs, inhibiting overexpressed HDAC in tumor cells with natural or synthesized small molecules like largazole. Recently, a novel largazole derivative (largazole-7) was designed and prepared by replacement of Val 1 with tyrosine, and this modification increases selectivity toward human cancer cells over normal cells more than 100-fold. However, it is unclear about the dynamic level of histone acetylation under the treatment of this drug. It is also unclear whether the other modifications are also affected by largazole-7 treatment. Therefore, a global mapping of modifications on the histone proteins of cancer cell line treated by this drug may be of great benefit to elucidating its molecular mechanisms and exploring its potent as an antitumor drug. To realize the goal, we combined stable isotope labeling by amino acids in cell culture (SILAC) and high resolution MS for comprehensive identification and quantitative analysis of histone lysine acetylation and other modifications of Human Colon Cancer Cells (HCT-116) with and without treatment of largazole-7. In this analysis, we identified 68 histone PTMs in 38 sites on core histones, including lysine acetylation, methyaltion and butyrylation, a novel lysine modification. Further quantitative analysis not only discovered the global increased acetylated lysines, but also observed the changes of abundance of lysine methylation and butyrylation under stimulation of the drug. To our knowledge, it is the first report that regulation of largazole-7 against lysine butyrylation. Our study expands the catalog of histone marks in cancer, and provides an approach for understanding the known and new epigenetic marks under treatment of drugs.
-
-
-
Epigenetic Modification Restores Functional PR Expression in Endometrial Cancer Cells
Endometrial cancer, the most common gynecologic malignancy, is a hormonally-regulated tumor. Response to progestin-based therapy correlates positively with progesterone receptor (PR) expression. However, many endometrial tumors have low levels or loss of PR, limiting the clinical application of progestin. We evaluated the ability of epigenetic modulators to restore functional PR expression in Type I endometrial cancer cells with low basal PR. Treatment with the histone deacetylase inhibitor (HDACi) LBH589 induced a profound upregulation of PR mRNA. LBH589 restored PR protein expression at 24 hours and sustained expression for 72 hours, even in the presence of progesterone. LBH589 promoted a dose-dependent increase in PR protein levels, with an obvious increase with 10 nM LBH589. To investigate if the restored PR is functional as a transcription factor, we examined PR nuclear localization and expression of PRE- or Sp1-containing target genes. After treatment with LBH589 in the absence or presence of progesterone, PR nuclear expression was increased as demonstrated by Western blotting of nuclear fractions and immunostaining. Next, restored PR upregulated FoxO1, p21, and p27 and downregulated cyclin D1 in a ligand-dependent manner. Finally, LBH589 treatment induced cell cycle arrest in G1 that was further augmented by progesterone. Regulation of PR target genes was also achieved with other HDAC inhibitors, indicating that agents in this class work similarly with respect to PR. Our findings reveal that epigenetic modulators can restore endogenous functional PR expression in endometrial cancer cells and suggest that strategies to re-establish PR expression will resensitize endometrial tumors to progestin therapy.
-
-
-
Cytostatic and Apoptotic Effects of DNMT and HDAC Inhibitors in Endometrial Cancer Cells
Authors: Shaohua Xu, Juan Ren, Hai Bin Chen, Yanlin Wang, Qingyou Liu, Run Zhang, Shi-Wen Jiang and Jinping LiDNA methyltransferase (DNMT) and histone deacetylase are key enzymes mediating the epigenetic regulation of gene expression. DNA hypermethylation and/or histone deacetylation in promoter regions is often associated with downregulation or silencing of transcription. Epigenetic silencing of tumor suppressor genes plays an important role in malignant transformation. DNMT and HDAC inhibitors induce DNA demethylation and histone acetylation, respectively, leading to reactivation of silenced genes, and dramatic morphological and functional changes in cancer cells. In this study, we have conducted a series of experiments to characterize the effects of epigenetic inhibitors in endometrial cancer cells. Using cell lines representing different stages of endometrioid cancers, we examined the impact of DNMT inhibitor, ADC, and HDAC inhibitor, TSA, on cell cycle and apoptosis. We found that while both reagents were capable of inhibiting cell proliferation and inducing cell apoptosis, TSA appeared to be a more potent apoptosis inducer, but with a smaller effect on cell cycle. On the other hand, ADC exhibited strong effects on cell cycle regulation, but had smaller impact on cell apoptosis. We subsequently confirmed the presence of a strong synergism between DNMT and HDAC inhibitors. Thus, ADC and TSA exhibited strong cytostatic and apoptotic effects in endometrial cancer cell lines and the combined application may deliver the highest response in the clinical setting.
-
-
-
The Biphasic Expression Pattern of miR-200a and E-cadherin in Epithelial Ovarian Cancer and its Correlation with Clinicopathological Features
Authors: Shaohua Xu, Peizhen Xu, Wei Wu, Yangjun Ou, Juan Xu, Guanghua Zhang, Jinping Li and Guofeng XuEpithelial ovarian cancer (EOC) is the leading cause of death among gynecologic malignancies. Despite great efforts to improve early detection and optimize chemotherapeutic regimens, the 5-year survival rate is only 30% for patients presenting with late-stage ovarian cancer. The high mortality of this disease is due to late diagnosis in over 70% of ovarian cancer cases. A class of small noncoding RNAs, or microRNAs, was found to regulate gene expression at the post-transcriptional level. Some, but not all, of the data indicated that the miR-200 family was dysregulated in a variety of malignancies. In this study, we demonstrated that miR-200a and E-cadherin were significantly upregulated in EOC compared to benign epithelial ovarian cysts and normal ovarian tissues. However, further stratification of the subject indicated that the expression levels of miR-200a were significantly downregulated in late-stage (FIGO III+V) and grade 3 groups compared with early stage (FIGO I+II) and grade 1 to 2 groups. Similarly, relatively low levels of miR-200a were observed in the lymph compared to the node-negative group. E-cadherin expression was found to be absent in normal ovarian tissue and was frequently expressed in benign epithelial ovarian cysts, with absence or low levels observed in late-stage ovarian cancers. There was a significantly positive correlation between miR-200a and E-cadherin in EOC. The biphasic expression pattern suggested that miR-200a levels may serve as novel biomarkers for the early detection of EOC, and miR-200a and E-cadherin are candidate targets for the development of new treatment modalities against ovarian cancer.
-
-
-
A Family of Pleiotropically Acting MicroRNAs in Cancer Progression, miR-200: Potential Cancer Therapeutic Targets
Authors: Hai-Feng Zhang, Li-Yan Xu and En-Min LiRecently, a group of microRNAs (miRNAs), the miR-200 family (miR-200s) has been found to be deregulated in multiple types of cancers, in which this family of miRNAs was demonstrated to play a pivotal role in tumor initiation, maintenance, malignant metastasis and chemotherapy resistance. By targeting several central inducers of the epithelial-to-mesenchymal transition (EMT), e.g. ZEB1, ZEB2 and SLUG, miR-200s are currently recognized as master regulators of EMT, thereby suppressing cancer invasion and metastasis. The involvement of miR-200s in angiogenesis has also been reported, and they were found to directly target VEGF-A, FLT1/VEGFR1 and KDR/VEGFR2, three key components of the VEGF signaling pathway. Importantly, miR-200s also modulate the self-renewal ability of cancer stem cells by targeting BMI1 and SUZ12. Aberrant expression of miR-200s has been shown to confer chemoresistant properties to various kinds of cancers. Thus, miR-200s, by playing critical and pleiotropic roles in malignancies, are promising targets for cancer therapy. Notably, it has been shown that several types of natural agents and herbal extracts could be employed to manipulate the expression of miR-200s, making the targeting of miR-200s in cancer therapy more clinically attractive. Nevertheless, a very recent study reported a metastasis-promoting role of miR-200s in breast cancer; thus, careful assessment should be conducted before applying therapeutic interventions using miR-200s as treatment targets. In this review, we will focus on our emerging understanding of the roles of miR- 200s in cancer, specifically their therapeutic potential in treating cancer.
-
-
-
Relations between GPR4 Expression, Microvascular Density (MVD) and Clinical Pathological Characteristics of Patients with Epithelial Ovarian Carcinoma (EOC)
G-protein coupled receptor 4 (GPR4) is a G protein-coupled receptor (GPCR) activated by sphingosylphosphorylcholine (SPC) and lysophosphatidylcholine (LPC). Later studies indicated that GPR4 can serve as a proton sensor. GPR4 has been known to play a critical role in the tube formation of vascular endothelial cells, and GPR4 overexpression is observed in various types of malignancies, suggesting its involvement in the cancer- related angiogenesis. In this study, we examined the GPR4 expression levels in blood vessels of ovarian cancer, and analyzed the relationship between GPR4 expression and the clinical and pathological characteristics of patients with epithelial ovarian carcinomas (EOC). Results from immunohistochemistry showed that GPR4 is detectable in the endothelium of vessels of both EOC and benign ovarian tumor tissue, but the expression levels were significantly increased in EOC. Moreover the increased expression is accompanied by a higher microvascular density (MVD) in EOC compared to that in the benign ovarian tumors. We demonstrated a positive correlation between GPR4 expression density and MVD in EOC, but not benign ovarian tumor tissues. Further analyses indicated that GPR4 expression and MVD in EOC were correlated to the status of lymph node metastasis and clinical stage, but not significantly correlated to the pathological classifications, histopathological grades, the amounts of ascites, status of peritoneal cytology, tumor sizes, or patients’ ages. These results suggested that GPR4 may play an important role in the development of EOC, and its overexpression might be required for the angiogenesis, tumor growth, and metastasis of EOC.
-
-
-
Oxidative Stress Upregulates PDCD4 Expression in Patients with Gastric Cancer via miR-21
Authors: Honglei Tu, Haibing Sun, Yan Lin, Jie Ding, Kejun Nan, Zongfang Li, Qiang Shen and Yongchang WeiReactive oxygen species (ROS) plays a key role in carcinogenesis by aberrantly inducing signaling networks that initiatiate tumorigenesis and stimulate tumor progression. MicroRNAs (miRNAs) comprise a novel class of endogenous, small, noncoding RNAs that negatively regulate approximately 30% of the genes in a cell via degradation or translational inhibition of their target mRNAs. However, the effects of ROS on miRNAs expression and the role of miRNAs in ROS-mediated injury on carcinogenesis are uncertain. Using UV spectrophotometry and enzyme-linked immunosorbent assay (ELISA), we examined tissues from human gastric cancers and tissues adjascent to gastric cancer and normal gastric tissues and found that total anti-oxidation competence (T-AOC), superoxide dismutase (SOD) and catalase (CAT) concentrations were lower in gastric cancer patients compared to the control subjects, while the concentrations of DNA oxidative damage product 8-oxo-deoxyguanosine (8-OHdG) was higher. To determine the potential role of miRNA in gastric carcinogenesis, real-time quantitative polymerase chain reaction (QPCR) analysis was performed. We found that human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) mRNA and miR-21 expression were significantly upregulated in gastric cancer tissues than in the adjacent normal gastric tissues. Furthermore, the expression of programmed cell death 4 protein (PDCD4) in gastric cancer tissues was significantly lower than in adjacent normal gastric tissues. The expression of miR-21 and PDCD4 was highly correlated with the degree of differentiation, tumor staging, local lymphatic node metastasis and remote metastasis. Expression of miR-21 was negatively correlated with T-AOC, SOD and CAT, but positively correlated with 8-OHdG and hOGG1mRNA. In addition, the relative expression of PDCD4 was negatively correlated with miR-21. These results suggest that the defensive balance of oxidation and antioxidant system in patients with GC was impaired, resulting in enhanced oxidative tissue injury, which may directly contribute to gastric carcinogenesis. Thus we conclude that ROS promotes gastric carcinogenesis via upregulating miR-21 expression which in turn down-regulates the expression of PDCD4 in gastric cancer cells.
-
Volumes & issues
-
Volume 31 (2025)
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)