Skip to content
2000
Volume 31, Issue 3
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Protein engineering alters the polypeptide chain to obtain a novel protein with improved functional properties. This field constantly evolves with advanced tools and techniques to design novel proteins and peptides. Rational incorporating mutations, unnatural amino acids, and post-translational modifications increases the applications of engineered proteins and peptides. It aids in developing drugs with maximum efficacy and minimum side effects. Currently, the engineering of peptides is gaining attention due to their high stability, binding specificity, less immunogenic, and reduced toxicity properties. Engineered peptides are potent candidates for drug development due to their high specificity and low cost of production compared with other biologics, including proteins and antibodies. Therefore, understanding the current perception of designing and engineering peptides with the help of currently available tools is crucial. This review extensively studies various tools available for protein engineering in the prospect of designing peptides as therapeutics, followed by aspects. Moreover, a discussion on the chemical synthesis and purification of peptides, a case study, and challenges are also incorporated.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128349577240927071706
2024-10-01
2025-04-12
Loading full text...

Full text loading...

References

  1. de ChadarevianS. John Kendrew and myoglobin: Protein structure determination in the 1950s.Protein Sci.20182761136114310.1002/pro.341729607556
    [Google Scholar]
  2. OlbyR. Francis crick, DNA, and the central dogma.Daedalus1970994938987
    [Google Scholar]
  3. IlleA.M. LamontH. MathewsM.B. The central dogma revisited: Insights from protein synthesis, CRISPR, and beyond.Wiley Interdiscip. Rev. RNA2022135e171810.1002/wrna.171835199457
    [Google Scholar]
  4. JohnsonI.S. Human insulin from recombinant DNA technology.Science1983219458563263710.1126/science.63373966337396
    [Google Scholar]
  5. CarterP. Site-directed mutagenesis.Biochem. J.198623711710.1042/bj23700013541892
    [Google Scholar]
  6. BranniganJ.A. WilkinsonA.J. Protein engineering 20 years on.Nat. Rev. Mol. Cell Biol.200231296497010.1038/nrm97512461562
    [Google Scholar]
  7. SinghR.K. LeeJ.K. SelvarajC. Protein engineering approaches in the post-genomic era.Curr. Protein Pept. Sci.201719151510.2174/138920371866616111711424327855603
    [Google Scholar]
  8. MathieuC. MartensP.J. VangoitsenhovenR. One hundred years of insulin therapy.Nat. Rev. Endocrinol.2021171271572510.1038/s41574‑021‑00542‑w34404937
    [Google Scholar]
  9. KeenH. PickupJ.C. BilousR.W. Human insulin produced by recombinant DNA technology: Safety and hypoglycaemic potency in healthy men.Lancet1980316819139840110.1016/S0140‑6736(80)90443‑26105520
    [Google Scholar]
  10. TrudeauD.L. TawfikD.S. Protein engineers turned evolutionists-the quest for the optimal starting point.Curr. Opin. Biotechnol.201960465210.1016/j.copbio.2018.12.00230611116
    [Google Scholar]
  11. GoodsellD.S. ZardeckiC. Di CostanzoL. RCSB Protein Data Bank: Enabling biomedical research and drug discovery.Protein Sci.2020291526510.1002/pro.373031531901
    [Google Scholar]
  12. YamamotoT. RyanR.O. Domain swapping reveals that low density lipoprotein (LDL) type A repeat order affects ligand binding to the LDL receptor.J. Biol. Chem.200928420133961340010.1074/jbc.M90019420019329437
    [Google Scholar]
  13. SternkeM. TrippK.W. BarrickD. The use of consensus sequence information to engineer stability and activity in proteins.Methods Enzymol202064314917910.1016/bs.mie.2020.06.00132896279
    [Google Scholar]
  14. Strain-DamerellC. Burgess-BrownN.A. High-throughput site-directed mutagenesis.Methods Mol. Biol.2019202528129610.1007/978‑1‑4939‑9624‑7_1331267458
    [Google Scholar]
  15. GuptaK. VaradarajanR. Insights into protein structure, stability and function from saturation mutagenesis.Curr. Opin. Struct. Biol.20185011712510.1016/j.sbi.2018.02.00629505936
    [Google Scholar]
  16. ChuangY.C. HuI.C. LyuP.C. HsuS.T.D. Untying a protein knot by circular permutation.J. Mol. Biol.2019431485786310.1016/j.jmb.2019.01.00530639189
    [Google Scholar]
  17. ThomasS. GeorrgeJ.J. In silico protein engineering: Methods and Tools.Recent Trends Sci Technol20182018738010.5281/zenodo.4729855
    [Google Scholar]
  18. KoubaP. KohoutP. HaddadiF. Machine learning-guided protein engineering.ACS Catal.20231321138631389510.1021/acscatal.3c0274337942269
    [Google Scholar]
  19. QiuY. WeiG.W. Artificial intelligence-aided protein engineering: From topological data analysis to deep protein language models.Brief. Bioinform.2023245bbad28910.1093/bib/bbad28937580175
    [Google Scholar]
  20. TianT. ZhouX. CRISPR-based biosensing strategies: Technical development and application prospects.Annu. Rev. Anal. Chem. (Palo Alto, Calif.)202316131133210.1146/annurev‑anchem‑090822‑01472537018798
    [Google Scholar]
  21. Vakhariya Sakina MishraS.K. SharmaK. GeorrgeJ.J. Designing of a novel curcumin analogue to inhibit mitogen-activated protein kinase: A cheminformatics approach.J Phytonanotechnol Pharmaceut Sci202331374710.54085/jpps.2023.3.1.5
    [Google Scholar]
  22. VinjodaP. MishraS.K. SharmaK. GeorrgeJ.J. In silico identification of novel drug target and its natural product inhibitors for herpes simplex virus. Nanotechnology and In silico tools.AmsterdamElsevier202437738310.1016/B978‑0‑443‑15457‑7.00007‑1
    [Google Scholar]
  23. MishraS.K. PriyaP. RaiG.P. HaqueR. ShankerA. Coevolution based immunoinformatics approach considering variability of epitopes to combat different strains: A case study using spike protein of SARS-CoV-2.Comput. Biol. Med.202316310723310.1016/j.compbiomed.2023.10723337422941
    [Google Scholar]
  24. VaghasiaV.V. SharmaK. MishraS.K. GeorrgeJ.J. In silico identification of natural product inhibitor for multidrug resistance proteins from selected gram-positive bacteria. Nanotechnology and in silico tools.AmsterdamElsevier202430931710.1016/B978‑0‑443‑15457‑7.00015‑0
    [Google Scholar]
  25. MishraS.K. JebaP.J. GeorrgeJ.J. An emerging trends of bioinformatics and big data analytics in healthcare. Digital Transformation in Healthcare 50.Berlin, BostonDe Gruyter202415918810.1515/9783111398549‑007
    [Google Scholar]
  26. DimpleK.K. KhoiwalP. Saurav KumarM. JohnJ.G. In silico based identification of novel inhibitors for selected MDR protein from Shigella species: A validation through molecular docking analysis.Edu Administ Theory Pract J2024306S30931610.53555/kuey.v30i6s.5380
    [Google Scholar]
  27. LutzS. IamurriS.M. Protein engineering: Past, present, and future.Methods Mol. Biol.2018168511210.1007/978‑1‑4939‑7366‑8_129086300
    [Google Scholar]
  28. RajK. SinghA. KulkarniN. ThangarajG. LlpQ. Prediction of hotspot in protein-protein/protein-substrate interaction: A novel computational approach.Int. J. Pharm. Sci. Res.20221311081119
    [Google Scholar]
  29. KubyshkinV. BudisaN. The alanine world model for the development of the amino acid repertoire in protein biosynthesis.Int. J. Mol. Sci.20192021550710.3390/ijms2021550731694194
    [Google Scholar]
  30. KubyshkinV. BudisaN. Anticipating alien cells with alternative genetic codes: Away from the alanine world!Curr. Opin. Biotechnol.20196024224910.1016/j.copbio.2019.05.00631279217
    [Google Scholar]
  31. MoreiraI.S. FernandesP.A. RamosM.J. Computational alanine scanning mutagenesis-An improved methodological approach.J. Comput. Chem.200728364465410.1002/jcc.2056617195156
    [Google Scholar]
  32. KortemmeT. KimD.E. BakerD. Computational alanine scanning of protein-protein interfaces.Sci. STKE20042004219pl210.1126/stke.2192004pl214872095
    [Google Scholar]
  33. YeX. LeeY.C. GatesZ.P. Binary combinatorial scanning reveals potent poly-alanine-substituted inhibitors of protein-protein interactions.Commun. Chem.20225112810.1038/s42004‑022‑00737‑w36697672
    [Google Scholar]
  34. AnandP. NagarajanD. MukherjeeS. ChandraN. ABS-Scan: In silico alanine scanning mutagenesis for binding site residues in protein-ligand complex.F1000 Res.2014321410.12688/f1000research.5165.125685322
    [Google Scholar]
  35. RamadossV. DehezF. ChipotC. AlaScan: A graphical user interface for alanine scanning free-energy calculations.J. Chem. Inf. Model.20165661122112610.1021/acs.jcim.6b0016227214306
    [Google Scholar]
  36. WoodC.W. IbarraA.A. BartlettG.J. WilsonA.J. WoolfsonD.N. SessionsR.B. BAlaS: Fast, interactive and accessible computational alanine-scanning using BudeAlaScan.Bioinformatics20203692917291910.1093/bioinformatics/btaa02631930404
    [Google Scholar]
  37. SukhwalA SowdhaminiR. PPCheck: A webserver for the quantitative analysis of protein-protein interfaces and prediction of residue hotspots.Bioinform Biol Insights20159BBI.S2592810.4137/BBI.S2592826448684
    [Google Scholar]
  38. WuF.X. YangJ.F. MeiL.C. WangF. HaoG.F. YangG.F. PIIMS Server: A web server for mutation hotspot scanning at the protein–protein interface.J. Chem. Inf. Model.2021611142010.1021/acs.jcim.0c0096633400510
    [Google Scholar]
  39. WangL. DingM.Y. WangJ. GaoJ.G. LiuR.M. LiH.T. Effects of site-directed mutagenesis of cysteine on the structure of sip proteins.Front. Microbiol.20221380532510.3389/fmicb.2022.80532535572629
    [Google Scholar]
  40. BußO. RudatJ. OchsenreitherK. FoldX as protein engineering Tool: better than random based approaches?Comput. Struct. Biotechnol. J.201816253310.1016/j.csbj.2018.01.00230275935
    [Google Scholar]
  41. CraigD.B. DombkowskiA.A. Disulfide by design 2.0: A web-based tool for disulfide engineering in proteins.BMC Bioinformatics201314134610.1186/1471‑2105‑14‑34624289175
    [Google Scholar]
  42. WijmaH.J. FürstM.J.L.J. JanssenD.B. A computational library design protocol for rapid improvement of protein stability: FRESCO.Methods Mol. Biol.20181685698510.1007/978‑1‑4939‑7366‑8_529086304
    [Google Scholar]
  43. HuangJ. DaiS. ChenX. Alteration of chain-length selectivity and thermostability of Rhizopus oryzae lipase via virtual saturation mutagenesis coupled with disulfide bond design.Appl. Environ. Microbiol.2023891e01878e2210.1128/aem.01878‑2236602359
    [Google Scholar]
  44. LiG. FangX. SuF. ChenY. XuL. YanY. Enhancing the thermostability of Rhizomucor miehei lipase with a limited screening library by rational-design point mutations and disulfide bonds.Appl. Environ. Microbiol.2018842e02129e1710.1128/AEM.02129‑1729101200
    [Google Scholar]
  45. SuplatovD. TimoninaD. SharapovaY. ŠvedasV. Yosshi: A web-server for disulfide engineering by bioinformatic analysis of diverse protein families.Nucleic Acids Res.201947W1W308-1410.1093/nar/gkz38531106356
    [Google Scholar]
  46. MooreJ.C. Rodriguez-GranilloA. CrespoA. “Site and mutation”-specific predictions enable minimal directed evolution libraries.ACS Synth. Biol.2018771730174110.1021/acssynbio.7b0035929782150
    [Google Scholar]
  47. SalamN.K. AdzhigireyM. ShermanW. PearlmanD.A. Structure-based approach to the prediction of disulfide bonds in proteins.Protein Eng. Des. Sel.2014271036537410.1093/protein/gzu01724817698
    [Google Scholar]
  48. SimN.L. KumarP. HuJ. HenikoffS. SchneiderG. NgP.C. SIFT web server: Predicting effects of amino acid substitutions on proteins.Nucleic Acids Res.201240W1W452-710.1093/nar/gks53922689647
    [Google Scholar]
  49. Venkata SubbiahH. Ramesh BabuP. SubbiahU. Determination of deleterious single-nucleotide polymorphisms of human LYZ C gene: An in silico study.J. Genet. Eng. Biotechnol.20222019210.1186/s43141‑022‑00383‑835776277
    [Google Scholar]
  50. SteinhausR. ProftS. SchuelkeM. CooperD.N. SchwarzJ.M. SeelowD. MutationTaster2021.Nucleic Acids Res.202149W1W446-5110.1093/nar/gkab26633893808
    [Google Scholar]
  51. SchwarzJ.M. CooperD.N. SchuelkeM. SeelowD. MutationTaster2: Mutation prediction for the deep-sequencing age.Nat. Methods201411436136210.1038/nmeth.289024681721
    [Google Scholar]
  52. MontenegroL.R. LerárioA.M. NishiM.Y. JorgeA.A.L. MendoncaB.B. Performance of mutation pathogenicity prediction tools on missense variants associated with 46, XY differences of sex development.Clinics (São Paulo)202176e205210.6061/clinics/2021/e205233503178
    [Google Scholar]
  53. PejaverV. UrrestiJ. Lugo-MartinezJ. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2.Nat. Commun.2020111591810.1038/s41467‑020‑19669‑x33219223
    [Google Scholar]
  54. RemaliJ. AizatW.M. NgC.L. LimY.C. Mohamed-HusseinZ.A. FazryS. In silico analysis on the functional and structural impact of Rad50 mutations involved in DNA strand break repair.PeerJ20208e919710.7717/peerj.919732509463
    [Google Scholar]
  55. IidaN. YamaoF. NakamuraY. IidaT. Mudi, a web tool for identifying mutations by bioinformatics analysis of whole‐genome sequence.Genes Cells201419651752710.1111/gtc.1215124766403
    [Google Scholar]
  56. TokurikiN. StricherF. SerranoL. TawfikD.S. How protein stability and new functions trade off.PLOS Comput. Biol.200842e100000210.1371/journal.pcbi.100000218463696
    [Google Scholar]
  57. NisthalA. WangC.Y. AryM.L. MayoS.L. Protein stability engineering insights revealed by domain-wide comprehensive mutagenesis.Proc. Natl. Acad. Sci. USA201911633163671637710.1073/pnas.190388811631371509
    [Google Scholar]
  58. PiresD.E.V. AscherD.B. BlundellT.L. DUET: A server for predicting effects of mutations on protein stability using an integrated computational approach.Nucleic Acids Res.201442W1W314-910.1093/nar/gku41124829462
    [Google Scholar]
  59. SchymkowitzJ BorgJ StricherF NysR RousseauF SerranoL. The FoldX web server: An online force field.Nucleic Acids Res200533(Web Server)(Suppl. 2)W382W38810.1093/nar/gki38715980494
    [Google Scholar]
  60. ChengJ. RandallA. BaldiP. Prediction of protein stability changes for single‐site mutations using support vector machines.Proteins20066241125113210.1002/prot.2081016372356
    [Google Scholar]
  61. WainrebG. WolfL. AshkenazyH. DehouckY. Ben-TalN. Protein stability: A single recorded mutation aids in predicting the effects of other mutations in the same amino acid site.Bioinformatics201127233286329210.1093/bioinformatics/btr57621998155
    [Google Scholar]
  62. PanduranganA.P. Ochoa-MontañoB. AscherD.B. BlundellT.L. SDM: A server for predicting effects of mutations on protein stability.Nucleic Acids Res.201745W1W229-3510.1093/nar/gkx43928525590
    [Google Scholar]
  63. PiresD.E.V. AscherD.B. BlundellT.L. mCSM: Predicting the effects of mutations in proteins using graph-based signatures.Bioinformatics201430333534210.1093/bioinformatics/btt69124281696
    [Google Scholar]
  64. KumarP. HenikoffS. NgP.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm.Nat. Protoc.2009471073108110.1038/nprot.2009.8619561590
    [Google Scholar]
  65. ParthibanV GromihaMM SchomburgD CUPSAT: Prediction of protein stability upon point mutations.Nucleic Acids Res200634(Web Server)W239W24210.1093/nar/gkl19016845001
    [Google Scholar]
  66. QuanL. LvQ. ZhangY. STRUM: Structure-based prediction of protein stability changes upon single-point mutation.Bioinformatics201632192936294610.1093/bioinformatics/btw36127318206
    [Google Scholar]
  67. GonnelliG. RoomanM. DehouckY. Structure-based mutant stability predictions on proteins of unknown structure.J. Biotechnol.2012161328729310.1016/j.jbiotec.2012.06.02022782143
    [Google Scholar]
  68. RodriguesC.H.M. PiresD.E.V. AscherD.B. DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability.Nucleic Acids Res.201846W1W350-510.1093/nar/gky30029718330
    [Google Scholar]
  69. ChenC-W. LinJ. ChuY-W. iStable: Off-the-shelf predictor integration for predicting protein stability changes.BMC Bioinformatics2013Suppl 2(Suppl 2S5
    [Google Scholar]
  70. SoraV. LaspiurA.O. DegnK. RosettaDDGPrediction for high‐throughput mutational scans: From stability to binding.Protein Sci.2023321e452710.1002/pro.452736461907
    [Google Scholar]
  71. WitvlietD.K. StrokachA. Giraldo-ForeroA.F. TeyraJ. ColakR. KimP.M. ELASPIC web-server: Proteome-wide structure-based prediction of mutation effects on protein stability and binding affinity.Bioinformatics201632101589159110.1093/bioinformatics/btw03126801957
    [Google Scholar]
  72. GongJ. WangJ. ZongX. MaZ. XuD. Prediction of protein stability changes upon single-point variant using 3D structure profile.Comput. Struct. Biotechnol. J.20232135436410.1016/j.csbj.2022.12.00836582438
    [Google Scholar]
  73. SavojardoC. FariselliP. MartelliP.L. CasadioR. INPS-MD: A web server to predict stability of protein variants from sequence and structure.Bioinformatics201632162542254410.1093/bioinformatics/btw19227153629
    [Google Scholar]
  74. KaushalN. BaranwalM. Mutational analysis of catalytic site domain of CCHFV L RNA segment.J. Mol. Model.20232948810.1007/s00894‑023‑05487‑736877258
    [Google Scholar]
  75. PaladinL. PiovesanD. TosattoS.C.E. SODA: Prediction of protein solubility from disorder and aggregation propensity.Nucleic Acids Res.201745W1W236-4010.1093/nar/gkx41228505312
    [Google Scholar]
  76. OellerM. KangR. BellR. AusserwögerH. SormanniP. VendruscoloM. Sequence-based prediction of pH-dependent protein solubility using CamSol.Brief. Bioinform.2023242bbad00410.1093/bib/bbad00436719110
    [Google Scholar]
  77. KulshreshthaS. ChaudharyV. GoswamiG.K. MathurN. Computational approaches for predicting mutant protein stability.J. Comput. Aided Mol. Des.201630540141210.1007/s10822‑016‑9914‑327160393
    [Google Scholar]
  78. BhandariB.K. GardnerP.P. LimC.S. Solubility-Weighted Index: Fast and accurate prediction of protein solubility.Bioinformatics202036184691469810.1093/bioinformatics/btaa57832559287
    [Google Scholar]
  79. WangC. ZouQ. Prediction of protein solubility based on sequence physicochemical patterns and distributed representation information with DeepSoluE.BMC Biol.20232111210.1186/s12915‑023‑01510‑836694239
    [Google Scholar]
  80. HebditchM. Carballo-AmadorM.A. CharonisS. CurtisR. WarwickerJ. Protein-Sol: A web tool for predicting protein solubility from sequence.Bioinformatics201733193098310010.1093/bioinformatics/btx34528575391
    [Google Scholar]
  81. LearS. CobbS.L. Pep-Calc.com: A set of web utilities for the calculation of peptide and peptoid properties and automatic mass spectral peak assignment.J. Comput. Aided Mol. Des.201630327127710.1007/s10822‑016‑9902‑726909892
    [Google Scholar]
  82. WuX. YuL. EPSOL: Sequence-based protein solubility prediction using multidimensional embedding.Bioinformatics202137234314432010.1093/bioinformatics/btab46334145885
    [Google Scholar]
  83. HonJ. MarusiakM. MartínekT. SoluProt: Prediction of soluble protein expression in Escherichia coli.Bioinformatics2021371232810.1093/bioinformatics/btaa110233416864
    [Google Scholar]
  84. YangY. ZengL. VihinenM. PON-Sol2: Prediction of effects of variants on protein solubility.Int. J. Mol. Sci.20212215802710.3390/ijms2215802734360790
    [Google Scholar]
  85. AgostiniF. CirilloD. LiviC.M. Delli PontiR. TartagliaG.G. cc SOL omics: A webserver for solubility prediction of endogenous and heterologous expression in Escherichia coli.Bioinformatics201430202975297710.1093/bioinformatics/btu42024990610
    [Google Scholar]
  86. TuM. QiaoX. WangC. In vitro and in silico analysis of dual-function peptides derived from casein hydrolysate.Food Sci. Hum. Wellness2021101323710.1016/j.fshw.2020.08.014
    [Google Scholar]
  87. PrabakaranR. RawatP. ThangakaniA.M. KumarS. GromihaM.M. Protein aggregation: In silico algorithms and applications.Biophys. Rev.2021131718910.1007/s12551‑021‑00778‑w33747245
    [Google Scholar]
  88. Conchillo-SoléO. de GrootN.S. AvilésF.X. VendrellJ. DauraX. VenturaS. AGGRESCAN: A server for the prediction and evaluation of “hot spots” of aggregation in polypeptides.BMC Bioinformatics2007816510.1186/1471‑2105‑8‑6517324296
    [Google Scholar]
  89. TartagliaG.G. VendruscoloM. The Zyggregator method for predicting protein aggregation propensities.Chem. Soc. Rev.20083771395140110.1039/b706784b18568165
    [Google Scholar]
  90. SankarK. KrystekS.R.Jr CarlS.M. DayT. MaierJ.K.X. AggScore: Prediction of aggregation‐prone regions in proteins based on the distribution of surface patches.Proteins201886111147115610.1002/prot.2559430168197
    [Google Scholar]
  91. NavarroS. VenturaS. Computational methods to predict protein aggregation.Curr. Opin. Struct. Biol.20227310234310.1016/j.sbi.2022.10234335240456
    [Google Scholar]
  92. TsolisA.C. PapandreouN.C. IconomidouV.A. HamodrakasS.J. A consensus method for the prediction of ‘aggregation-prone’ peptides in globular proteins.PLoS One201381e5417510.1371/journal.pone.005417523326595
    [Google Scholar]
  93. YanR. WangX. HuangL. YanF. XueX. CaiW. Prediction of structural features and application to outer membrane protein identification.Sci. Rep.2015511158610.1038/srep1158626104144
    [Google Scholar]
  94. KouzaM. FaraggiE. KolinskiA. KloczkowskiA. The GOR method of protein secondary structure prediction and its application as a protein aggregation prediction tool. Prediction of protein secondary structure.New York, NYSpringer New York201772410.1007/978‑1‑4939‑6406‑2_2
    [Google Scholar]
  95. KällbergM. WangH. WangS. Template-based protein structure modeling using the RaptorX web server.Nat. Protoc.2012781511152210.1038/nprot.2012.08522814390
    [Google Scholar]
  96. CombetC. BlanchetC. GeourjonC. DeléageG. NPS@: Network protein sequence analysis.Trends Biochem. Sci.200025314715010.1016/S0968‑0004(99)01540‑610694887
    [Google Scholar]
  97. BuchanD.W.A. JonesD.T. The PSIPRED protein analysis workbench: 20 years on.Nucleic Acids Res.201947W1W402-710.1093/nar/gkz29731251384
    [Google Scholar]
  98. KlausenM.S. JespersenM.C. NielsenH. NetSurfP‐2.0: Improved prediction of protein structural features by integrated deep learning.Proteins201987652052710.1002/prot.2567430785653
    [Google Scholar]
  99. QinX. LiuM. ZhangL. LiuG. Structural protein fold recognition based on secondary structure and evolutionary information using machine learning algorithms.Comput. Biol. Chem.20219110745610.1016/j.compbiolchem.2021.10745633610129
    [Google Scholar]
  100. LinK. SimossisV.A. TaylorW.R. HeringaJ. A simple and fast secondary structure prediction method using hidden neural networks.Bioinformatics200521215215910.1093/bioinformatics/bth48715377504
    [Google Scholar]
  101. UrbanG. MagnanC.N. BaldiP. SSpro/ACCpro 6: Almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, deep learning and structural similarity.Bioinformatics20223872064206510.1093/bioinformatics/btac01935108364
    [Google Scholar]
  102. LeeA.C.L. HarrisJ.L. KhannaK.K. HongJ.H. A comprehensive review on current advances in peptide drug development and design.Int. J. Mol. Sci.20192010238310.3390/ijms2010238331091705
    [Google Scholar]
  103. FiserA. ŠaliA. Modeller: Generation and refinement of homology-based protein structure models.Methods Enzymol.200337446149110.1016/S0076‑6879(03)74020‑814696385
    [Google Scholar]
  104. PengJ. XuJ. A multiple‐template approach to protein threading.Proteins 20117961930193910.1002/prot.2301621465564
    [Google Scholar]
  105. ZhengW. ZhangC. BellE.W. ZhangY. I-TASSER gateway: A protein structure and function prediction server powered by XSEDE.Future Gener. Comput. Syst.201999738510.1016/j.future.2019.04.01131427836
    [Google Scholar]
  106. ZhouX. ZhengW. LiY. I-TASSER-MTD: A deep-learning-based platform for multi-domain protein structure and function prediction.Nat. Protoc.202217102326235310.1038/s41596‑022‑00728‑035931779
    [Google Scholar]
  107. LemanJ.K. WeitznerB.D. LewisS.M. Macromolecular modeling and design in Rosetta: Recent methods and frameworks.Nat. Methods202017766568010.1038/s41592‑020‑0848‑232483333
    [Google Scholar]
  108. SawalH.A. NighatS. SafdarT. AneesL. Comparative in silico analysis and functional characterization of TANK-binding kinase 1-binding protein 1.Bioinform. Biol. Insights20231710.1177/1177932223116482837032976
    [Google Scholar]
  109. ArasuM.V. VijayaragavanP. PurushothamanS. Molecular docking of monkeypox (mpox) virus proteinase with FDA approved lead molecules.J. Infect. Public Health202316578479110.1016/j.jiph.2023.03.00436958173
    [Google Scholar]
  110. MollazadehS. BakhsheshM. KeyvanfarH. Nikbakht BrujeniG. Identification of cytotoxic T lymphocyte (CTL) epitope and design of an immunogenic multi-epitope of bovine ephemeral fever virus (BEFV) glycoprotein G for vaccine development.Res. Vet. Sci.2022144182610.1016/j.rvsc.2021.12.02335033847
    [Google Scholar]
  111. WuX. LinH. BaiR. DuanH. Deep learning for advancing peptide drug development: Tools and methods in structure prediction and design.Eur. J. Med. Chem.202426811626210.1016/j.ejmech.2024.11626238387334
    [Google Scholar]
  112. WaterhouseA. BertoniM. BienertS. SWISS-MODEL: Homology modelling of protein structures and complexes.Nucleic Acids Res.201846W1W296-30310.1093/nar/gky42729788355
    [Google Scholar]
  113. EswarN. WebbB. Marti-RenomM.A. MadhusudhanM.S. EramianD. ShenM.Y. Comparative protein structure modeling using Modeller.Hoboken, New JerseyWiley200656
    [Google Scholar]
  114. KelleyL.A. MezulisS. YatesC.M. WassM.N. SternbergM.J.E. The Phyre2 web portal for protein modeling, prediction and analysis.Nat. Protoc.201510684585810.1038/nprot.2015.05325950237
    [Google Scholar]
  115. YangJ ZhangY Protein structure and function prediction using I‐TASSER.Curr Protoc Bioinformatics201552181,1510.1002/0471250953.bi0508s5226678386
    [Google Scholar]
  116. MontgomerieS CruzJA ShrivastavaS ArndtD BerjanskiiM WishartDS PROTEUS2: A web server for comprehensive protein structure prediction and structure-based annotation.Nucleic Acids Res200836(Web Server)(Suppl. 2)W202W20910.1093/nar/gkn25518483082
    [Google Scholar]
  117. McGuffinL.J. AdiyamanR. MaghrabiA.H.A. IntFOLD: An integrated web resource for high performance protein structure and function prediction.Nucleic Acids Res.201947W1W408-1310.1093/nar/gkz32231045208
    [Google Scholar]
  118. MortuzaS.M. ZhengW. ZhangC. LiY. PearceR. ZhangY. Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions.Nat. Commun.2021121501110.1038/s41467‑021‑25316‑w34408149
    [Google Scholar]
  119. ThévenetP. ShenY. MaupetitJ. GuyonF. DerreumauxP. TufféryP. PEP-FOLD: An updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides.Nucleic Acids Res.201240W1W288-9310.1093/nar/gks41922581768
    [Google Scholar]
  120. Badaczewska-DawidA. WróblewskiK. KurcinskiM. KmiecikS. Structure prediction of linear and cyclic peptides using CABS-flex.Brief. Bioinform.2024252bbae00310.1093/bib/bbae00338305457
    [Google Scholar]
  121. TimmonsP.B. HewageC.M. APPTEST is a novel protocol for the automatic prediction of peptide tertiary structures.Brief. Bioinform.2021226bbab30810.1093/bib/bbab30834396417
    [Google Scholar]
  122. SinghS. SinghH. TuknaitA. PEPstrMOD: Structure prediction of peptides containing natural, non-natural and modified residues.Biol. Direct20151017310.1186/s13062‑015‑0103‑426690490
    [Google Scholar]
  123. McDonaldE.F. JonesT. PlateL. MeilerJ. GulsevinA. Benchmarking AlphaFold2 on peptide structure prediction.Structure2023311111119.e210.1016/j.str.2022.11.01236525975
    [Google Scholar]
  124. PanL AllerSG Tools and procedures for visualization of proteins and other biomolecules.Curr Protoc Mol Biol 20151101121,4710.1002/0471142727.mb1912s11025827086
    [Google Scholar]
  125. GarrisonL. BrucknerS. Considering best practices in color palettes for molecular visualizations.J. Integr. Bioinform.20221922022001610.1515/jib‑2022‑001635731632
    [Google Scholar]
  126. BaammiS. DaoudR. El AllaliA. In silico protein engineering shows that novel mutations affecting NAD+ binding sites may improve phosphite dehydrogenase stability and activity.Sci. Rep.2023131187810.1038/s41598‑023‑28246‑336725973
    [Google Scholar]
  127. YuanS. ChanH.C.S. HuZ. Using PyMOL as a platform for computational drug design.Wiley Interdiscip. Rev. Comput. Mol. Sci.201772e129810.1002/wcms.1298
    [Google Scholar]
  128. ZhangW. WangC. ZhangX. Mutplot: An easy-to-use online tool for plotting complex mutation data with flexibility.PLoS One2019145e021583810.1371/journal.pone.021583831091262
    [Google Scholar]
  129. GromihaM.M. AnJ. KonoH. ProTherm, version 2.0: Thermodynamic database for proteins and mutants.Nucleic Acids Res.200028128328510.1093/nar/28.1.28310592247
    [Google Scholar]
  130. LaskowskiR.A. SwindellsM.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery.J. Chem. Inf. Model.201151102778278610.1021/ci200227u21919503
    [Google Scholar]
  131. DulsatJ. López-NietoB. Estrada-TejedorR. BorrellJ.I. Evaluation of free online ADMET tools for academic or small biotech environments.Molecules202328277610.3390/molecules2802077636677832
    [Google Scholar]
  132. SantosG.B. GanesanA. EmeryF.S. Oral administration of peptide‐based drugs: Beyond Lipinski’s Rule.ChemMedChem201611202245225110.1002/cmdc.20160028827596610
    [Google Scholar]
  133. GasteigerE. GattikerA. HooglandC. IvanyiI. AppelR.D. BairochA. ExPASy: The proteomics server for in-depth protein knowledge and analysis.Nucleic Acids Res.200331133784378810.1093/nar/gkg56312824418
    [Google Scholar]
  134. RathoreA.S. AroraA. ChoudhuryS. TijareP. RaghavaG.P.S. ToxinPred 3.0: An improved method for predicting the toxicity of peptides.bioRxiv202310.1101/2023.08.11.552911
    [Google Scholar]
  135. Arámburo-GálvezJ.G. Arvizu-FloresA.A. Cárdenas-TorresF.I. Prediction of ACE-I inhibitory peptides derived from chickpea (Cicer arietinum L.): In silico assessments using simulated enzymatic hydrolysis, molecular docking and ADMET evaluation.Foods20221111157610.3390/foods1111157635681326
    [Google Scholar]
  136. KumarV. PatiyalS. DhallA. SharmaN. RaghavaG.P.S. B3Pred: A random-forest-based method for predicting and designing blood-brain barrier penetrating peptides.Pharmaceutics2021138123710.3390/pharmaceutics1308123734452198
    [Google Scholar]
  137. Flores-HolguínN. FrauJ. Glossman-MitnikD. Computational pharmacokinetics report, ADMET study and conceptual DFT‐based estimation of the chemical reactivity properties of marine cyclopeptides.ChemistryOpen202110111142114910.1002/open.20210017834806828
    [Google Scholar]
  138. StouracJ. BorkoS. KhanR.T. PredictONCO: A web tool supporting decision-making in precision oncology by extending the bioinformatics predictions with advanced computing and machine learning.Brief. Bioinform.2023251bbad44110.1093/bib/bbad44138066711
    [Google Scholar]
  139. ChaudharyK. KumarR. SinghS. A Web Server and mobile App for computing hemolytic potency of peptides.Sci. Rep.2016612284310.1038/srep2284326953092
    [Google Scholar]
  140. TimmonsP.B. HewageC.M. HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks.Sci. Rep.20201011086910.1038/s41598‑020‑67701‑332616760
    [Google Scholar]
  141. MulpuruV. MishraN. Immunoinformatic based identification of cytotoxic T lymphocyte epitopes from the Indian isolate of SARS-CoV-2.Sci. Rep.2021111451610.1038/s41598‑021‑83949‑933633155
    [Google Scholar]
  142. DimitrovI. FlowerD.R. DoytchinovaI. AllerTOP - a server for in silico prediction of allergens.BMC Bioinformatics201314S6Suppl. 6S410.1186/1471‑2105‑14‑S6‑S423735058
    [Google Scholar]
  143. SchaduangratN. NantasenamatC. PrachayasittikulV. ShoombuatongW. Meta-iAVP: A sequence-based meta-predictor for improving the prediction of antiviral peptides using effective feature representation.Int. J. Mol. Sci.20192022574310.3390/ijms2022574331731751
    [Google Scholar]
  144. SchaduangratN. NantasenamatC. PrachayasittikulV. ShoombuatongW. ACPred: A computational tool for the prediction and analysis of anticancer peptides.Molecules20192410197310.3390/molecules2410197331121946
    [Google Scholar]
  145. AgrawalP. BhagatD. MahalwalM. SharmaN. RaghavaG.P.S. AntiCP 2.0: An updated model for predicting anticancer peptides.Brief. Bioinform.2021223bbaa15310.1093/bib/bbaa15332770192
    [Google Scholar]
  146. WangC.Y. ChangP.M. AryM.L. ProtaBank: A repository for protein design and engineering data.Protein Sci.201928367210.1002/pro.358530747468
    [Google Scholar]
  147. MusilM. StouracJ. BendlJ. FireProt: Web server for automated design of thermostable proteins.Nucleic Acids Res.201745W1W393-910.1093/nar/gkx28528449074
    [Google Scholar]
  148. XavierJ.S. NguyenT.B. KarmarkarM. ThermoMutDB: A thermodynamic database for missense mutations.Nucleic Acids Res.202149D1D475D47910.1093/nar/gkaa92533095862
    [Google Scholar]
  149. NikamR. KulandaisamyA. HariniK. SharmaD. GromihaM.M. ProThermDB: Thermodynamic database for proteins and mutants revisited after 15 years.Nucleic Acids Res.202149D1D420D42410.1093/nar/gkaa103533196841
    [Google Scholar]
  150. BermanH.M. WestbrookJ. FengZ. The Protein Data Bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.23510592235
    [Google Scholar]
  151. JankauskaitėJ. Jiménez-GarcíaB. DapkūnasJ. Fernández-RecioJ. MoalI.H. SKEMPI 2.0: An updated benchmark of changes in protein–protein binding energy, kinetics and thermodynamics upon mutation.Bioinformatics201935346246910.1093/bioinformatics/bty63530020414
    [Google Scholar]
  152. GollapalliP. KumariN.S. ShettyP. GnanasekaranT.S. Molecular basis of AR and STK11 genes associated pathogenesis via AMPK pathway and adipocytokine signalling pathway in the development of metabolic disorders in PCOS women.Beni. Suef Univ. J. Basic Appl. Sci.20221112310.1186/s43088‑022‑00200‑8
    [Google Scholar]
  153. SelvanT.G. GollapalliP. KumarS.H.S. GhateS.D. Early diagnostic and prognostic biomarkers for gastric cancer: Systems-level molecular basis of subsequent alterations in gastric mucosa from chronic atrophic gastritis to gastric cancer.J. Genet. Eng. Biotechnol.20232118610.1186/s43141‑023‑00539‑037594635
    [Google Scholar]
  154. SelvanG.T. GollapalliP. ShettyP. KumariN.S. Exploring key molecular signatures of immune responses and pathways associated with tuberculosis in comorbid diabetes mellitus: A systems biology approach.Beni. Suef Univ. J. Basic Appl. Sci.20221117710.1186/s43088‑022‑00257‑5
    [Google Scholar]
  155. SzklarczykD. KirschR. KoutrouliM. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac100036370105
    [Google Scholar]
  156. OughtredR. RustJ. ChangC. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions.Protein Sci.202130118720010.1002/pro.397833070389
    [Google Scholar]
  157. UhlénM. FagerbergL. HallströmB.M. Tissue-based map of the human proteome.Science20153476220126041910.1126/science.126041925613900
    [Google Scholar]
  158. Chatr-aryamontriA CeolA PalazziLM MINT: The Molecular INTeraction database.Nucleic Acids Res200735DatabaseD572D57410.1093/nar/gkl95017135203
    [Google Scholar]
  159. DasA.A. SharmaO.P. KumarM.S. KrishnaR. MathurP.P. PepBind: A comprehensive database and computational tool for analysis of protein-peptide interactions.Genomics Proteomics Bioinformatics201311424124610.1016/j.gpb.2013.03.00223896518
    [Google Scholar]
  160. KalininaO.V. WichmannO. ApicG. RussellR.B. ProtChemSI: A network of protein-chemical structural interactions.Nucleic Acids Res.201240D1D549D55310.1093/nar/gkr104922110041
    [Google Scholar]
  161. MartinsP. MarianoD. CarvalhoF.C. BastosL.L. MoraesL. PaixãoV. Propedia v2.3: A novel representation approach for the peptide-protein interaction database using graph-based structural signatures.Front. Bioinform.202331103103
    [Google Scholar]
  162. OrchardS. AmmariM. ArandaB. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases.Nucleic Acids Res.201442D1D358D36310.1093/nar/gkt111524234451
    [Google Scholar]
  163. WenZ. HeJ. TaoH. HuangS.Y. PepBDB: A comprehensive structural database of biological peptide–protein interactions.Bioinformatics201935117517710.1093/bioinformatics/bty57929982280
    [Google Scholar]
  164. SonawaniA. NaglekarA. KharcheS. SenguptaD. Assessing protein-protein docking protocols: Case studies of G-protein-coupled receptor interactions.Methods Mol. Biol.2024278025728010.1007/978‑1‑0716‑3985‑6_1338987472
    [Google Scholar]
  165. FunmilolaA.R. AbubakarG. HassanZ. Molecular docking in drug discovery: A review on anti-snake venom development.Int. J. Biochem. Res. Rev.20202020424910.9734/ijbcrr/2020/v29i330179
    [Google Scholar]
  166. AgrawalP. SinghH. SrivastavaH.K. SinghS. KishoreG. RaghavaG.P.S. Benchmarking of different molecular docking methods for protein-peptide docking.BMC Bioinformatics201919S13Suppl. 1342610.1186/s12859‑018‑2449‑y30717654
    [Google Scholar]
  167. ZhangW. BellE.W. YinM. ZhangY. EDock: Blind protein–ligand docking by replica-exchange monte carlo simulation.J. Cheminform.20201213710.1186/s13321‑020‑00440‑933430966
    [Google Scholar]
  168. Schneidman-DuhovnyD InbarY NussinovR WolfsonHJ PatchDock and SymmDock: Servers for rigid and symmetric docking.Nucleic Acids Res200533(Web Server)W363W36710.1093/nar/gki48115980490
    [Google Scholar]
  169. JonesG. WillettP. GlenR.C. LeachA.R. TaylorR. Development and validation of a genetic algorithm for flexible docking1. 1Edited by F.E. Cohen.J Mol Biol1997267372774810.1006/jmbi.1996.08979126849
    [Google Scholar]
  170. KoesD.R. BaumgartnerM.P. CamachoC.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise.J. Chem. Inf. Model.20135381893190410.1021/ci300604z23379370
    [Google Scholar]
  171. Bitencourt-FerreiraG. de AzevedoW.F.Jr Docking with GemDock.Methods Mol. Biol.2019205316918810.1007/978‑1‑4939‑9752‑7_1131452105
    [Google Scholar]
  172. PierceB.G. WieheK. HwangH. KimB.H. VrevenT. WengZ. ZDOCK server: Interactive docking prediction of protein-protein complexes and symmetric multimers.Bioinformatics201430121771177310.1093/bioinformatics/btu09724532726
    [Google Scholar]
  173. MacindoeG MavridisL VenkatramanV DevignesMD RitchieDW HexServer: An FFT-based protein docking server powered by graphics processors.Nucleic Acids Res.201038Web Server)( Suppl. 2W445W44910.1093/nar/gkq31120444869
    [Google Scholar]
  174. Ramírez-AportelaE. López-BlancoJ.R. ChacónP. FRODOCK 2.0: Fast protein-protein docking server.Bioinformatics201632152386238810.1093/bioinformatics/btw14127153583
    [Google Scholar]
  175. GengC. NarasimhanS. RodriguesJ.P.G.L.M. BonvinA.M.J.J. Information-driven, ensemble flexible peptide docking using HADDOCK. Modeling Peptide-Protein Interactions.Methods Mol. Biol.2017156110913810.1007/978‑1‑4939‑6798‑8_828236236
    [Google Scholar]
  176. SchindlerC.E.M. Chauvot de BeauchêneI. de VriesS.J. ZachariasM. Protein‐protein and peptide‐protein docking and refinement using ATTRACT in CAPRI.Proteins201785339139810.1002/prot.2519627785830
    [Google Scholar]
  177. AlekseenkoA. IgnatovM. JonesG. SabitovaM. KozakovD. Protein-protein and protein-peptide docking with ClusPro server.Methods Mol. Biol.2020216515717410.1007/978‑1‑0716‑0708‑4_932621224
    [Google Scholar]
  178. AndrusierN. NussinovR. WolfsonH.J. FireDock: Fast interaction refinement in molecular docking.Proteins200769113915910.1002/prot.2149517598144
    [Google Scholar]
  179. PonsC. SolernouA. Perez-CanoL. GrosdidierS. Fernandez-RecioJ. Optimization of pyDock for the new CAPRI challenges: Docking of homology‐based models, domain–domain assembly and protein‐RNA binding.Proteins201078153182318810.1002/prot.2277320602351
    [Google Scholar]
  180. YangY. YaoK. RepaskyM.P. Efficient exploration of chemical space with docking and deep learning.J. Chem. Theory Comput.202117117106711910.1021/acs.jctc.1c0081034592101
    [Google Scholar]
  181. RavehB. LondonN. ZimmermanL. Schueler-FurmanO. Rosetta FlexPepDock ab-initio: Simultaneous folding, docking and refinement of peptides onto their receptors.PLoS One201164e1893410.1371/journal.pone.001893421572516
    [Google Scholar]
  182. KurcinskiM. Badaczewska-DawidA. KolinskiM. KolinskiA. KmiecikS. Flexible docking of peptides to proteins using CABS‐dock.Protein Sci.202029121122210.1002/pro.377131682301
    [Google Scholar]
  183. LeeH. HeoL. LeeM.S. SeokC. GalaxyPepDock: A protein–peptide docking tool based on interaction similarity and energy optimization.Nucleic Acids Res.201543W1W431-510.1093/nar/gkv49525969449
    [Google Scholar]
  184. LamiableA. ThévenetP. ReyJ. VavrusaM. DerreumauxP. TufféryP. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex.Nucleic Acids Res.201644W1W449-5410.1093/nar/gkw32927131374
    [Google Scholar]
  185. SantosK.B. GuedesI.A. KarlA.L.M. DardenneL.E. Highly flexible ligand docking: Benchmarking of the dockthor program on the LEADS-PEP protein-peptide data set.J. Chem. Inf. Model.202060266768310.1021/acs.jcim.9b0090531922754
    [Google Scholar]
  186. Vidal-LimonA. Aguilar-ToaláJ.E. LiceagaA.M. Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides.J. Agric. Food Chem.202270493494310.1021/acs.jafc.1c0611034990125
    [Google Scholar]
  187. MastT. LupyanD. How to Assign AMBER Parameters to Desmond-generated System with viparr4 v1.Preprint2023
    [Google Scholar]
  188. BrooksB.R. BrooksC.L.III MackerellA.D.Jr CHARMM: The biomolecular simulation program.J. Comput. Chem.200930101545161410.1002/jcc.2128719444816
    [Google Scholar]
  189. PállS. ZhmurovA. BauerP. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS.J. Chem. Phys.20201531313411010.1063/5.001851633032406
    [Google Scholar]
  190. LierB. ÖhlknechtC. de RuiterA. GebhardtJ. van GunsterenW.F. OostenbrinkC. A suite of advanced tutorials for the GROMOS biomolecular simulation software.Living J. Comput. Mol. Sci.20202118552
    [Google Scholar]
  191. BjelkmarP. LarssonP. CuendetM.A. HessB. LindahlE. Implementation of the CHARMM Force Field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models.J. Chem. Theory Comput.20106245946610.1021/ct900549r26617301
    [Google Scholar]
  192. NarancicT. AlmahboubS.A. O’ConnorK.E. Unnatural amino acids: Production and biotechnological potential.World J. Microbiol. Biotechnol.20193546710.1007/s11274‑019‑2642‑930963257
    [Google Scholar]
  193. GiannakouliasS. ShringariS.R. FerrieJ.J. PeterssonE.J. Biomolecular simulation based machine learning models accurately predict sites of tolerability to the unnatural amino acid acridonylalanine.Sci. Rep.20211111840610.1038/s41598‑021‑97965‑234526629
    [Google Scholar]
  194. ZhangH. ZhengZ. DongL. Rational incorporation of any unnatural amino acid into proteins by machine learning on existing experimental proofs.Comput. Struct. Biotechnol. J.2022204930494110.1016/j.csbj.2022.08.06336147660
    [Google Scholar]
  195. MatteiA.E. GutierrezA.H. MartinW.D. TerryF.E. RobertsB.J. RosenbergA.S. In silico immunogenicity assessment for sequences containing unnatural amino acids: A method using existing in silico algorithm infrastructure and a vision for future enhancements.Front. Drug Discov. (Lausanne)2022295232610.3389/fddsv.2022.952326
    [Google Scholar]
  196. HermannJ. SchurgersL. JankowskiV. Identification and characterization of post-translational modifications: Clinical implications.Mol. Aspects Med.20228610106610.1016/j.mam.2022.10106635033366
    [Google Scholar]
  197. RamaziS. ZahiriJ. Post-translational modifications in proteins: Resources, tools and prediction methods.Database (Oxford)20212021baab01210.1093/database/baab01233826699
    [Google Scholar]
  198. CarterA.M. TanC. PozoK. Phosphoprotein-based biomarkers as predictors for cancer therapy.Proc. Natl. Acad. Sci. USA202011731184011841110.1073/pnas.201010311732690709
    [Google Scholar]
  199. LiW. LiF. ZhangX. LinH.K. XuC. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment.Signal Transduct. Target. Ther.20216142210.1038/s41392‑021‑00825‑834924561
    [Google Scholar]
  200. LiZ. LiS. LuoM. dbPTM in 2022: An updated database for exploring regulatory networks and functional associations of protein post-translational modifications.Nucleic Acids Res.202250D1D471D47910.1093/nar/gkab101734788852
    [Google Scholar]
  201. CraveurP. RebehmedJ. de BrevernA.G. PTM-SD: A database of structurally resolved and annotated posttranslational modifications in proteins.Database (Oxford)201420140bau04110.1093/database/bau04124857970
    [Google Scholar]
  202. YuK. WangY. ZhengY. qPTM: An updated database for PTM dynamics in human, mouse, rat and yeast.Nucleic Acids Res.202351D1D479D48710.1093/nar/gkac82036165955
    [Google Scholar]
  203. LiuZ. WangY. GaoT. CPLM: A database of protein lysine modifications.Nucleic Acids Res.201442D1D531D53610.1093/nar/gkt109324214993
    [Google Scholar]
  204. LinS. WangC. ZhouJ. EPSD: A well-annotated data resource of protein phosphorylation sites in eukaryotes.Brief. Bioinform.202122129830710.1093/bib/bbz16932008039
    [Google Scholar]
  205. LeeT.Y. Bo-Kai HsuJ. ChangW.C. HuangH.D. RegPhos: A system to explore the protein kinase–substrate phosphorylation network in humans.Nucleic Acids Res.201139Database issueSuppl. 1D777D78710.1093/nar/gkq97021037261
    [Google Scholar]
  206. DinkelH ChicaC ViaA Phospho. ELM: A database of phosphorylation sites-update 2011.Nucleic Acids Res201139DatabaseD261D26710.1093/nar/gkq110421062810
    [Google Scholar]
  207. ChenT. ZhouT. HeB. mUbiSiDa: A comprehensive database for protein ubiquitination sites in mammals.PLoS One201491e8574410.1371/journal.pone.008574424465676
    [Google Scholar]
  208. WangD. LiuD. YuchiJ. MusiteDeep: A deep-learning based webserver for protein post-translational modification site prediction and visualization.Nucleic Acids Res.202048W1W140-610.1093/nar/gkaa27532324217
    [Google Scholar]
  209. DengW. WangC. ZhangY. GPS-PAIL: Prediction of lysine acetyltransferase-specific modification sites from protein sequences.Sci. Rep.2016613978710.1038/srep3978728004786
    [Google Scholar]
  210. NickchiP. MirzaieM. BaumannM. SaeiA.A. JafariM. Monitoring functional post-translational modifications using a data-driven proteome informatic pipeline based on PEIMAN2.bioRxiv202210.1101/2022.11.09.515610
    [Google Scholar]
  211. ChangC.C. TungC.H. ChenC.W. TuC.H. ChuY.W. SUMOgo: Prediction of sumoylation sites on lysines by motif screening models and the effects of various post-translational modifications.Sci. Rep.2018811551210.1038/s41598‑018‑33951‑530341374
    [Google Scholar]
  212. FuH. YangY. WangX. WangH. XuY. DeepUbi: A deep learning framework for prediction of ubiquitination sites in proteins.BMC Bioinformatics20192018610.1186/s12859‑019‑2677‑930777029
    [Google Scholar]
  213. LiSH ZhangJ ZhaoYW iPhoPred: A predictor for identifying phosphorylation sites in human protein.IEEE Access2019717751717752810.1109/ACCESS.2019.2953951
    [Google Scholar]
  214. DengW. WangY. MaL. ZhangY. UllahS. XueY. Computational prediction of methylation types of covalently modified lysine and arginine residues in proteins.Brief. Bioinform.2016184bbw04110.1093/bib/bbw04127241573
    [Google Scholar]
  215. YangH. WangM. LiuX. ZhaoX.M. LiA. PhosIDN: An integrated deep neural network for improving protein phosphorylation site prediction by combining sequence and protein–protein interaction information.Bioinformatics202137244668467610.1093/bioinformatics/btab55134320631
    [Google Scholar]
  216. AkbarianM. KhaniA. EghbalpourS. UverskyV.N. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action.Int. J. Mol. Sci.2022233144510.3390/ijms2303144535163367
    [Google Scholar]
  217. WuJ. AnG. LinS. Solution-phase-peptide synthesis via the group-assisted purification (GAP) chemistry without using chromatography and recrystallization.Chem. Commun. (Camb.)201450101259126110.1039/C3CC48509A24336500
    [Google Scholar]
  218. MahindraA. SharmaK.K. JainR. Rapid microwave-assisted solution-phase peptide synthesis.Tetrahedron Lett.201253516931693510.1016/j.tetlet.2012.10.028
    [Google Scholar]
  219. ConibearA.C. WatsonE.E. PayneR.J. BeckerC.F.W. Native chemical ligation in protein synthesis and semi-synthesis.Chem. Soc. Rev.201847249046906810.1039/C8CS00573G30418441
    [Google Scholar]
  220. FieldsG.B. Introduction to peptide synthesis.Hoboken, New Jersey, U.S.John Wiley & Sons, Inc.20021119
    [Google Scholar]
  221. AkintayoD.C. de la TorreB.G. LiY. AlbericioF. Amino-li-resin-a fiber polyacrylamide resin for solid-phase peptide synthesis.Polymers202214592810.3390/polym1405092835267752
    [Google Scholar]
  222. SouzaS.E.G. MalavoltaL. SalomoniL.F. Evaluation of 4-tert-Butyl-Benzhydrylamine Resin (BUBHAR) as an alternative solid support for peptide synthesis.Int. J. Polym. Sci.2020202011710.1155/2020/5479343
    [Google Scholar]
  223. AmblardM. FehrentzJ.A. MartinezJ. SubraG. Methods and protocols of modern solid phase peptide synthesis.Mol. Biotechnol.200633323925410.1385/MB:33:3:23916946453
    [Google Scholar]
  224. SimonM.D. MijalisA.J. TotaroK.A. DunkelmannD. VinogradovA.A. ZhangC. Automated fast flow peptide synthesis. Total chemical synthesis of proteins.Hoboken, New JerseyWiley20211757
    [Google Scholar]
  225. WenC. ZhangJ. ZhangH. DuanY. MaH. Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review.Trends Food Sci. Technol.202010530832210.1016/j.tifs.2020.09.019
    [Google Scholar]
  226. KumarA. JadY.E. CollinsJ.M. AlbericioF. de la TorreB.G. Microwave-assisted green solid-phase peptide synthesis using] γ-valerolactone (GVL) as solvent.ACS Sustain. Chem. Eng.2018668034803910.1021/acssuschemeng.8b01531
    [Google Scholar]
  227. WangG. AngH.T. DubbakaS.R. O’NeillP. WuJ. Multistep automated synthesis of pharmaceuticals.Trends Chem.20235643244510.1016/j.trechm.2023.03.008
    [Google Scholar]
  228. KissK. RánkyS. GyulaiZ. MolnárL. Development of a novel, automated, robotic system for rapid, high-throughput, parallel, solid-phase peptide synthesis.SLAS Technol.2023282899710.1016/j.slast.2023.01.00236649783
    [Google Scholar]
  229. KaurJ. SaxenaM. RishiN. An overview of recent advances in biomedical applications of click chemistry.Bioconjug. Chem.20213281455147110.1021/acs.bioconjchem.1c0024734319077
    [Google Scholar]
  230. MeldalM. DinessF. Recent fascinating aspects of the CuAAC click reaction.Trends Chem.20202656958410.1016/j.trechm.2020.03.007
    [Google Scholar]
  231. TimmersM. KipperA. FreyR. Exploring the chemical properties and medicinal applications of tetramethylthiocycloheptyne sulfoximine used in strain-promoted azide-alkyne cycloaddition reactions.Pharmaceuticals (Basel)2023168115510.3390/ph1608115537631074
    [Google Scholar]
  232. GieslerR.J. EricksonP.W. KayM.S. Enhancing native chemical ligation for challenging chemical protein syntheses.Curr. Opin. Chem. Biol.202058374410.1016/j.cbpa.2020.04.00332745915
    [Google Scholar]
  233. DawsonP.E. MuirT.W. Clark-LewisI. KentS.B.H. Synthesis of proteins by native chemical ligation.Science1994266518677677910.1126/science.79736297973629
    [Google Scholar]
  234. AgouridasV. El MahdiO. DiemerV. CargoëtM. MonbaliuJ.C.M. MelnykO. Native chemical ligation and extended methods: mechanisms, catalysis, scope, and limitations.Chem. Rev.2019119127328744310.1021/acs.chemrev.8b0071231050890
    [Google Scholar]
  235. WanQ. DanishefskyS.J. Free-radical-based, specific desulfurization of cysteine: A powerful advance in the synthesis of polypeptides and glycopolypeptides.Angew. Chem. Int. Ed.200746489248925210.1002/anie.20070419518046687
    [Google Scholar]
  236. ZouJ. ZhouM. XiaoX. LiuR. Advance in hybrid peptides synthesis.Macromol. Rapid Commun.20224323220057510.1002/marc.20220057535978269
    [Google Scholar]
  237. MantC.T. ChenY. YanZ. PopaT.V. KovacsJ.M. MillsJ.B. HPLC analysis and purification of peptides.Peptide characterization and application protocols.Totowa, NJHumana Press2007355
    [Google Scholar]
  238. StregeM.A. OmanT.J. RisleyD.S. MuehlbauerL.K. JalanA. Jerry LianZ. Enantiomeric purity analysis of synthetic peptide therapeutics by direct chiral high-performance liquid chromatography-electrospray ionization tandem mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2023121912363810.1016/j.jchromb.2023.12363836857849
    [Google Scholar]
  239. Isidro-LlobetA. KenworthyM.N. MukherjeeS. Sustainability challenges in peptide synthesis and purification: From R&D to production.J. Org. Chem.20198484615462810.1021/acs.joc.8b0300130900880
    [Google Scholar]
  240. FerrazzanoL. CataniM. CavazziniA. Sustainability in peptide chemistry: Current synthesis and purification technologies and future challenges.Green Chem.2022243975102010.1039/D1GC04387K
    [Google Scholar]
  241. AliA. AlharthiS. Al-ShaalanN. SantaliE. Development of narrow-bore C18 column for fast separation of peptides and proteins in high-performance liquid chromatography.Polymers (Basel)20221413257610.3390/polym1413257635808622
    [Google Scholar]
  242. AlharthiS. AliA. IqbalM. Preparation of mixed-mode stationary phase for separation of peptides and proteins in high performance liquid chromatography.Sci. Rep.2022121406110.1038/s41598‑022‑08074‑735260726
    [Google Scholar]
  243. ZhangH. ZhangS. ChenL. XuR. ZhuJ. LC-HRMS-based metabolomics and lipidomics analyses of a novel probiotic Akkermansia Muciniphila in response to different nutritional stimulations.J. Microbiol. Methods202422310697510.1016/j.mimet.2024.10697538889842
    [Google Scholar]
  244. IshiiC. TojoY. IwasakiK. Development of a two-dimensional LC-MS/MS system for the determination of proline and 4-hydroxyproline enantiomers in biological and food samples.Anal. Sci.202440588188910.1007/s44211‑024‑00530‑w38598049
    [Google Scholar]
  245. BouvarelT. CamperiJ. GuillarmeD. Multi‐dimensional technology – Recent advances and applications for biotherapeutic characterization.J. Sep. Sci.2024475230092810.1002/jssc.20230092838471977
    [Google Scholar]
  246. El OuahabiO. Mancera-ArteuM. LatorreI. SalvadóM. Rodríguez-VidalS. Sanz-NebotV. Rapid and simple dual extraction for the analysis of lipids and autoantigenic peptides within phosphatidylserine-liposomes.Microchem. J.202420611142010.1016/j.microc.2024.111420
    [Google Scholar]
  247. RygulaA. MajznerK. MarzecK.M. KaczorA. PilarczykM. BaranskaM. Raman spectroscopy of proteins: A review.J. Raman Spectrosc.20134481061107610.1002/jrs.4335
    [Google Scholar]
  248. BakshiK. LiyanageM.R. VolkinD.B. MiddaughC.R. Circular dichroism of peptides.Methods Mol. Biol.2014108824725310.1007/978‑1‑62703‑673‑3_1724146409
    [Google Scholar]
  249. KeiderlingT.A. Structure of condensed phase peptides: Insights from vibrational circular dichroism and raman optical activity techniques.Chem. Rev.202012073381341910.1021/acs.chemrev.9b0063632101406
    [Google Scholar]
  250. JiY. YangX. JiZ. DFT-calculated IR spectrum amide I, II, and III band contributions of N-methylacetamide fine components.ACS Omega20205158572857810.1021/acsomega.9b0442132337419
    [Google Scholar]
  251. KoenisMAJ VisscherL BumaWJ NicuVP Analysis of vibrational circular dichroism spectra of peptides: A generalized coupled oscillator approach of a small peptide model using VCDtools.J. Phys. Chem. B.20201249acs.jpcb.9b1126110.1021/acs.jpcb.9b1126132037822
    [Google Scholar]
  252. EikåsK.D.R. KrupováM. KristoffersenT. BeerepootM.T.P. RuudK. Can the absolute configuration of cyclic peptides be determined with vibrational circular dichroism?Phys. Chem. Chem. Phys.20232520145201452910.1039/D2CP04942B37190985
    [Google Scholar]
  253. KeiderlingT.A. Protein and peptide secondary structure and conformational determination with vibrational circular dichroism.Curr. Opin. Chem. Biol.20026568268810.1016/S1367‑5931(02)00369‑112413554
    [Google Scholar]
  254. MaveyraudL. MoureyL. Protein X-ray crystallography and drug discovery.Molecules2020255103010.3390/molecules2505103032106588
    [Google Scholar]
  255. HawkinsB. CrossK. CraikD. Solution structure of the B‐chain of insulin as determined by 1H NMR spectroscopy comparison with the crystal structure of the insulin hexamer and with the solution structure of the insulin monomer.Int. J. Pept. Protein Res.199546542443310.1111/j.1399‑3011.1995.tb01077.x8567187
    [Google Scholar]
  256. YuK. ParkK. KangS-W. ShinS.Y. Hahm Ks, Kim Y. Solution structure of a cathelicidin-derived antimicrobial peptide, CRAMP as determined by NMR spectroscopy.J. Pept. Res.200260119
    [Google Scholar]
  257. KamagataK. ManoE. ItohY. Rational design using sequence information only produces a peptide that binds to the intrinsically disordered region of p53.Sci. Rep.201991858410.1038/s41598‑019‑44688‑031253862
    [Google Scholar]
  258. EmwasA.H.M. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research.Methods Mol. Biol.2015127716119310.1007/978‑1‑4939‑2377‑9_1325677154
    [Google Scholar]
  259. PiperS.J. JohnsonR.M. WoottenD. SextonP.M. Membranes under the magnetic lens: A dive into the diverse world of membrane protein structures using cryo-EM.Chem. Rev.202212217139891401710.1021/acs.chemrev.1c0083735849490
    [Google Scholar]
  260. LiangY.L. KhoshoueiM. RadjainiaM. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex.Nature2017546765611812310.1038/nature2232728437792
    [Google Scholar]
  261. BachmanJ. Site-directed mutagenesis.Methods Enzymol201352924124810.1016/B978‑0‑12‑418687‑3.00019‑724011050
    [Google Scholar]
  262. WatanabeS. ItoM. KigawaT. DiRect: Site-directed mutagenesis method for protein engineering by rational design.Biochem. Biophys. Res. Commun.202155110711310.1016/j.bbrc.2021.03.02133725571
    [Google Scholar]
  263. DrienovskáI. RoelfesG. Expanding the enzyme universe with genetically encoded unnatural amino acids.Nat. Catal.20203319320210.1038/s41929‑019‑0410‑8
    [Google Scholar]
  264. NicklingJ.H. BaumannT. SchmittF.J. Antimicrobial peptides produced by selective pressure incorporation of non-canonical amino acids.J. Vis. Exp.20181355755110.3791/5755129781997
    [Google Scholar]
  265. MeinekeB. HeimgärtnerJ. CaridhaR. Dual stop codon suppression in mammalian cells with genomically integrated genetic code expansion machinery.Cell Rep. Methods202331110062610.1016/j.crmeth.2023.10062637935196
    [Google Scholar]
  266. QiaoY. YuG. LeeuwonS.Z. LiuW.R. Site-specific conversion of cysteine in a protein to dehydroalanine using 2-nitro-5-thiocyanatobenzoic acid.Molecules2021269261910.3390/molecules2609261933947165
    [Google Scholar]
  267. De CenaG.L. ScavassaB.V. ConceiçãoK. In silico prediction of anti-infective and cell-penetrating peptides from Thalassophryne nattereri natterin toxins.Pharmaceuticals (Basel)2022159114110.3390/ph1509114136145362
    [Google Scholar]
  268. PalA. NeoK. RajamaniL. Inhibition of NLRP3 inflammasome activation by cell-permeable stapled peptides.Sci. Rep.201991491310.1038/s41598‑019‑41211‑330894604
    [Google Scholar]
  269. LuJ. XuH. XiaJ. D- and unnatural amino acid substituted antimicrobial peptides with improved proteolytic resistance and their proteolytic degradation characteristics.Front. Microbiol.20201156303010.3389/fmicb.2020.56303033281761
    [Google Scholar]
  270. ZhangY. WangJ. LiW. GuoY. Rational design of stapled helical peptides as antidiabetic PPARγ antagonists to target coactivator site by decreasing unfavorable entropy penalty instead of increasing favorable enthalpy contribution.Eur. Biophys. J.2022517-853554310.1007/s00249‑022‑01616‑x36057906
    [Google Scholar]
  271. NaeemA. NoureenN. Al-NaemiS.K. Al-EmadiJ.A. KhanM.J. Computational design of anti-cancer peptides tailored to target specific tumor markers.BMC Chem.20241813910.1186/s13065‑024‑01143‑038388460
    [Google Scholar]
  272. GonçalvesP.B. SoderoA.C.R. CordeiroY. Natural products targeting amyloid-β oligomer neurotoxicity in Alzheimer’s disease.Eur. J. Med. Chem.202427611668410.1016/j.ejmech.2024.11668439032401
    [Google Scholar]
  273. DelgadoM. Garcia-SanzJ.A. Therapeutic monoclonal antibodies against cancer: Present and future.Cells20231224283710.3390/cells1224283738132155
    [Google Scholar]
  274. ListovD. GoverdeC.A. CorreiaB.E. FleishmanS.J. Opportunities and challenges in design and optimization of protein function.Nat. Rev. Mol. Cell Biol.202425863965310.1038/s41580‑024‑00718‑y38565617
    [Google Scholar]
  275. SharmaK. SharmaK.K. SharmaA. JainR. Peptide-based drug discovery: Current status and recent advances.Drug Discov. Today202328210346410.1016/j.drudis.2022.10346436481586
    [Google Scholar]
  276. ThienN.D. Hai-NamN. AnhD.T. BaeckerD. Piezo1 and its inhibitors: Overview and perspectives.Eur. J. Med. Chem.202427311650210.1016/j.ejmech.2024.11650238761789
    [Google Scholar]
  277. NaeemM. MalikM.I. UmarT. AshrafS. AhmadA. A comprehensive review about bioactive peptides: Sources to future perspective.Int. J. Pept. Res. Ther.202228615510.1007/s10989‑022‑10465‑3
    [Google Scholar]
  278. HehE. AllenJ. RamirezF. Peptide drug conjugates and their role in cancer therapy.Int. J. Mol. Sci.202324182910.3390/ijms2401082936614268
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128349577240927071706
Loading
/content/journals/cpd/10.2174/0113816128349577240927071706
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test