Skip to content
2000
Volume 31, Issue 3
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

More than two hundred million people around the world are infected with malaria, a blood-borne disease that poses a significant risk to human life. Single medications, such as lumefantrine, primaquine, and chloroquine, as well as combinations of these medications with artemisinin or its derivatives, are currently being used as therapies. In addition, due to rising antimalarial drug resistance, other therapeutic options are needed immediately. Furthermore, due to anti-malarial medication failures, a new drug is required. Medication discovery and development are costly and time-consuming. Many malaria treatments have been developed however, most treatments have low water solubility and bioavailability. They may also cause drug-resistant parasites, which would increase malaria cases and fatalities. Nanotechnology may offer a safer, more effective malaria therapy and control option. Nanoparticles' high loading capacity, concentrated drug delivery, biocompatibility, and low toxicity make them an attractive alternative to traditional therapy. Nanotechnology-based anti-malarial chemotherapeutic medications outperform conventional therapies in therapeutic benefits, safety, and cost. This improves patient treatment compliance. The limitations of malaria treatments and the importance of nanotechnological approaches to the treatment of malaria were also topics that were covered in this review. The most recent advancements in nanomaterials and the advantages they offer in terms of medication delivery are discussed in this article. The prospective therapy for malaria is also discussed. Additionally, the limitations of malaria therapies and the importance of nanotechnology-based approaches to the treatment of malaria were explored.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128321468240828103439
2024-09-13
2025-03-09
Loading full text...

Full text loading...

References

  1. RahmanK. KhanS.U. FahadS. Nano-biotechnology: A new approach to treat and prevent malaria.Int. J. Nanomedicine2019141401141010.2147/IJN.S19069230863068
    [Google Scholar]
  2. Al-AwadhiM. AhmadS. IqbalJ. Current status and the epidemiology of malaria in the middle east region and beyond.Microorganisms20219233810.3390/microorganisms902033833572053
    [Google Scholar]
  3. AkilimaliA. BisimwaC. AborodeA.T. Self-medication and anti-malarial Drug Resistance in the Democratic Republic of the Congo (DRC): A silent threat.Trop. Med. Health20225017310.1186/s41182‑022‑00466‑936195896
    [Google Scholar]
  4. LakewY.Y. FikrieA. GodanaS.B. WariyoF. SeyoumW. Magnitude of malaria and associated factors among febrile adults in siraro district public health facilities, West Arsi Zone, Oromia, Ethiopia 2022: A facility-based cross-sectional study.Malar. J.202322125910.1186/s12936‑023‑04697‑x37674201
    [Google Scholar]
  5. LiuQ. YanW. QinC. DuM. LiuM. LiuJ. Millions of excess cases and thousands of excess deaths of malaria occurred globally in 2020 during the COVID-19 pandemic.J. Glob. Health2022120504510.7189/jogh.12.0504536527272
    [Google Scholar]
  6. OladipoH.J. TajudeenY.A. OladunjoyeI.O. Increasing challenges of malaria control in sub-Saharan Africa: Priorities for public health research and policymakers.Ann. Med. Surg.20228110436610.1016/j.amsu.2022.10436636046715
    [Google Scholar]
  7. GaoL. ShiQ. LiuZ. LiZ. DongX. Impact of the COVID-19 pandemic on malaria control in Africa: A preliminary analysis.Trop. Med. Infect. Dis.2023816710.3390/tropicalmed801006736668974
    [Google Scholar]
  8. RasmussenC. AlonsoP. RingwaldP. Current and emerging strategies to combat antimalarial resistance.Expert Rev. Anti Infect. Ther.202220335337210.1080/14787210.2021.196229134348573
    [Google Scholar]
  9. GujjariL. KalaniH. PindiproluS.K. ArakareddyB.P. YadagiriG. Current challenges and nanotechnology-based pharmaceutical strategies for the treatment and control of malaria.Parasite Epidemiol. Control202217e0024410.1016/j.parepi.2022.e0024435243049
    [Google Scholar]
  10. ShabaniL. AbbasiM. AzarnewZ. AmaniA.M. VaezA. Neuro-nanotechnology: Diagnostic and therapeutic nano-based strategies in applied neuroscience.Biomed. Eng. Online2023221110.1186/s12938‑022‑01062‑y36593487
    [Google Scholar]
  11. JoudehN. LinkeD. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists.J. Nanobiotechnology202220126210.1186/s12951‑022‑01477‑835672712
    [Google Scholar]
  12. TorkashvandH. DehdastS.A. NateghpourM. Antimalarial nano-drug delivery system based on graphene quantum dot on Plasmodium falciparum: Preparation, characterization, toxicological evaluation.Diamond Related Materials202313210967010.1016/j.diamond.2022.109670
    [Google Scholar]
  13. Tracking progress against malaria. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
  14. WHO: Guidelines for the treatment of Malaria. 2015. Available from: https://reliefweb.int/report/world/who-guidelines-treatment-malaria?OpenDocument=&gad_source=1&gclid=Cj0KCQjw9Km3BhDjARIsAGUb4nwxpZM78EGq9_UOds8BqOiZ3ViSLobTyWu5Luu4jCJ49J-Y2QOwlR0aAvAhEALw_wcB
  15. AutinoB. CorbettY. CastelliF. TaramelliD. Pathogenesis of malaria in tissues and blood.Mediterr. J. Hematol. Infect. Dis.201241e201206110.4084/mjhid.2012.06123170190
    [Google Scholar]
  16. GrobuschM.P. KremsnerP.G. Uncomplicated Malaria.Curr. Top. Microbiol. Immunol.20052958110410.1007/3‑540‑29088‑5_416265888
    [Google Scholar]
  17. GarciaL.S. Malaria.Clin. Lab. Med.201030193129
    [Google Scholar]
  18. CrutcherJ.M. HoffmanS.L. Malaria. BaronS. Medical Microbiology.4th edGalveston, TXUniversity of Texas Medical Branch at Galveston1996
    [Google Scholar]
  19. TrampuzA. JerebM. MuzlovicI. PrabhuR.M. Clinical review: Severe malaria.Crit. Care20037431532310.1186/cc218312930555
    [Google Scholar]
  20. OkaforC.N. FinniganN.A. Malaria (Plasmodium ovale).Treasure IslandStatPearls Publishing2020
    [Google Scholar]
  21. HillS.R. ThakurR.K. SharmaG.K. Antimalarial medications.Treasure Island, FLStatPearls Publishing2022
    [Google Scholar]
  22. Report on antimalarial drug efficacy, resistance and response: 10 years of surveillance (2010-2019).Geneva, SwitzerlandWHO2020
    [Google Scholar]
  23. World malaria report 2020: 20 years of global progress and challenges.In: 2020. Available from: https://iris.who.int/handle/10665/337660
  24. FombaS. KonéD. DoumbiaB. Management of uncomplicated malaria among children under five years at public and private sector facilities in Mali.BMC Public Health2020201188810.1186/s12889‑020‑09873‑133298011
    [Google Scholar]
  25. BeleteT.M. Recent progress in the development of new antimalarial drugs with novel targets.Drug Des. Devel. Ther.2020143875388910.2147/DDDT.S265602
    [Google Scholar]
  26. MadhavH. HodaN. An insight into the recent development of the clinical candidates for the treatment of malaria and their target proteins.Eur. J. Med. Chem.202121011295510.1016/j.ejmech.2020.11295533131885
    [Google Scholar]
  27. ThriemerK. LeyB. BobogareA. Challenges for achieving safe and effective radical cure of Plasmodium vivax: A round table discussion of the APMEN Vivax Working Group.Malar. J.201716114110.1186/s12936‑017‑1784‑128381261
    [Google Scholar]
  28. CommonsR.J. SimpsonJ.A. ThriemerK. The efficacy of dihydroartemisinin-piperaquine and artemether-lumefantrine with and without primaquine on Plasmodium vivax recurrence: A systematic review and individual patient data meta-analysis.PLoS Med.20191610e100292810.1371/journal.pmed.100292831584960
    [Google Scholar]
  29. NetamA.K. PrasadJ. SatapathyT. JainP. Evaluation for toxicity and improved therapeutic effectiveness of natural polymer co-administered along with venocin in acetic acid-induced colitis using rat model BT - Advances in biomedical engineering and technology. RizvanovA.A. SinghB.K. GanasalaP. SingaporeSpringer Singapore2021207220
    [Google Scholar]
  30. OkebeJ. BojangK. D’AlessandroU. Use of artemisinin and its derivatives for the treatment of malaria in children.Pediatr. Infect. Dis. J.201433552252410.1097/INF.0000000000000306
    [Google Scholar]
  31. Sudhir DhoteN. Dineshbhai PatelR. KuwarU. AgrawalM. AlexanderA. JainP. Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting.Curr. Cancer Drug Targets202424122
    [Google Scholar]
  32. WhiteN.J. 43-Malaria. FarrarJ. HotezP.J. JunghanssT. KangG. LallooD. WhiteN.J. Manson’s tropical infectious diseases.23rd edPhiladelphiaW.B. Saunders2014532600.e110.1016/B978‑0‑7020‑5101‑2.00044‑3
    [Google Scholar]
  33. National Guidelines for the Treatment of Malaria2019Available from: https://knowledgehub.health.gov.za/elibrary/national-guidelines-treatment-malaria-2019
  34. BaruahU.K. GowthamarajanK. VankaR. KarriV.V.S.R. SelvarajK. JojoG.M. Malaria treatment using novel nano-based drug delivery systems.J. Drug Target.201725756758110.1080/1061186X.2017.129164528166440
    [Google Scholar]
  35. KremsnerP.G. RadloffP. MetzgerW. Quinine plus clindamycin improves chemotherapy of severe malaria in children.Antimicrob. Agents Chemother.19953971603160510.1128/AAC.39.7.16037492113
    [Google Scholar]
  36. IslahudinF. TindallS.M. MellorI.R. The antimalarial drug quinine interferes with serotonin biosynthesis and action.Sci. Rep.201441361810.1038/srep0361824402577
    [Google Scholar]
  37. UrsosL.M.B. RoepeP.D. Chloroquine resistance in the malarial parasite, Plasmodium falciparum.Med. Res. Rev.200222546549110.1002/med.1001612210555
    [Google Scholar]
  38. TrapeJ.F. The public health impact of chloroquine resistance in Africa.Am. J. Trop. Med. Hyg.200164112
    [Google Scholar]
  39. SlaterA.F.G. Chloroquine: Mechanism of drug action and resistance in Plasmodium falciparum.Pharmacol. Ther.1993572-320323510.1016/0163‑7258(93)90056‑J8361993
    [Google Scholar]
  40. Al-BariM.A.A. Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases.J. Antimicrob. Chemother.20157061608162110.1093/jac/dkv01825693996
    [Google Scholar]
  41. JainP. SatapathyT. PandeyR.K. First report on ticks (Acari: Ixodidae) controlling activity of cottonseed oil (Gossypium Sp.).Int. J. Acarol.202046426326710.1080/01647954.2020.1767203
    [Google Scholar]
  42. ChouA.C. FitchC.D. Control of heme polymerase by chloroquine and other quinoline derivatives.Biochem. Biophys. Res. Commun.1993195142242710.1006/bbrc.1993.20608363618
    [Google Scholar]
  43. Van RiemsdijkM.M. SturkenboomM.C.J.M. DittersJ.M. Low body mass index is associated with an increased risk of neuropsychiatric adverse events and concentration impairment in women on mefloquine.Br. J. Clin. Pharmacol.200457450651210.1046/j.1365‑2125.2003.02035.x15025750
    [Google Scholar]
  44. HiebschR.R. RaubT.J. WattenbergB.W. Primaquine blocks transport by inhibiting the formation of functional transport vesicles. Studies in a cell-free assay of protein transport through the Golgi apparatus.J. Biol. Chem.199126630203232032810.1016/S0021‑9258(18)54926‑71657920
    [Google Scholar]
  45. RechtJ. AshleyE. WhiteN. Malaria safety of 8-aminoquinoline antimalarial medicines.World Health Organization201412
    [Google Scholar]
  46. WhiteN.J. QiaoL.G. QiG. LuzzattoL. Rationale for recommending a lower dose of primaquine as a Plasmodium falciparum gametocytocide in populations where G6PD deficiency is common.Malar. J.201211141810.1186/1475‑2875‑11‑41823237606
    [Google Scholar]
  47. VaidyaA.B. MatherM.W. Atovaquone resistance in malaria parasites.Drug Resist. Updat.20003528328710.1054/drup.2000.015711498396
    [Google Scholar]
  48. FryM. PudneyM. Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4′-chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80).Biochem. Pharmacol.19924371545155310.1016/0006‑2952(92)90213‑31314606
    [Google Scholar]
  49. KremsnerP.G. LooareesuwanS. ChulayJ.D. Atovaquone and proguanil hydrochloride for treatment of malaria.J. Travel Med.19996S1Suppl. 1S18S2010.1093/jtm/6.suppl.S1823573548
    [Google Scholar]
  50. BaggishA.L. Antiparasitic agent atovaquone.Antimicrob. Agents Chemother.20024611631173
    [Google Scholar]
  51. ShakirL. HussainM. JaveedA. AshrafM. RiazA. Artemisinins and immune system.Eur. J. Pharmacol.201166861410.1016/j.ejphar.2011.06.044
    [Google Scholar]
  52. NixonG.L. MossD.M. ShoneA.E. Antimalarial pharmacology and therapeutics of atovaquone.J. Antimicrob. Chemother.201368597798510.1093/jac/dks50423292347
    [Google Scholar]
  53. MeshnickS.R. Artemisinin: Mechanisms of action, resistance and toxicity.Int. J. Parasitol.200232131655166010.1016/S0020‑7519(02)00194‑712435450
    [Google Scholar]
  54. SahuB. Comprehensive review on non-alcoholic fatty liver disease (NAFLD).Clin Adv Drug Treat Prob Sci20241117
    [Google Scholar]
  55. WoodrowC.J. HaynesR.K. KrishnaS. Artemisinins.Postgrad. Med. J.200581952717810.1136/pgmj.2004.02839915701735
    [Google Scholar]
  56. RibeiroI.R. OlliaroP. Safety of artemisinin and its derivatives. A review of published and unpublished clinical trials.Méd. Trop.1998583Suppl.505310212898
    [Google Scholar]
  57. BrewerT.G. WeinaP.J. HeifferM.H. Fatal neurotoxicity of arteether and artemether.Am. J. Trop. Med. Hyg.199451325125910.4269/ajtmh.1994.51.2517943542
    [Google Scholar]
  58. MaceK.E. LucchiN.W. TanK.R. Malaria surveillance — United States, 2018.MMWR Surveill. Summ.202271813510.15585/mmwr.ss7108a136048717
    [Google Scholar]
  59. WichtK.J. MokS. FidockD.A. Molecular mechanisms of drug resistance in Plasmodium falciparum malaria.Annu. Rev. Microbiol.202074143145410.1146/annurev‑micro‑020518‑11554632905757
    [Google Scholar]
  60. de RidderS. van der KooyF. VerpoorteR. Artemisia annua as a self-reliant treatment for malaria in developing countries.J. Ethnopharmacol.2008120330231410.1016/j.jep.2008.09.01718977424
    [Google Scholar]
  61. JohnD.T. PetriW.A. Markell and Voge’s medical parasitology.9th edPhiladelphiaWB Saunders2006
    [Google Scholar]
  62. KaboréJ.M.T. SiribiéM. HienD. Attitudes, practices, and determinants of community care-seeking behaviours for fever/malaria episodes in the context of the implementation of multiple first-line therapies for uncomplicated malaria in the health district of Kaya, Burkina Faso.Malar. J.202221115510.1186/s12936‑022‑04180‑z35637506
    [Google Scholar]
  63. MakangaM. KrudsoodS. The clinical efficacy of artemether/lumefantrine (Coartem S.S).Malar. J.20098S1Suppl. 1S510.1186/1475‑2875‑8‑S1‑S519818172
    [Google Scholar]
  64. OmariA.A. GambleC. GarnerP. Artemether-lumefantrine (four-dose regimen) for treating uncomplicated P. falciparum malaria.Cochrane Database Syst. Rev.200620062Cd005965
    [Google Scholar]
  65. de VriesP.J. DienT.K. Clinical pharmacology and therapeutic potential of artemisinin and its derivatives in the treatment of malaria.Drugs199652681883610.2165/00003495‑199652060‑000048957153
    [Google Scholar]
  66. LooareesuwanS. OosterhuisB. SchilizziB.M. Dose-finding and efficacy study for i.m. artemotil (beta-arteether) and comparison with i.m. artemether in acute uncomplicated P. falciparum malaria.Br. J. Clin. Pharmacol.2002535492500
    [Google Scholar]
  67. JongdeepaisalM. EanM. HengC. Acceptability and feasibility of malaria prophylaxis for forest goers: Findings from a qualitative study in Cambodia.Malar. J.202120144610.1186/s12936‑021‑03983‑w34823527
    [Google Scholar]
  68. JinQ. LiuT. ChenD. Therapeutic potential of artemisinin and its derivatives in managing kidney diseases.Front. Pharmacol.202314109720610.3389/fphar.2023.109720636874000
    [Google Scholar]
  69. TranT. QiaoY. YouH. CheongD.H.J. Chronic inflammation in asthma: Antimalarial drug artesunate as a therapeutic agent. ChatterjeeS. JungraithmayrW. BagchiD. Immunity and inflammation in health and disease.Academic Press201830931810.1016/B978‑0‑12‑805417‑8.00025‑1
    [Google Scholar]
  70. AnvikarA.R. SharmaB. ShahiB.H. Artesunate-amodiaquine fixed dose combination for the treatment of Plasmodium falciparum malaria in India.Malar. J.20121119710.1186/1475‑2875‑11‑9722458860
    [Google Scholar]
  71. RamanJ. GastL. BalawanthR. High levels of imported asymptomatic malaria but limited local transmission in KwaZulu-Natal, a South African malaria-endemic province nearing malaria elimination.Malar. J.202019115210.1186/s12936‑020‑03227‑332295590
    [Google Scholar]
  72. OrrellC. LittleF. SmithP. Pharmacokinetics and tolerability of artesunate and amodiaquine alone and in combination in healthy volunteers.Eur. J. Clin. Pharmacol.200864768369010.1007/s00228‑007‑0452‑818415093
    [Google Scholar]
  73. KigoziS.P. KigoziR.N. EpsteinA. Rapid shifts in the age-specific burden of malaria following successful control interventions in four regions of Uganda.Malar. J.202019112810.1186/s12936‑020‑03196‑732228584
    [Google Scholar]
  74. MeshnickS.R. DobsonM.J. The history of antimalarial drugs. RosenthalP.J. Antimalarial chemotherapy: Mechanisms of action, resistance, and new directions in drug discovery.Humana Press2001152510.1385/1‑59259‑111‑6:15
    [Google Scholar]
  75. AchanJ. TalisunaA.O. ErhartA. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria.Malar. J.201110114410.1186/1475‑2875‑10‑14421609473
    [Google Scholar]
  76. AbumsimirB. Al-QaisiT.S. The next generation of malaria treatments: The great expectations.Future Sci. OA202392FSO83410.2144/fsoa‑2023‑001837009056
    [Google Scholar]
  77. DucharmeJ. FarinottiR. Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements.Clin. Pharmacokinet.199631425727410.2165/00003088‑199631040‑000038896943
    [Google Scholar]
  78. TodenS. GoelA. The holy grail of curcumin and its efficacy in various diseases: Is bioavailability truly a big concern?J. Restor. Med.2017612736
    [Google Scholar]
  79. CuiL. MiaoJ. CuiL. Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: Inhibition of histone acetylation and generation of reactive oxygen species.Antimicrob. Agents Chemother.200751248849410.1128/AAC.01238‑0617145789
    [Google Scholar]
  80. PadmanabanG. NagarajV.A. RangarajanP.N. Artemisinin-based combination with curcumin adds a new dimension to malaria therapy.Curr. Sci.2012102704711
    [Google Scholar]
  81. Ullah KhanS. SalehT.A. WahabA. Nanosilver: New ageless and versatile biomedical therapeutic scaffold.Int. J. Nanomedicine20181373376210.2147/IJN.S15316729440898
    [Google Scholar]
  82. GongP. LiH. HeX. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles.Nanotechnology2007182828560410.1088/0957‑4484/18/28/285604
    [Google Scholar]
  83. FortinaP. KrickaL.J. SurreyS. GrodzinskiP. Nanobiotechnology: the promise and reality of new approaches to molecular recognition.Trends Biotechnol.200523416817310.1016/j.tibtech.2005.02.00715780707
    [Google Scholar]
  84. GoodsellD.S. Bionanotechnology: Lessons from Nature.John Wiley & Sons200410.1002/0471469572
    [Google Scholar]
  85. JiaL. ZhangQ. LiQ. SongH. The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: Long lifetime nanocatalysts for p-nitrotoluene hydrogenation.Nanotechnology2009203838560110.1088/0957‑4484/20/38/38560119713585
    [Google Scholar]
  86. SongJ.Y. KwonE.Y. KimB.S. Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract.Bioprocess Biosyst. Eng.201033115916410.1007/s00449‑009‑0373‑219701776
    [Google Scholar]
  87. TseE.G. KorsikM. ToddM.H. The past, present and future of anti-malarial medicines.Malar. J.20191819310.1186/s12936‑019‑2724‑z30902052
    [Google Scholar]
  88. GelbM.H. Drug discovery for malaria: A very challenging and timely endeavor.Curr. Opin. Chem. Biol.200711444044510.1016/j.cbpa.2007.05.03817761335
    [Google Scholar]
  89. NureyeD. AssefaS. Old and recent advances in life cycle, pathogenesis, diagnosis, prevention, and treatment of malaria including perspectives in Ethiopia.ScientificWorldJournal2020202011710.1155/2020/1295381
    [Google Scholar]
  90. JainP. PandeyR. ShuklaS.S. Natural sources of anti-inflammation. JainP. PandeyR. ShuklaS.S. Inflammation: Natural Resources and Its Applications.New Delhi, IndiaSpringer20152513310.1007/978‑81‑322‑2163‑0_4
    [Google Scholar]
  91. RizviS.A.A. SalehA.M. Applications of nanoparticle systems in drug delivery technology.Saudi Pharm. J.201826647010.1016/j.jsps.2017.10.012
    [Google Scholar]
  92. MasriA. AnwarA. KhanN.A. SiddiquiR. The use of nanomedicine for targeted therapy against bacterial infections.Antibiotics20198426010.3390/antibiotics804026031835647
    [Google Scholar]
  93. JainP. SatapathyT. PandeyR.K. A mini review of methods to control ticks population infesting cattle in Chhattisgarh with special emphasis on herbal acaricides.Indian J. Nat. Prod. Resour.20201112217223
    [Google Scholar]
  94. PatraJ.K. DasG. FracetoL.F. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  95. NaseriN. ValizadehH. Zakeri-MilaniP. Solid lipid nanoparticles and nanostructured lipid carriers: Structure preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.04326504751
    [Google Scholar]
  96. RathoreP. RaoS.P. RoyA. SatapathyT. SinghV. JainP. Hepatoprotective activity of isolated herbal compounds.Res J Pharm Technol201472229234
    [Google Scholar]
  97. ChowdhuryA. KunjiappanS. PanneerselvamT. SomasundaramB. BhattacharjeeC. Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases.Int. Nano Lett.2017729112210.1007/s40089‑017‑0208‑0
    [Google Scholar]
  98. SinghA. SharmaS. YadagiriG. Sensible graphene oxide differentiates macrophages and Leishmania: A bio-nano interplay in attenuating intracellular parasite.RSC Advances20201046275022751110.1039/D0RA04266H35516949
    [Google Scholar]
  99. AnselmoS. LanteroE. LancelotA. SerranoL. FernaX. SierraT. Promising nanomaterials in the fight against malaria.J. Mater. Chem. B2020894289448
    [Google Scholar]
  100. SercombeL. VeeratiT. MoheimaniF. WuS.Y. SoodA.K. HuaS. Advances and challenges of liposome assisted drug delivery.Front. Pharmacol.2015628610.3389/fphar.2015.0028626648870
    [Google Scholar]
  101. MomeniA. RasoolianM. MomeniA. Development of liposomes loaded with anti-leishmanial drugs for the treatment of cutaneous leishmaniasis.J. Liposome Res.201323213414410.3109/08982104.2012.76251923350940
    [Google Scholar]
  102. LasicD. Novel applications of liposomes.Trends Biotechnol.199816730732110.1016/S0167‑7799(98)01220‑79675915
    [Google Scholar]
  103. BanghamA.D. StandishM.M. WatkinsJ.C. Diffusion of univalent ions across the lamellae of swollen phospholipids.J. Mol. Biol.1965131238IN2710.1016/S0022‑2836(65)80093‑65859039
    [Google Scholar]
  104. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.57282
    [Google Scholar]
  105. JainA. JainP. SoniP. TiwariA. TiwariS.P. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29).J. Gastrointest. Cancer2023541909510.1007/s12029‑021‑00788‑735043370
    [Google Scholar]
  106. KhievD. MohamedZ.A. VichareR. Emerging nano-formulations and nanomedicines applications for ocular drug delivery.Nanomaterials202111117310.3390/nano1101017333445545
    [Google Scholar]
  107. AfolabiB.B. OkoromahC.A.N. Intramuscular arteether for treating severe malaria.Cochrane Libr.200420044CD00439110.1002/14651858.CD004391.pub215495107
    [Google Scholar]
  108. SinghR. PrasadJ. SatapathyT. JainP. SinghS. Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles.Indian J. Biochem. Biophys.2021582156161
    [Google Scholar]
  109. DwivediP. KhatikR. KhandelwalK. Preparation and characterization of solid lipid nanoparticles of antimalarial drug arteether for oral administration.J. Biomater. Tissue Eng.20144213313710.1166/jbt.2014.1148
    [Google Scholar]
  110. AttamaA.A. KenechukwuF.C. OnuigboE.B. Solid lipid nanoparticles encapsulating a fluorescent marker (coumarin 6) and antimalarials - Artemether and lumefantrine: Evaluation of cellular uptake and antimalarial activity.Eur. J. Nanomed.20168312913810.1515/ejnm‑2016‑0009
    [Google Scholar]
  111. GargA. TomarD.S. BhalalaK. WahajuddinM. Development and investigation of Artemether loaded binary solid lipid nanoparticles: Physicochemical characterization and in-situ single-pass intestinal permeability.J. Drug Deliv. Sci. Technol.20206010207210.1016/j.jddst.2020.102072
    [Google Scholar]
  112. MishraA. Impact of sewage water on behavioral response and oxygen consumption of fish Clarius batrachus.Prob Sci202411814
    [Google Scholar]
  113. SalviV.R. PawarP. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier.J. Drug Deliv. Sci. Technol.20195125526710.1016/j.jddst.2019.02.017
    [Google Scholar]
  114. FangC-L. Al-SuwayehS.A. FangJ-Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting.Recent Pat. Nanotechnol.201371415510.2174/18722101380448482722946628
    [Google Scholar]
  115. TamjidiF. ShahediM. VarshosazJ. NasirpourA. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules.Innov. Food Sci. Emerg. Technol.201319294310.1016/j.ifset.2013.03.002
    [Google Scholar]
  116. AliH. SinghS.K. Biological voyage of solid lipid nanoparticles: A proficient carrier in nanomedicine.Ther. Deliv.201671069170910.4155/tde‑2016‑003827790956
    [Google Scholar]
  117. VankaR. KuppusamyG. Praveen KumarS. Ameliorating the in vivo antimalarial efficacy of artemether using nanostructured lipid carriers.J. Microencapsul.201835212113610.1080/02652048.2018.144191529448884
    [Google Scholar]
  118. PrabhuP. SuryavanshiS. PathakS. SharmaS. PatravaleV. Artemether-lumefantrine nanostructured lipid carriers for oral malaria therapy: Enhanced efficacy at reduced dose and dosing frequency.Int. J. Pharm.2016511147348710.1016/j.ijpharm.2016.07.02127421912
    [Google Scholar]
  119. BusariZ.A. DaudaK.A. MorenikejiO.A. Antiplasmodial activity and toxicological assessment of curcumin PLGA-encapsulated nanoparticles.Front. Pharmacol.2017862210.3389/fphar.2017.0062228932197
    [Google Scholar]
  120. DeshmukhR. Exploring the potential of antimalarial nanocarriers as a novel therapeutic approach.J. Mol. Graph. Model.202312210849710.1016/j.jmgm.2023.10849737149980
    [Google Scholar]
  121. IslamM. HuangY. JainP. FanB. TongL. WangF. Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno-functional property.Biocatal. Agric. Biotechnol.20235010270010.1016/j.bcab.2023.102700
    [Google Scholar]
  122. ManiyarM.M. DeshmukhA.S. ShelkeS.J. Ethosomes: A carrier for transdermal drug delivery system.Asian J Pharm Res202212322522810.52711/2231‑5691.2022.00037
    [Google Scholar]
  123. JainP. SatapathyT. PandeyR.K. Acaricidal activity and biochemical analysis of Citrus limetta seed oil for controlling Ixodid Tick Rhipicephalus microplus infesting cattle.Syst. Appl. Acarol.20212671350136010.11158/saa.26.7.13
    [Google Scholar]
  124. ChauhanN. VasavaP. KhanS.L. Ethosomes: A novel drug carrier.Ann. Med. Surg (Lond).20228210459510.1016/j.amsu.2022.10459536124209
    [Google Scholar]
  125. VermaP. PathakK. Therapeutic and cosmeceutical potential of ethosomes: An overview.J. Adv. Pharm. Technol. Res.201013274282
    [Google Scholar]
  126. AlyN.S.M. MatsumoriH. DinhT.Q. Pioneer use of antimalarial transdermal combination therapy in rodent malaria model.Pathogens202312339810.3390/pathogens1203039836986320
    [Google Scholar]
  127. ShenS. LiuS.Z. ZhangY.S. Compound antimalarial ethosomal cataplasm: Preparation, evaluation, and mechanism of penetration enhancement.Int. J. Nanomedicine2015104239425310.2147/IJN.S8340226170661
    [Google Scholar]
  128. ObisesanO.R. AdekunleA.S. OyekunleJ.A.O. Catalytic degradation of β-hematin (malaria biomaker) using some selected metal oxide nanoparticles.Mater. Res. Express20207101504410.1088/2053‑1591/ab6645
    [Google Scholar]
  129. RaiM. IngleA.P. ParalikarP. GuptaI. MediciS. SantosC.A. Recent advances in use of silver nanoparticles as antimalarial agents.Int. J. Pharm.20175261-225427010.1016/j.ijpharm.2017.04.04228450172
    [Google Scholar]
  130. Rajiv GandhiP. JayaseelanC. KamarajC. Radhika RajasreeS.R. MaryR.R. In vitro antimalarial activity of synthesized TiO2 nanoparticles using Momordica charantia leaf extract against Plasmodium falciparum.J. Appl. Biomed.201816437838610.1016/j.jab.2018.04.001
    [Google Scholar]
  131. KannanD. YadavN. AhmadS. Pre-clinical study of iron oxide nanoparticles fortified artesunate for efficient targeting of malarial parasite.EBioMedicine20194526127710.1016/j.ebiom.2019.06.02631255656
    [Google Scholar]
  132. HennrichF. ChanC. MooreV. RolandiM. O’ConnellM. Carbon Nanotubes Properties and Applications.Taylor & Francis Group2006
    [Google Scholar]
  133. O’conpellM.J. Carbon nanotubes: Properties and applications.CRC press201810.1201/9781315222127
    [Google Scholar]
  134. FanW. ZhangL. LiuT. Graphene-carbon nanotube hybrids for energy and environmental applications.Springer Singapore201710.1007/978‑981‑10‑2803‑8
    [Google Scholar]
  135. FatourosD.G. MartaR. Van der MerweM. Stabilisation of carbon nanotube suspensions. In: Carbon Nanotubes.Jenny Stanford Publishing201912210.1201/9780429066337‑1
    [Google Scholar]
  136. AnamikaJ. NikharV. LaxmikantG. PriyaS. SonalV. VyasS.P. Nanobiotechnological modules as molecular target tracker for the treatment and prevention of malaria: Options and opportunity.Drug Deliv. Transl. Res.20201041095111010.1007/s13346‑020‑00770‑z32378173
    [Google Scholar]
  137. LimaT.L.C. FeitosaR.C. Dos Santos-SilvaE. Improving encapsulation of hydrophilic chloroquine diphosphate into biodegradable nanoparticles: A promising approach against herpes virus simplex-1 infection.Pharmaceutics201810425510.3390/pharmaceutics1004025530513856
    [Google Scholar]
  138. TewabeA. AbateA. TamrieM. SeyfuA. Abdela SirajE. Targeted drug delivery-from magic bullet to nanomedicine: Principles, challenges, and future perspectives.J. Multidiscip. Healthc.2021141711172410.2147/JMDH.S31396834267523
    [Google Scholar]
  139. PatelR. KuwarU. DhoteN. Natural polymers as a carrier for the effective delivery of antineoplastic drugs.Curr. Drug Deliv.202421219321010.2174/156720182066623011217003536644864
    [Google Scholar]
  140. OnziG. GuterresS.S. PohlmannA.R. FrankL.A. Active targeting of nanocarriers. In: The ADME Encyclopedia: A Comprehensive Guide on Biopharmacy and Pharmacokinetics.ChamSpringer International Publishing2021113
    [Google Scholar]
  141. JainP. SatapathyT. PandeyR.K. Acaricidal activity and clinical safety of arecoline hydrobromide on calves infested with cattle tick Rhipicephalus microplus (Acari: Ixodidae).Vet. Parasitol.2021298May10949010.1016/j.vetpar.2021.10949034271319
    [Google Scholar]
  142. Martí Coma-CrosE. Investigation of branched and linear polymers as oral delivery systems of antimalarial drugs.University of Barcelona2019
    [Google Scholar]
  143. SinghS. ChitnisC.E. Molecular signaling involved in entry and exit of malaria parasites from host erythrocytes.Cold Spring Harb. Perspect. Med.2017710a02681510.1101/cshperspect.a02681528507195
    [Google Scholar]
  144. KekaniL.N. WitikaB.A. Current advances in nanodrug delivery systems for malaria prevention and treatment.Discov. Nano20231816610.1186/s11671‑023‑03849‑x37382765
    [Google Scholar]
  145. CieślakM. RyszawyD. PudełekM. Bioinspired bola-type peptide dendrimers inhibit proliferation and invasiveness of glioblastoma cells in a manner dependent on their structure and amphipathic properties.Pharmaceutics20201211110610.3390/pharmaceutics1211110633217976
    [Google Scholar]
  146. HuQ. WangY. XuL. ChenD. ChengL. Transferrin conjugated ph-and redox-responsive poly(Amidoamine) dendrimer conjugate as an efficient drug delivery carrier for cancer therapy.Int. J. Nanomedicine2020152751276410.2147/IJN.S23853632368053
    [Google Scholar]
  147. SahooR.K. GothwalA. RaniS. NakhateK.T. Ajazuddin, Gupta U. PEGylated dendrimer mediated delivery of bortezomib: Drug conjugation versus encapsulation.Int. J. Pharm.202058411938910.1016/j.ijpharm.2020.11938932380027
    [Google Scholar]
  148. SrinageshwarB. FlorendoM. ClarkB. A mixed-surface polyamidoamine dendrimer for in vitro and in vivo delivery of large plasmids.Pharmaceutics202012761910.3390/pharmaceutics1207061932635142
    [Google Scholar]
  149. ChuC.S. WhiteN.J. Management of relapsing Plasmodium vivax malaria.Expert Rev. Anti Infect. Ther.2016141088590010.1080/14787210.2016.122030427530139
    [Google Scholar]
  150. DawreS. PathakS. SharmaS. DevarajanP.V. Enhanced antimalalarial activity of a prolonged release in situ gel of arteether–lumefantrine in a murine model.Eur. J. Pharm. Biopharm.20181239510710.1016/j.ejpb.2017.11.00229122736
    [Google Scholar]
  151. OwonubiS.J. AderibigbeB.A. MukwevhoE. SadikuE.R. RayS.S. Characterization and in vitro release kinetics of antimalarials from whey protein-based hydrogel biocomposites.Int J Ind Chem201891395210.1007/s40090‑018‑0139‑2
    [Google Scholar]
  152. Santos-MagalhãesN.S. MosqueiraV.C.F. Nanotechnology applied to the treatment of malaria.Adv. Drug Deliv. Rev.2010624-556057510.1016/j.addr.2009.11.02419914313
    [Google Scholar]
  153. RamazaniA. KeramatiM. MalvandiH. DanafarH. Kheiri ManjiliH. Preparation and in vivo evaluation of anti-plasmodial properties of artemisinin-loaded PCL-PEG-PCL nanoparticles.Pharm. Dev. Technol.201823991192010.1080/10837450.2017.137278128851256
    [Google Scholar]
  154. RuwizhiN. MasekoR.B. AderibigbeB.A. Recent advances in the therapeutic efficacy of artesunate.Pharmaceutics202214350410.3390/pharmaceutics1403050435335880
    [Google Scholar]
  155. Thakkar MS.B. Combating malaria with nanotechnology-based targeted and combinatorial drug delivery strategies.Drug Deliv. Transl. Res.20166441442510.1007/s13346‑016‑0290‑227067712
    [Google Scholar]
  156. NosratiH. SalehiabarM. BagheriZ. RashidzadehH. DavaranS. DanafarH. Preparation, characterization, and evaluation of amino acid modified magnetic nanoparticles: Drug delivery and MRI contrast agent applications.Pharm. Dev. Technol.20182311561167
    [Google Scholar]
  157. Guasch-GirbauA. Fernàndez-BusquetsX. Review of the current landscape of the potential of nanotechnology for future malaria diagnosis, treatment, and vaccination strategies.Pharmaceutics20211312218910.3390/pharmaceutics1312218934959470
    [Google Scholar]
  158. FotoranW.L. MünteferingT. KleiberN. MirandaB.N.M. LiebauE. IrvineD.J. A multilamellar nanoliposome stabilized by interlayer hydrogen bonds increases antimalarial drug efficacy.Nanomedicine20192210209910.1016/j.nano.2019.102099
    [Google Scholar]
  159. ApolinárioA.C. SalataG.C. BiancoA.F.R. FukumoriC. LopesL.B. Opening the pandora’s box of nanomedicine: There is needed plenty of room at the bottom.Quim. Nova20204321222510.21577/0100‑4042.20170481
    [Google Scholar]
  160. RashidzadehH. Tabatabaei RezaeiS.J. AdyaniS.M. Recent advances in targeting malaria with nanotechnology-based drug carriers.Pharm. Dev. Technol.202126880782310.1080/10837450.2021.194856834190000
    [Google Scholar]
  161. KayentaoK. FloreyL.S. MihigoJ. Impact evaluation of malaria control interventions on morbidity and all-cause child mortality in Mali, 2000–2012.Malar. J.201817142410.1186/s12936‑018‑2573‑130428880
    [Google Scholar]
  162. HamelmannN.M. PaatsJ.W.D. Avalos-PadillaY. Single-chain polymer nanoparticles targeting the ookinete stage of malaria parasites.ACS Infect. Dis.202391566410.1021/acsinfecdis.2c0033636516858
    [Google Scholar]
  163. PanzariniE. MarianoS. CarataE. MuraF. RossiM. DiniL. Intracellular transport of silver and gold nanoparticles and biological responses: An update.Int. J. Mol. Sci.2018195130510.3390/ijms1905130529702561
    [Google Scholar]
  164. PestehchianN. VafaeiM.R. NematolahyP. VarshosazJ. YousefiH.A. BideV.Z. A new effective antiplasmodial compound: Nanoformulated pyrimethamine.J. Glob. Antimicrob. Resist.202020309315
    [Google Scholar]
  165. WangX. XieY. JiangN. Enhanced antimalarial efficacy obtained by targeted delivery of artemisinin in heparin-coated magnetic hollow mesoporous nanoparticles.ACS Appl. Mater. Interfaces202113128729710.1021/acsami.0c2007033356111
    [Google Scholar]
  166. a GandralaD. GuptaN. LavuA. NallapatiV.T. GuddattuV. SaravuK. Recurrence in Plasmodium vivax malaria: A prospective cohort study with long follow-up from a coastal region in South-West India.F1000 Res.202211279
    [Google Scholar]
  167. b WilsonK.L. A synthetic nanoparticle based vaccine approach targeting MSP4/5 is immunogenic and induces moderate protection against murine blood-stage malaria.Front. Immunol.201910331
    [Google Scholar]
  168. KumarR. RayP.C. DattaD. BansalG.P. AngovE. KumarN. Nanovaccines for malaria using Plasmodium falciparum antigen Pfs25 attached gold nanoparticles.Vaccine2015335064507110.1016/j.vaccine.2015.08.025
    [Google Scholar]
  169. Al-DeenF. XiangS. MaC. Magnetic nanovectors for the development of DNA blood-stage malaria vaccines.Nanomaterials2017723010.3390/nano702003028336871
    [Google Scholar]
  170. PowlesL. WilsonK.L. XiangS.D. Pullulan-coated iron oxide nanoparticles for blood-stage malaria vaccine delivery.Vaccines20208465110.3390/vaccines804065133153189
    [Google Scholar]
  171. AraújoR.V. SantosS.S. Igne FerreiraE. GiarollaJ. New advances in general biomedical applications of PAMAM dendrimers.Molecules20182311284910.3390/molecules2311284930400134
    [Google Scholar]
  172. DiasA.P. da Silva SantosS. da SilvaJ.V. Dendrimers in the context of nanomedicine.Int. J. Pharm.202057311881410.1016/j.ijpharm.2019.11881431759101
    [Google Scholar]
  173. ChauhanA.S. Dendrimers for drug delivery.Molecules201823493810.3390/molecules2304093829670005
    [Google Scholar]
  174. BhairamM. PrasadJ. VermaK. JainP. GidwaniB. Formulation of transdermal patch of Losartan Potassium & Glipizide for the treatment of hypertension & diabetes.Mater. Today Proc.202383596810.1016/j.matpr.2023.01.147
    [Google Scholar]
  175. ChisA.A. DobreaC. MorgovanC. Applications and limitations of dendrimers in biomedicine.Molecules20202517398210.3390/molecules2517398232882920
    [Google Scholar]
  176. RussierJ. GrillaudM. BiancoA. Elucidation of the cellular uptake mechanisms of polycationic HYDRAmers.Bioconjug. Chem.20152681484149310.1021/acs.bioconjchem.5b0027026046960
    [Google Scholar]
  177. JainP. SatapathyT. PandeyR.K. First report on efficacy of Citrus limetta seed oil in controlling cattle tick Rhipicephalus microplus in red Sahiwal calves.Vet. Parasitol.2021296June10950810.1016/j.vetpar.2021.10950834218174
    [Google Scholar]
  178. AkbarzadehA. KhalilovR. MostafaviE. AnnabiN. AbasiE. KafshdoozT. Role of dendrimers in advanced drug delivery and biomedical applications: A review.Exp. Oncol.20184017818310.31768/2312‑8852.2018.40(3):178‑183
    [Google Scholar]
  179. Varela-AramburuS. GhoshC. GoerdelerF. PriegueP. MoscovitzO. SeebergerP.H. Targeting and inhibiting plasmodium falciparum using ultra-small gold nanoparticles.ACS Appl. Mater. Interfaces20201239433804338710.1021/acsami.0c0907532875786
    [Google Scholar]
  180. AvitabileE. SenesN. D’AvinoC. The potential antimalarial efficacy of hemocompatible silver nanoparticles from Artemisia species against P. falciparum parasite.PLoS One2020159e023853210.1371/journal.pone.023853232870934
    [Google Scholar]
  181. MetwallyD.M. AlajmiR.A. El-KhadragyM.F. Al-QuraishyS. Silver nanoparticles biosynthesized with Salvia officinalis leaf exert protective effect on hepatic tissue injury induced by plasmodium chabaudi.Front. Vet. Sci.2021762066510.3389/fvets.2020.62066533614756
    [Google Scholar]
  182. DkhilM.A. Al-ShaebiE.M. Al-QuraishyS. Effect of indigofera oblongifolia on the hepatic oxidative status and expression of inflammatory and apoptotic genes during blood-stage murine malaria.Oxid. Med. Cell. Longev.201920191710.1155/2019/826486130838089
    [Google Scholar]
  183. PradhanS. MishraA. SahooS. PradhanS. BabuP.J. SinghY.D. Artemisinin based nanomedicine for therapeutic applications: Recent advances and challenges.Pharmacol. Res. Mod. Chin. Med.20222100064
    [Google Scholar]
  184. Gérard YaméogoJ.B. MazetR. WouessidjeweD. ChoisnardL. Pharmacokinetic study of intravenously administered artemisinin-loaded surface-decorated amphiphilic γ-cyclodextrin nanoparticles.Mater. Sci. Eng. C Mater Biol Appl2020106110281
    [Google Scholar]
  185. HeW. DuY. LiC. Dimeric artesunate-choline conjugate micelles coated with hyaluronic acid as a stable, safe and potent alternative anti-malarial injection of artesunate.Int. J. Pharm.202160912113810.1016/j.ijpharm.2021.12113834592395
    [Google Scholar]
  186. da Silva de BarrosA.O. PortilhoF.L. dos Santos MatosA.P. Preliminary studies on drug delivery of polymeric primaquine microparticles using the liver high uptake effect based on size of particles to improve malaria treatment.Mater. Sci. Eng. C202112811227510.1016/j.msec.2021.11227534474834
    [Google Scholar]
  187. WuK.W. SweeneyC. DudhipalaN. Primaquine loaded solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and nanoemulsion (NE): Effect of lipid Matrix and surfactant on drug entrapment, in vitro release, and ex vivo hemolysis.AAPS PharmSciTech202122724010.1208/s12249‑021‑02108‑534590195
    [Google Scholar]
  188. GomesF. RibeiroA.C. SanchesG.S. A nanochitosan-D-galactose formulation increases the accumulation of primaquine in the liver.Antimicrob. Agents Chemother.2024685e00915e0092310.1128/aac.00915‑2338517190
    [Google Scholar]
  189. MiatmokoA. NurjannahI. NehruN.F. Interactions of primaquine and chloroquine with PEGylated phosphatidylcholine liposomes.Sci. Rep.20211111242010.1038/s41598‑021‑91866‑034127730
    [Google Scholar]
  190. MarwahM. Narain SrivastavaP. MishraS. NagarsenkerM. Functionally engineered ‘hepato-liposomes’: Combating liver-stage malaria in a single prophylactic dose.Int. J. Pharm.2020587119710
    [Google Scholar]
  191. PillayE. KhodaijiS. BezuidenhoutB.C. LitshieM. CoetzerT.L. Evaluation of automated malaria diagnosis using the Sysmex XN-30 analyser in a clinical setting.Malar. J.20191811510.1186/s12936‑019‑2655‑830670023
    [Google Scholar]
  192. OderaP.A. OtienoG. OnyangoJ.O. NANOPARTICLE-BASED formulation of dihydroartemisinin-lumefantrine duo-drugs: Preclinical evaluation and enhanced antimalarial efficacy in a mouse model.Heliyon2024106e2686810.1016/j.heliyon.2024.e2686838501019
    [Google Scholar]
  193. SilvaM.G.D. CardosoJ.F. PerasoliF.B. Nanoemulsion composed of 10-(4,5-dihydrothiazol-2-yl)thio)decan-1-ol), a synthetic analog of 3-alkylpiridine marine alkaloid: Development, characterization, and antimalarial activity.Eur. J. Pharm. Sci.202015110538210.1016/j.ejps.2020.10538232470575
    [Google Scholar]
  194. JarominA. ParapiniS. BasilicoN. Azacarbazole n-3 and n-6 polyunsaturated fatty acids ethyl esters nanoemulsion with enhanced efficacy against Plasmodium falciparum.Bioact. Mater.2021641163117410.1016/j.bioactmat.2020.10.00433134609
    [Google Scholar]
  195. KigoziR.N. BwanikaJ. GoodwinE. Determinants of malaria testing at health facilities: The case of Uganda.Malar. J.202120145610.1186/s12936‑021‑03992‑934863172
    [Google Scholar]
  196. SalimM. KhanJ. RamirezG. Impact of ferroquine on the solubilization of artefenomel (OZ439) during in vitro lipolysis in milk and implications for oral combination therapy for malaria.Mol. Pharm.20191641658166810.1021/acs.molpharmaceut.8b0133330830789
    [Google Scholar]
  197. UmeyorC.E. ObachieO. ChukwukaR. AttamaA. Development insights of surface modified lipid nanoemulsions of dihydroartemisinin for malaria chemotherapy: Characterization, and in vivo antimalarial evaluation.Recent Pat. Biotechnol.201913214916510.2174/187220831366618120409531430514197
    [Google Scholar]
  198. GhoshA. BanerjeeT. Nanotized curcumin-benzothiophene conjugate: A potential combination for treatment of cerebral malaria.IUBMB Life202072122637265010.1002/iub.239433037778
    [Google Scholar]
  199. AgboC.P. UgwuanyiT.C. UgwuokeW.I. McConvilleC. AttamaA.A. OfokansiK.C. Intranasal artesunate-loaded nanostructured lipid carriers: A convenient alternative to parenteral formulations for the treatment of severe and cerebral malaria.J. Control. Release202133422423610.1016/j.jconrel.2021.04.02033894303
    [Google Scholar]
  200. GuoW. LiN. RenG. Murine pharmacokinetics and antimalarial pharmacodynamics of dihydroartemisinin trimer self-assembled nanoparticles.Parasitol. Res.202112082827283710.1007/s00436‑021‑07208‑634272998
    [Google Scholar]
  201. SiafakaP.I. Özcan BülbülE. OkurM.E. KarantasI.D. Üstündağ OkurN. The application of nanogels as efficient drug delivery platforms for dermal/transdermal delivery.Gels20239975310.3390/gels909075337754434
    [Google Scholar]
  202. DiniS. DouglasN.M. PoespoprodjoJ.R. The risk of morbidity and mortality following recurrent malaria in Papua, Indonesia: A retrospective cohort study.BMC Med.20201812810.1186/s12916‑020‑1497‑032075649
    [Google Scholar]
  203. LouisaM HawaP PurwantyastutiP MardliyatiE FreislebenH-J Primaquine-chitosan nanoparticle improves drug delivery to liver tissue in rats.Open Access Maced. J. Med. Sci.202210A1278128410.3889/oamjms.2022.10005
    [Google Scholar]
  204. DuanS. WangR. WangR. In vivo antimalarial activity and pharmacokinetics of artelinic acid-choline derivative liposomes in rodents.Parasitology20201471586410.1017/S003118201900130631556865
    [Google Scholar]
  205. AnjaniQ.K. Volpe-ZanuttoF. HamidK.A. Primaquine and chloroquine nano-sized solid dispersion-loaded dissolving microarray patches for the improved treatment of malaria caused by Plasmodium vivax.J. Control. Release202336138540110.1016/j.jconrel.2023.08.00937562555
    [Google Scholar]
  206. ElmiT. ArdestaniM.S. MotevalianM. Antiplasmodial effect of nano dendrimer G2 loaded with chloroquine in mice infected with plasmodium berghei.Acta Parasitol.202267129830810.1007/s11686‑021‑00459‑434398379
    [Google Scholar]
  207. KashyapA. KaurR. BaldiA. JainU.K. ChandraR. MadanJ. Chloroquine diphosphate bearing dextran nanoparticles augmented drug delivery and overwhelmed drug resistance in Plasmodium falciparum parasites.Int. J. Biol. Macromol.201811416116810.1016/j.ijbiomac.2018.03.10229572147
    [Google Scholar]
  208. Kojom FokoL.P. SinghV. Malaria in pregnancy in India: A 50-year bird’s eye.Front. Public Health202311115046610.3389/fpubh.2023.115046637927870
    [Google Scholar]
  209. LiS. TanH.Y. WangN. The role of oxidative stress and antioxidants in liver diseases.Int. J. Mol. Sci.20151611260872612410.3390/ijms16112594226540040
    [Google Scholar]
  210. Rios-ZertucheD. CarterK.H. HarrisK.P. Performance of passive case detection for malaria surveillance: Results from nine countries in Mesoamerica and the Dominican Republic.Malar. J.202120120810.1186/s12936‑021‑03645‑x33931091
    [Google Scholar]
  211. ThawerS.G. ChackyF. RungeM. Sub-national stratification of malaria risk in Mainland Tanzania: A simplified assembly of survey and routine data.Malar. J.202019117710.1186/s12936‑020‑03250‑432384923
    [Google Scholar]
  212. ZhangQ. AoZ. HuN. ZhuY. LiaoF. HanD. Neglected interstitial space in malaria recurrence and treatment.Nano Res.202013102869287810.1007/s12274‑020‑2946‑y32837694
    [Google Scholar]
  213. ChackyF. RungeM. RumishaS.F. Nationwide school malaria parasitaemia survey in public primary schools, the United Republic of Tanzania.Malar. J.201817145210.1186/s12936‑018‑2601‑130518365
    [Google Scholar]
  214. ZollerT. JunghanssT. KapaunA. Intravenous artesunate for severe malaria in travelers, Europe.Emerg. Infect. Dis.201117577177710.3201/eid1705.10122921529383
    [Google Scholar]
  215. ChavesJ.B. Portugal Tavares de MoraesB. Regina FerrariniS. Noé da FonsecaF. SilvaA.R. Gonçalves-de-AlbuquerqueC.F. Potential of nanoformulations in malaria treatment.Front. Pharmacol.20221399930010.3389/fphar.2022.99930036386185
    [Google Scholar]
  216. Martí Coma-CrosE. BioscaA. LanteroE. Antimalarial activity of orally administered curcumin incorporated in Eudragit®-containing liposomes.Int. J. Mol. Sci.2018195136110.3390/ijms1905136129734652
    [Google Scholar]
  217. Martí Coma-CrosE. LancelotA. San AnselmoM. Micelle carriers based on dendritic macromolecules containing bis-MPA and glycine for antimalarial drug delivery.Biomater. Sci.2019741661167410.1039/C8BM01600C30741274
    [Google Scholar]
  218. IsmailM. DuY. LingL. LiX. Artesunate-heparin conjugate based nanocapsules with improved pharmacokinetics to combat malaria.Int. J. Pharm.201956216217110.1016/j.ijpharm.2019.03.03130902709
    [Google Scholar]
  219. MichelsL.R. MacielT.R. NakamaK.A. Effects of surface characteristics of polymeric nanocapsules on the pharmacokinetics and efficacy of antimalarial quinine.Int. J. Nanomedicine201914101651017810.2147/IJN.S22791432021159
    [Google Scholar]
  220. Moreira SouzaA.C. Grabe-GuimarãesA. CruzJ.S. Mechanisms of artemether toxicity on single cardiomyocytes and protective effect of nanoencapsulation.Br. J. Pharmacol.2020177194448446310.1111/bph.1518632608017
    [Google Scholar]
  221. KathpaliaH. JuvekarS. MohanrajK. ApsingekarM. ShidhayeS. Investigation of pre-clinical pharmacokinetic parameters of atovaquone nanosuspension prepared using a pH-based precipitation method and its pharmacodynamic properties in a novel artemisinin combination.J. Glob. Antimicrob. Resist.20202224825610.1016/j.jgar.2020.02.01832119990
    [Google Scholar]
  222. Volpe-ZanuttoF. FerreiraL.T. PermanaA.D. KirkbyM. ParedesA.J. VoraL.K. Artemether and lumefantrine dissolving microneedle patches with improved pharmacokinetic performance and antimalarial efficacy in mice infected with Plasmodium yoelii.J. Control. Release2021333298315
    [Google Scholar]
  223. GolenserJ. SalaymehN. HigaziA.A. Treatment of experimental cerebral malaria by slow release of artemisone from injectable pasty formulation.Front. Pharmacol.20201184684910.3389/fphar.2020.0084632595499
    [Google Scholar]
  224. UrbánP. EstelrichJ. AdevaA. CortésA. Fernàndez-BusquetsX. Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors.Nanoscale Res. Lett.20116162010.1186/1556‑276X‑6‑62022151840
    [Google Scholar]
  225. KaurR. GorkiV. KatareO.P. DhingraN. ChauhanM. KaurR. Improved biopharmaceutical attributes of lumefantrine using choline mimicking drug delivery system: Preclinical investigation on NK-65 P. Berghei murine model.Expert Opin. Drug Deliv.20211815331552
    [Google Scholar]
  226. NnamaniP.O. UgwuA.A. NnadiO.H. Formulation and evaluation of transdermal nanogel for delivery of artemether.Drug Deliv. Transl. Res.20211141655167410.1007/s13346‑021‑00951‑433742415
    [Google Scholar]
  227. Boateng-MarfoY. DongY. NgW.K. LinH.S. Artemetherloaded zein nanoparticles: An innovative intravenous dosage form for the management of severe malaria.Int. J. Mol. Sci.2021223114110.3390/ijms2203114133498911
    [Google Scholar]
  228. RistrophK.D. FengJ. McManusS.A. Spray drying OZ439 nanoparticles to form stable, water-dispersible powders for oral malaria therapy.J. Transl. Med.20191719710.1186/s12967‑019‑1849‑830902103
    [Google Scholar]
  229. ZwayenS. ZwainT. SinghK.K. Targeted drug delivery for antimalarial therapy. In: Drug Development for Malaria.Wiley20228310410.1002/9783527830589.ch4
    [Google Scholar]
  230. BioscaA. DirscherlL. MolesE. ImperialS. Fernàndez-BusquetsX. An immunopegliposome for targeted antimalarial combination therapy at the nanoscale.Pharmaceutics201911734110.3390/pharmaceutics1107034131315185
    [Google Scholar]
  231. ManconiM. MancaM.L. Escribano-FerrerE. Nanoformulation of curcumin-loaded eudragit-nutriosomes to counteract malaria infection by a dual strategy: Improving antioxidant intestinal activity and systemic efficacy.Int. J. Pharm.2019556828810.1016/j.ijpharm.2018.11.07330528634
    [Google Scholar]
  232. JainA. JainP. MathurS. PariharD.K. Curcuma species DNA fingerprinting of wild and cultivated genotypes from different agroclimatic zones.Pharmacol Res Zhongguo Xiandai Zhongyao202412100474
    [Google Scholar]
  233. GuptaA. JainP. NagoriK. AdnanM. Ajazuddin. Treatment strategies for psoriasis using flavonoids from traditional Chinese medicine.Pharmacol Res Zhongguo Xiandai Zhongyao202412100463
    [Google Scholar]
  234. JawaharN. BaruahU.K. SinghV. Co-delivery of chloroquine phosphate and azithromycin nanoparticles to overcome drug resistance in malaria through intracellular targeting.J Pharm Sci Res2019113340
    [Google Scholar]
  235. PrasadJ. NetamA.K. SatapathyT. Prakash RaoS. JainP. Anti-hyperlipidemic and Antioxidant Activities of a Combination of Terminalia Arjuna and Commiphora Mukul on Experimental Animals BT - Advances in Biomedical Engineering and Technology. RizvanovA.A. SinghB.K. GanasalaP. SingaporeSpringer Singapore2021175188
    [Google Scholar]
  236. RashidzadehH. SalimiM. SadighianS. RostamizadehK. RamazaniA. In vivo antiplasmodial activity of curcumin-loaded nanostructured lipid carriers.Curr. Drug Deliv.2019161092393010.2174/156720181666619102912103631663477
    [Google Scholar]
  237. AbazariM. GhaffariA. RashidzadehH. Momeni badeleh S, Maleki Y. Current status and future outlook of nano-based systems for burn wound management.J. Biomed. Mater. Res. B Appl. Biomater.202010851934195210.1002/jbm.b.3453531886606
    [Google Scholar]
  238. BagheriA.R. GolenserJ. GreinerA. Controlled and manageable release of antimalarial Artemisone by encapsulation in biodegradable carriers.Eur. Polym. J.202012910962510.1016/j.eurpolymj.2020.109625
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128321468240828103439
Loading
/content/journals/cpd/10.2174/0113816128321468240828103439
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bioavailability; drug delivery; herbal drugs; Malaria; primaquine; resistance
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test