Skip to content
2000
Volume 31, Issue 3
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Bioelectronic medicines aim to diagnose and treat a wide range of illnesses and ailments, including cancer, rheumatoid arthritis, inflammatory bowel disease, obesity, diabetes, asthma, paralysis, blindness, bleeding, ischemia, organ transplantation, cardiovascular disease, and neurodegenerative diseases. The focus of bioelectronic medicine is on electrical signaling of the nervous system. Understanding the nervous system's regulatory roles and developing technologies that record, activate, or inhibit neural signaling to influence particular biological pathways.

Objective

Bioelectronic medicine is an emerging therapeutic option with the interconnection between molecular medicine, neuroscience, and bioengineering. The creation of nerve stimulating devices that communicate with both the central and peripheral nervous systems has the potential to completely transform how we treat disorders. Although early clinical applications have been largely effective across entire nerves, the ultimate goal is to create implantable, miniature closed-loop systems that can precisely identify and modulate individual nerve fibers to treat a wide range of disorders.

Methodology

The data bases such as PubMed, and Clinicaltrial.gov.in were searched for scientific research, review and clinical trials on bioelectronic medicine.

Conclusion

The field of bioelectronic medicine is trending at present. In recent years, researchers have extended the field’s applications, undertaken promising clinical trials, and begun delivering therapies to patients, thus creating the groundwork for significant future advancements. Countries and organizations must collaborate across industries and regions to establish an atmosphere and guidelines that foster the advancement of the field and the fulfillment of its prospective advantages.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128326489240827100537
2024-09-20
2025-04-02
Loading full text...

Full text loading...

References

  1. JosephS. CostanzoM.R. A novel therapeutic approach for central sleep apnea: Phrenic nerve stimulation by the Remedē® System.Int. J. Cardiol.2016206Suppl.S28S3410.1016/j.ijcard.2016.02.12126964705
    [Google Scholar]
  2. ZannadF. De FerrariG.M. TuinenburgA.E. WrightD. BrugadaJ. ButterC. KleinH. StolenC. MeyerS. SteinK.M. RamuzatA. SchubertB. DaumD. NeuzilP. BotmanC. CastelM.A. D’OnofrioA. SolomonS.D. WoldN. RubleS.B. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: Results of the Neural Cardiac Therapy for Heart Failure (NECTAR-HF) randomized controlled trial.Eur. Heart J.201536742543310.1093/eurheartj/ehu34525176942
    [Google Scholar]
  3. HaraS.A. KimB.J. KuoJ.T.W. LeeC.D. MengE. PikovV. Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes.J. Neural Eng.201613606602010.1088/1741‑2560/13/6/06602027819256
    [Google Scholar]
  4. YiW. ChenC. FengZ. XuY. ZhouC. MasurkarN. CavanaughJ. Ming-Cheng ChengM. A flexible and implantable microelectrode arrays using high-temperature grown vertical carbon nanotubes and a biocompatible polymer substrate.Nanotechnology2015261212530110.1088/0957‑4484/26/12/12530125742874
    [Google Scholar]
  5. SahniV. KesslerJ.A. Stem cell therapies for spinal cord injury.Nat. Rev. Neurol.20106736337210.1038/nrneurol.2010.7320551948
    [Google Scholar]
  6. OnoseG. GrozeaC. AnghelescuA. DaiaC. SinescuC.J. CiureaA.V. SpircuT. MireaA. AndoneI. SpânuA. PopescuC. MihăescuA-S. FazliS. DanóczyM. PopescuF. On the feasibility of using motor imagery EEG-based brain–computer interface in chronic tetraplegics for assistive robotic arm control: A clinical test and long-term post-trial follow-up.Spinal Cord201250859960810.1038/sc.2012.1422410845
    [Google Scholar]
  7. ChaoZ.C. NagasakaY. FujiiN. Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkey.Front. Neuroeng.20103310.3389/fneng.2010.0000320407639
    [Google Scholar]
  8. ShobeJ.L. ClaarL.D. ParhamiS. BakhurinK.I. MasmanidisS.C. Brain activity mapping at multiple scales with silicon microprobes containing 1,024 electrodes.J. Neurophysiol.201511432043205210.1152/jn.00464.201526133801
    [Google Scholar]
  9. KoopmanF.A. StoofS.P. StraubR.H. van MaanenM.A. VervoordeldonkM.J. TakP.P. Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis.Mol. Med.2011179-1093794810.2119/molmed.2011.0006521607292
    [Google Scholar]
  10. TangR PeiW ChenS ZhaoH ChenY HanY Fabrication of strongly adherent platinum black coatings on microelectrodes array.Sci China Inform Sci20145711010.1007/s11432‑013‑4825‑6
    [Google Scholar]
  11. YuH. YangY.H. RajaiahR. MoudgilK.D. Nicotine-induced differential modulation of autoimmune arthritis in the Lewis rat involves changes in interleukin-17 and anti–cyclic citrullinated peptide antibodies.Arthritis Rheum.201163498199110.1002/art.3021921305506
    [Google Scholar]
  12. LuY. LyuH. RichardsonA.G. LucasT.H. KuzumD. Flexible neural electrode array based-on porous graphene for cortical microstimulation and sensing.Sci. Rep.2016613352610.1038/srep3352627642117
    [Google Scholar]
  13. TheF.O. CailottoC. van der VlietJ. de JongeW.J. BenninkR.J. BuijsR.M. BoeckxstaensG.E. Central activation of the cholinergic anti-inflammatory pathway reduces surgical inflammation in experimental post-operative ileus.Br. J. Pharmacol.201116351007101610.1111/j.1476‑5381.2011.01296.x21371006
    [Google Scholar]
  14. PlachtaD.T.T. GierthmuehlenM. CotaO. EspinosaN. BoeserF. HerreraT.C. StieglitzT. ZentnerJ. Blood pressure control with selective vagal nerve stimulation and minimal side effects.J. Neural Eng.201411303601110.1088/1741‑2560/11/3/03601124809832
    [Google Scholar]
  15. SevcencuC NielsenTN StruijkJJ A neural blood pressure marker for bioelectronic medicines for treatment of hypertension.Biosens Bioelectron2017981610.1016/j.bios.2017.06.031
    [Google Scholar]
  16. SakaiR. TanakaM. NankiT. WatanabeK. YamazakiH. KoikeR. NagasawaH. AmanoK. SaitoK. TanakaY. ItoS. SumidaT. IhataA. IshigatsuboY. AtsumiT. KoikeT. NakajimaA. TamuraN. FujiiT. DobashiH. TohmaS. SugiharaT. UekiY. HashiramotoA. KawakamiA. HaginoN. MiyasakaN. HarigaiM. Drug retention rates and relevant risk factors for drug discontinuation due to adverse events in rheumatoid arthritis patients receiving anticytokine therapy with different target molecules.Ann. Rheum. Dis.201271111820182610.1136/annrheumdis‑2011‑20083822504558
    [Google Scholar]
  17. OldaniL. Dell’OssoB. AltamuraA.C. Long-term effects of vagus nerve stimulation in treatment-resistant depression: A 5-year follow up case series.Brain Stimul.2015861229123010.1016/j.brs.2015.08.00726371990
    [Google Scholar]
  18. JangH.S. ChoK.H. HiedaK. KimJ.H. MurakamiG. AbeS. MatsubaraA. Composite nerve fibers in the hypogastric and pelvic splanchnic nerves: An immunohistochemical study using elderly cadavers.Anat. Cell Biol.201548211412310.5115/acb.2015.48.2.11426140222
    [Google Scholar]
  19. BoutonC. Cracking the neural code, treating paralysis and the future of bioelectronic medicine.J. Intern. Med.20172821374510.1111/joim.1261028419590
    [Google Scholar]
  20. HuangS.H. LinS.P. ChenJ.J.J. In vitro and in vivo characterization of SU-8 flexible neuroprobe: From mechanical properties to electrophysiological recording.Sens. Actuators A Phys.201421625726510.1016/j.sna.2014.06.005
    [Google Scholar]
  21. EganB.M. ZhaoY. AxonR.N. BrzezinskiW.A. FerdinandK.C. Uncontrolled and apparent treatment resistant hypertension in the United States, 1988 to 2008.Circulation201112491046105810.1161/CIRCULATIONAHA.111.03018921824920
    [Google Scholar]
  22. GerlagD.M. NorrisJ.M. TakP.P. Towards prevention of autoantibody-positive rheumatoid arthritis: From lifestyle modification to preventive treatment.Rheumatology (Oxford)201655460761410.1093/rheumatology/kev34726374913
    [Google Scholar]
  23. VenkatramanS. CarmenaJ.M. Active sensing of target location encoded by cortical microstimulation.IEEE Trans. Neural Syst. Rehabil. Eng.201119331732410.1109/TNSRE.2011.211744121382769
    [Google Scholar]
  24. Liang Guo GuvanasenG.S. Xi Liu TuthillC. NicholsT.R. DeWeerthS.P. A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing.IEEE Trans. Biomed. Circuits Syst.20137111010.1109/TBCAS.2012.219293223853274
    [Google Scholar]
  25. RogerY. SchäckL.M. KorolevaA. NoackS. KurselisK. KrettekC. ChichkovB. LenarzT. WarneckeA. HoffmannA. Grid-like surface structures in thermoplastic polyurethane induce anti-inflammatory and anti-fibrotic processes in bone marrow-derived mesenchymal stem cells.Colloids Surf. B Biointerfaces201614810411510.1016/j.colsurfb.2016.06.02427591942
    [Google Scholar]
  26. ChristensenM.B. WarkH.A.C. HutchinsonD.T. A histological analysis of human median and ulnar nerves following implantation of Utah slanted electrode arrays.Biomaterials20167723524210.1016/j.biomaterials.2015.11.01226606449
    [Google Scholar]
  27. AydemirM. YazisizV. BasariciI. AvciA.B. ErbasanF. BelgiA. TerziogluE. Cardiac autonomic profile in rheumatoid arthritis and systemic lupus erythematosus.Lupus201019325526110.1177/096120330935154020015916
    [Google Scholar]
  28. ZarghamM. GulakP.G. Fully integrated on-chip coil in 0.13 μm CMOS for wireless power transfer through biological media.IEEE Trans. Biomed. Circuits Syst.20159225927110.1109/TBCAS.2014.232831825099630
    [Google Scholar]
  29. van MaanenM.A. PapkeR.L. KoopmanF.A. KoepkeJ. BevaartL. ClarkR. LamppuD. ElbaumD. LaRosaG.J. TakP.P. VervoordeldonkM.J. Two novel α7 nicotinic acetylcholine receptor ligands: In vitro properties and their efficacy in collagen-induced arthritis in mice.PLoS One2015101e011622710.1371/journal.pone.011622725617631
    [Google Scholar]
  30. SevcencuC. NielsenT.N. KjærgaardB. StruijkJ.J. A respiratory marker derived from left vagus nerve signals recorded with implantable cuff electrodes.Neuromodulation201821326927510.1111/ner.1263028699322
    [Google Scholar]
  31. PavlovV.A. ChavanS.S. TraceyK.J. Bioelectronic Medicine: From preclinical studies on the inflammatory reflex to new approaches in disease diagnosis and treatment.Cold Spring Harb. Perspect. Med.2020103a03414010.1101/cshperspect.a03414031138538
    [Google Scholar]
  32. Pinho-RibeiroF.A. BaddalB. HaarsmaR. O’SeaghdhaM. YangN.J. BlakeK.J. PortleyM. VerriW.A. DaleJ.B. WesselsM.R. ChiuI.M. Blocking neuronal signaling to immune cells treats streptococcal invasive infection.Cell2018173510831097.e2210.1016/j.cell.2018.04.00629754819
    [Google Scholar]
  33. BonazB. SinnigerV. PellissierS. Vagus nerve stimulation: A new promising therapeutic tool in inflammatory bowel disease.J. Intern. Med.20172821466310.1111/joim.1261128421634
    [Google Scholar]
  34. KoopmanF.A. ChavanS.S. MiljkoS. GrazioS. SokolovicS. SchuurmanP.R. MehtaA.D. LevineY.A. FaltysM. ZitnikR. TraceyK.J. TakP.P. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis.Proc. Natl. Acad. Sci. USA2016113298284828910.1073/pnas.160563511327382171
    [Google Scholar]
  35. HagemanK.N. KalayjianZ.K. TejadaF. ChiangB. RahmanM.A. FridmanG.Y. DaiC. PouliquenP.O. GeorgiouJ. Della SantinaC.C. AndreouA.G. A CMOS neural interface for a multichannel vestibular prosthesis.IEEE Trans. Biomed. Circuits Syst.201610226927910.1109/TBCAS.2015.240979725974945
    [Google Scholar]
  36. BakrisG.L. NadimM.K. HallerH. LovettE.G. SchaferJ.E. BisognanoJ.D. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: Results of long-term follow-up in the Rheos Pivotal Trial.J. Am. Soc. Hypertens.20126215215810.1016/j.jash.2012.01.00322341199
    [Google Scholar]
  37. GerlagD.M. RazaK. van BaarsenL.G.M. BrouwerE. BuckleyC.D. BurmesterG.R. GabayC. CatrinaA.I. CopeA.P. CornelisF. DahlqvistS.R. EmeryP. EyreS. FinckhA. GayS. HazesJ.M. van der Helm-van MilA. HuizingaT.W.J. KlareskogL. KvienT.K. LewisC. MacholdK.P. RönnelidJ. SchaardenburgD. SchettG. SmolenJ.S. ThomasS. WorthingtonJ. TakP.P. EULAR recommendations for terminology and research in individuals at risk of rheumatoid arthritis: Report from the Study Group for Risk Factors for Rheumatoid Arthritis.Ann. Rheum. Dis.201271563864110.1136/annrheumdis‑2011‑20099022387728
    [Google Scholar]
  38. van DongenM.N. SerdijnW.A. Does a coupling capacitor enhance the charge balance during neural stimulation? An empirical study.Med. Biol. Eng. Comput.20165419310110.1007/s11517‑015‑1312‑926018756
    [Google Scholar]
  39. CaravacaA.S. TsaavaT. GoldmanL. SilvermanH. RiggottG. ChavanS.S. BoutonC. TraceyK.J. DesimoneR. BoydenE.S. SohalH.S. OlofssonP.S. A novel flexible cuff- like microelectrode for dual purpose, acute and chronic electrical interfacing with the mouse cervical vagus nerve.J. Neural Eng.201714606600510.1088/1741‑2552/aa7a4228628030
    [Google Scholar]
  40. Martín-MartínezM.A. González-JuanateyC. CastañedaS. LlorcaJ. Ferraz-AmaroI. Fernández-GutiérrezB. Díaz-GonzálezF. González-GayM.A. Recommendations for the management of cardiovascular risk in patients with rheumatoid arthritis: Scientific evidence and expert opinion.Semin. Arthritis Rheum.20144411810.1016/j.semarthrit.2014.01.00224560170
    [Google Scholar]
  41. NortonA. Nerve zap eased rheumatoid arthritis in small study.2016Available from: https://consumer.healthday.com/bone-and-joint-information-4/rheumatoid-arthritis-news-43/nerve-zap-eased-rheumatoid-arthritis-in-small study-712792.html
  42. CalderP.C. BoscoN. Bourdet-SicardR. CapuronL. DelzenneN. DoréJ. FranceschiC. LehtinenM.J. ReckerT. SalvioliS. VisioliF. Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition.Ageing Res. Rev.2017409511910.1016/j.arr.2017.09.00128899766
    [Google Scholar]
  43. van MaanenM.A. VervoordeldonkM.J. TakP.P. The cholinergic anti-inflammatory pathway: Towards innovative treatment of rheumatoid arthritis.Nat. Rev. Rheumatol.20095422923210.1038/nrrheum.2009.3119337288
    [Google Scholar]
  44. Agarwal A, Baur A, Dewhurst M, Ruby T, Sarraf P, Sim S. Aging with tech support-the promise of new technologies for longer and healthier lives. Report by McKinsey & Company2016
  45. DARPAElectrical Prescriptions (ElectRx) (Archived).2016Available from: https://www.darpa.mil/program/electrical-prescriptions
  46. OlofssonP.S. LevineY.A. CaravacaA. ChavanS.S. PavlovV.A. FaltysM. TraceyK.J. Single-Pulse and unidirectional electrical activation of the cervical vagus nerve reduces tumor necrosis factor in endotoxemia.Bioelectron. Med.201521374210.15424/bioelectronmed.2015.00006
    [Google Scholar]
  47. BenjaminM.M. SorknessC.A. Practical and ethical considerations in the management of pacemaker and implantable cardiac defibrillator devices in terminally ill patients.Proc. Bayl. Univ. Med. Cent.201730215716010.1080/08998280.2017.1192956628405065
    [Google Scholar]
  48. DeliG. BosnyakE. PuschG. KomolyS. FeherG. Diabetic neuropathies: Diagnosis and management.Neuroendocrinology201398426728010.1159/00035872824458095
    [Google Scholar]
  49. BirminghamK GradinaruV AnikeevaP GrillWM PikovV McLaughlinB Bioelectronic medicines: A research roadmap.Nat Rev Drug Discov.201413639940010.1038/nrd4351
    [Google Scholar]
  50. NicoliniC. From neural chip and engineered biomolecules to bioelectronic devices: An overview.Biosensors Bioelectron.1995101-210512710.1016/0956‑5663(95)96799‑5
    [Google Scholar]
  51. EternaTM SCS System. Available from: https://www.neuromodulation.abbott/us/en/chronic-pain/how-neurostimulation-treats/eterna-scs-system.html
  52. LeeS. PehW.Y.X. WangJ. YangF. HoJ.S. ThakorN.V. YenS.C. LeeC. Toward bioelectronic medicine-neuromodulation of small peripheral nerves using flexible neural clip.Adv. Sci. (Weinh.)2017411170014910.1002/advs.20170014929201608
    [Google Scholar]
  53. DiABETES UKClosed loop systems (artificial pancreas).2021Available from: https://www.diabetes.org.uk/guide-to-diabetes/diabetes-technology/closed-loop-systems#available
  54. MusaevA.V. GuseinovaS.G. ImamverdievaS.S. The use of pulsed electromagnetic fields with complex modulation in the treatment of patients with diabetic polyneuropathy.Neurosci. Behav. Physiol.200333874575210.1023/A:102518491249414635988
    [Google Scholar]
  55. TorrãoJ.N.D. dos SantosM.P.S. FerreiraJ.A.F. Instrumented knee joint implants: Innovations and promising concepts.Expert Rev. Med. Devices201512557158410.1586/17434440.2015.106811426202322
    [Google Scholar]
  56. TrepczynskiA. MoewisP. DammP. SchützP. DymkeJ. HommelH. TaylorW.R. DudaG.N. Dynamic knee joint line orientation is not predictive of Tibio-Femoral load distribution during walking.Front. Bioeng. Biotechnol.2021975471510.3389/fbioe.2021.75471534820363
    [Google Scholar]
  57. ZimmermannU. EbnerC. SuY. BenderT. BansodY.D. MittelmeierW. BaderR. van RienenU. Numerical simulation of electric field distribution around an instrumented total hip stem.Appl. Sci. (Basel) 20211115667710.3390/app11156677
    [Google Scholar]
  58. VidalJ.V. SlabovV. KholkinA.L. dos SantosM.P.S. Hybrid triboelectric-electromagnetic nanogenerators for mechanical energy harvesting: A review.Nano-Micro Lett.202113119910.1007/s40820‑021‑00713‑434542731
    [Google Scholar]
  59. PalanisamyP. AlamM. LiS. ChowS.K.H. ZhengY.P. Low-intensity pulsed ultrasound stimulation for bone fractures healing.J. Ultrasound Med.202241354756310.1002/jum.1573833949710
    [Google Scholar]
  60. McGroryB.J. EtkinC.D. LewallenD.G. Comparing contemporary revision burden among hip and knee joint replacement registries.Arthroplast. Today201622838610.1016/j.artd.2016.04.00328326404
    [Google Scholar]
  61. MohammadbagherpoorH IerymenkoP CraverMH CarlsonJ DauschD GrantE An implantable wireless inductive sensor system designed to monitor prosthesis motion in total joint replacement surgery.IEEE Transac Biomed Eng20206761718172610.1109/TBME.2019.2943808
    [Google Scholar]
  62. WonS.M. SongE. ReederJ.T. RogersJ.A. Emerging modalities and implantable technologies for neuromodulation.Cell2020181111513510.1016/j.cell.2020.02.05432220309
    [Google Scholar]
  63. BassiGS KanashiroA CoimbraNC TerrandoN MaixnerW UlloaL Anatomical and clinical implications of vagal modulation of the spleen.Neurosci Biobehav Rev202011236337310.1016/j.neubiorev.2020.02.011
    [Google Scholar]
  64. CamaraR. GriessenauerC.J. Anatomy of the vagus nerve.Nerves and Nerve Injuries Vol 1: History, Embryology, Anatomy, Imaging, and DiagnosticsCambridge, MassachusettsAcademic Press201510.1016/B978‑0‑12‑410390‑0.00028‑7
    [Google Scholar]
  65. MarmersteinJ.T. McCallumG.A. DurandD.M. Direct measurement of vagal tone in rats does not show correlation to HRV.Sci. Rep.2021111121010.1038/s41598‑020‑79808‑833441733
    [Google Scholar]
  66. BonazS SinnigerS HoffmannN ClarençonS MathieuN DantzerS Chronic vagus nerve stimulation in Crohn's disease: A 6-month follow-up pilot study.Neurogastroenterol Motil201626694810.1111/nmo.12792
    [Google Scholar]
  67. ButtM.F. AlbusodaA. FarmerA.D. AzizQ. The anatomical basis for transcutaneous auricular vagus nerve stimulation.J. Anat.2020236458861110.1111/joa.1312231742681
    [Google Scholar]
  68. GoY.Y. JuW.M. LeeC.M. ChaeS.W. SongJ.J. Different transcutaneous auricular vagus nerve stimulation parameters modulate the anti-inflammatory effects on Lipopolysaccharide-induced acute inflammation in mice.Biomedicines202210224710.3390/biomedicines1002024735203459
    [Google Scholar]
  69. LoftusE.V.Jr Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences.Gastroenterology200412661504151710.1053/j.gastro.2004.01.06315168363
    [Google Scholar]
  70. OlofssonP.S. TraceyK.J. Bioelectronic medicine: Technology targeting molecular mechanisms for therapy.J. Intern. Med.201728213410.1111/joim.1262428621493
    [Google Scholar]
  71. WienkeC GrueschowM HaghikiaA ZaehleT. Phasic, event-related transcutaneous auricular vagus nerve stimulation modifies behavioral, pupillary, and low-frequency oscillatory power responses.J Neurosci202343366306631910.1523/JNEUROSCI.0452‑23.2023
    [Google Scholar]
  72. WallinM.T. CulpepperW.J. NicholsE. BhuttaZ.A. GebrehiwotT.T. HayS.I. KhalilI.A. KrohnK.J. LiangX. NaghaviM. MokdadA.H. NixonM.R. ReinerR.C. SartoriusB. SmithM. Topor-MadryR. WerdeckerA. VosT. FeiginV.L. MurrayC.J.L. Global, regional, and national burden of multiple sclerosis 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016.Lancet Neurol.201918326928510.1016/S1474‑4422(18)30443‑530679040
    [Google Scholar]
  73. SchwidS. PanitchH. Full results of the Evidence of Interferon Dose-response-European North American Comparative Efficacy (EVIDENCE) study: A multicenter, randomized, assessor-blinded comparison of low-dose weekly versus high-dose, high-frequency interferon β-1a for relapsing multiple sclerosis.Clin. Ther.20072992031204810.1016/j.clinthera.2007.09.02518035202
    [Google Scholar]
  74. MichelsR.E. de FransescoM. MahajanK. HengstmanG.J.D. SchiffersK.M.H. BudhiaS. HartyG. KrolM. Cost effectiveness of cladribine tablets for the treatment of Relapsing-Remitting Multiple sclerosis in the Netherlands.Appl. Health Econ. Health Policy201917685787310.1007/s40258‑019‑00500‑831444659
    [Google Scholar]
  75. ChenJ. TaylorB.V. BlizzardL. SimpsonS.Jr PalmerA.J. van der MeiI.A.F. Effects of multiple sclerosis disease-modifying therapies on employment measures using patient-reported data.J. Neurol. Neurosurg. Psychiatry201889111200120710.1136/jnnp‑2018‑31822829921609
    [Google Scholar]
  76. HernandezL. O’DonnellM. PostmaM. Modeling approaches in cost-effectiveness analysis of disease-modifying therapies for relapsing-remitting multiple sclerosis: An updated systematic review and recommendations for future economic evaluations.PharmacoEconomics201836101223125210.1007/s40273‑018‑0683‑929971666
    [Google Scholar]
  77. AnderssonU. TraceyK.J. Reflex principles of immunological homeostasis.Annu. Rev. Immunol.201230131333510.1146/annurev‑immunol‑020711‑07501522224768
    [Google Scholar]
  78. BernikTR FriedmanSG OchaniM DiRaimoR UlloaL YangH Pharmacological stimulation of the cholinergic antiinflammatory pathway.J Exp Med20021956781810.1084/jem.20011714
    [Google Scholar]
  79. MoulderS.L. YakesF.M. MuthuswamyS.K. BiancoR. SimpsonJ.F. ArteagaC.L. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo.Cancer Res.200161248887889511751413
    [Google Scholar]
  80. GohringJ.T. DaleP.S. FanX. Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor.Sens. Actuators B Chem.2010146122623010.1016/j.snb.2010.01.067
    [Google Scholar]
  81. MillerC.J. DavidsonL.A. The interplay between cell signalling and mechanics in developmental processes.Nat. Rev. Genet.2013141073374410.1038/nrg351324045690
    [Google Scholar]
  82. TuszynskiJ. TilliT.M. LevinM. Ion channel and neurotransmitter modulators as electroceutical approaches to the control of cancer.Curr. Pharm. Des.201723324827484110.2174/138161282366617053010583728554310
    [Google Scholar]
  83. ZhuK TakadaY NakajimaK SunY JiangJ ZhangY Expression of integrins to control migration direction of electrotaxis.FASEB J20193382657R10.1096/fj.201802657R
    [Google Scholar]
  84. AcerboE. JegouA. LuffC. DzialeckaP. BotzanowskiB. MisseyF. NgomI. LagardeS. BartolomeiF. CassaraA. NeufeldE. JirsaV. CarronR. GrossmanN. WilliamsonA. Focal non-invasive deep-brain stimulation with temporal interference for the suppression of epileptic biomarkers.Front. Neurosci.20221694522110.3389/fnins.2022.94522136061593
    [Google Scholar]
  85. SchwartzA.R. JacobowitzO. EiseleD.W. MickelsonS.A. MillerM.B. OlivenA. CertalV. HoppM.L. WinslowD.H. HuntleyT.C. NachlasN.E. PhamL.V. GillespieM.B. WeeksB.H. LovettE.G. ShenJ. MalhotraA. MaurerJ.T. Targeted hypoglossal nerve stimulation for patients with obstructive sleep apnea.JAMA Otolaryngol. Head Neck Surg.2023149651252010.1001/jamaoto.2023.016137022679
    [Google Scholar]
  86. ViolanteI.R. AlaniaK. CassaràA.M. NeufeldE. AcerboE. CarronR. WilliamsonA. KurtinD.L. RhodesE. HampshireA. KusterN. BoydenE.S. Pascual-LeoneA. GrossmanN. Non-invasive temporal interference electrical stimulation of the human hippocampus.Nat. Neurosci.202326111994200410.1038/s41593‑023‑01456‑837857775
    [Google Scholar]
  87. YeoB.S.Y. KohJ.H. NgA.C.W. LohS. SeeA. SeowD.C.C. TohS.T. The association of obstructive sleep apnea with blood and cerebrospinal fluid biomarkers of Alzheimer’s dementia - A systematic review and meta-analysis.Sleep Med. Rev.20237010179010.1016/j.smrv.2023.10179037245474
    [Google Scholar]
  88. SmolenJ.S. AletahaD. McInnesI.B. Rheumatoid arthritis.Lancet2016388100552023203810.1016/S0140‑6736(16)30173‑827156434
    [Google Scholar]
  89. BisognanoJ.D. BakrisG. NadimM.K. SanchezL. KroonA.A. SchaferJ. de LeeuwP.W. SicaD.A. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: Results from the double-blind, randomized, placebo-controlled rheos pivotal trial.J. Am. Coll. Cardiol.201158776577310.1016/j.jacc.2011.06.00821816315
    [Google Scholar]
  90. SohalH.S. JacksonA. JacksonR. ClowryG.J. VassilevskiK. O’NeillA. BakerS.N. The sinusoidal probe: A new approach to improve electrode longevity.Front. Neuroeng.201471010.3389/fneng.2014.0001024808859
    [Google Scholar]
  91. LiT. ZuoX. ZhouY. WangY. ZhuangH. ZhangL. ZhangH. XiaoX. The vagus nerve and nicotinic receptors involve inhibition of HMGB1 release and early pro-inflammatory cytokines function in collagen-induced arthritis.J. Clin. Immunol.201030221322010.1007/s10875‑009‑9346‑019890701
    [Google Scholar]
  92. SuminskiAJ TkachDC FaggAH HatsopoulosNG Incorporating feedback from multiple sensory modalities enhances brain-machine interface control.J Neurosci20103050167778710.1523/JNEUROSCI.3967‑10.2010
    [Google Scholar]
  93. WurthS. CapogrossoM. RaspopovicS. GandarJ. FedericiG. KinanyN. CutroneA. PiersigilliA. PavlovaN. GuietR. TaverniG. RigosaJ. ShkorbatovaP. NavarroX. BarraudQ. CourtineG. MiceraS. Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes.Biomaterials201712211412910.1016/j.biomaterials.2017.01.01428110171
    [Google Scholar]
  94. AltunaA De La PridaLM BellistriE GabrielG GuimeráA BerganzoJ SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording.Biosens Bioelectron20123711510.1016/j.bios.2012.03.039
    [Google Scholar]
  95. BadiaJ. BoretiusT. AndreuD. Azevedo-CosteC. StieglitzT. NavarroX. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles.J. Neural Eng.20118303602310.1088/1741‑2560/8/3/03602321558601
    [Google Scholar]
  96. JacksonA. FetzE.E. Interfacing with the computational brain.IEEE Trans. Neural Syst. Rehabil. Eng.201119553454110.1109/TNSRE.2011.215858621659037
    [Google Scholar]
  97. OparilS. SchmiederR.E. New approaches in the treatment of hypertension.Circ. Res.201511661074109510.1161/CIRCRESAHA.116.30360325767291
    [Google Scholar]
  98. LazzeriniP.E. AcampaM. CapecchiP.L. HammoudM. MaffeiS. BisognoS. BarrecaC. GaleazziM. Laghi-PasiniF. Association between high sensitivity C-reactive protein, heart rate variability and corrected QT interval in patients with chronic inflammatory arthritis.Eur. J. Intern. Med.201324436837410.1016/j.ejim.2013.02.00923517852
    [Google Scholar]
  99. FattahiP. YangG. KimG. AbidianM.R. A review of organic and inorganic biomaterials for neural interfaces.Adv. Mater.201426121846188510.1002/adma.20130449624677434
    [Google Scholar]
  100. GoldM.R. Van VeldhuisenD.J. HauptmanP.J. BorggrefeM. KuboS.H. LiebermanR.A. MilasinovicG. BermanB.J. DjordjevicS. NeelagaruS. SchwartzP.J. StarlingR.C. MannD.L. Vagus nerve stimulation for the treatment of heart failure.J. Am. Coll. Cardiol.201668214915810.1016/j.jacc.2016.03.52527058909
    [Google Scholar]
  101. PothofF. BoniniL. LanzilottoM. LiviA. FogassiL. OrbanG.A. PaulO. RutherP. Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites.J. Neural Eng.201613404600610.1088/1741‑2560/13/4/04600627247248
    [Google Scholar]
  102. ScholtenK. MengE. Materials for microfabricated implantable devices: A review.Lab Chip201515224256427210.1039/C5LC00809C26400550
    [Google Scholar]
  103. ScholvinJ KinneyJP BernsteinJG Moore-KochlacsC KopellN FonstadCG Close-Packed silicon microelectrodes for scalable spatially oversampled neural recording.IEEE TransacBiomed Eng201663112013010.1109/TBME.2015.2406113
    [Google Scholar]
  104. HuY. LiuR. LiJ. YueY. ChengW. ZhangP. Attenuation of collagen-induced arthritis in rat by nicotinic alpha7 receptor partial agonist GTS-21.BioMed Res. Int.201420141910.1155/2014/32587524719855
    [Google Scholar]
  105. van MaanenM.A. StoofS.P. LaRosaG.J. VervoordeldonkM.J. TakP.P. Role of the cholinergic nervous system in rheumatoid arthritis: Aggravation of arthritis in nicotinic acetylcholine receptor 7 subunit gene knockout mice.Ann. Rheum. Dis.20106991717172310.1136/ard.2009.11855420511609
    [Google Scholar]
  106. de HairM.J.H. LandewéR.B.M. van de SandeM.G.H. van SchaardenburgD. van BaarsenL.G.M. GerlagD.M. TakP.P. Smoking and overweight determine the likelihood of developing rheumatoid arthritis.Ann. Rheum. Dis.201372101654165810.1136/annrheumdis‑2012‑20225423104761
    [Google Scholar]
  107. HoppeU.C. BrandtM.C. WachterR. BeigeJ. RumpL.C. KroonA.A. CatesA.W. LovettE.G. HallerH. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: Results from the Barostim neo trial.J. Am. Soc. Hypertens.20126427027610.1016/j.jash.2012.04.00422694986
    [Google Scholar]
  108. SmolenJ.S. LandewéR. BreedveldF.C. BuchM. BurmesterG. DougadosM. EmeryP. Gaujoux-VialaC. GossecL. NamJ. RamiroS. WinthropK. de WitM. AletahaD. BetteridgeN. BijlsmaJ.W.J. BoersM. ButtgereitF. CombeB. CutoloM. DamjanovN. HazesJ.M.W. KouloumasM. KvienT.K. MarietteX. PavelkaK. van RielP.L.C.M. Rubbert-RothA. Scholte-VoshaarM. ScottD.L. Sokka-IslerT. WongJ.B. van der HeijdeD. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update.Ann. Rheum. Dis.201473349250910.1136/annrheumdis‑2013‑20457324161836
    [Google Scholar]
  109. DragasJ. ViswamV. ShadmaniA. ChenY. BounikR. StettlerA. RadivojevicM. GeisslerS. ObienM.E.J. MullerJ. HierlemannA. In vitro multi-functional microelectrode array featuring 59 760 electrodes, 2048 electrophysiology channels, stimulation, impedance measurement, and neurotransmitter detection channels.IEEE J. Solid-State Circuits20175261576159010.1109/JSSC.2017.268658028579632
    [Google Scholar]
  110. MinevI.R. MusienkoP. HirschA. BarraudQ. WengerN. MoraudE.M. GandarJ. CapogrossoM. MilekovicT. AsbothL. TorresR.F. VachicourasN. LiuQ. PavlovaN. DuisS. LarmagnacA. VörösJ. MiceraS. SuoZ. CourtineG. LacourS.P. Electronic dura mater for long-term multimodal neural interfaces.Science2015347621815916310.1126/science.126031825574019
    [Google Scholar]
  111. LebedevMA Brain-computer interface for the augmentation of brain functions.Sci Innov Med2018132710.35693/2500‑1388‑2016‑0‑3‑11‑27
    [Google Scholar]
  112. DobelleWH DobelleWH QuestDO AntunesJL RobertsTS GirvinJP Artificial vision for the blind by electrical stimulation of the visual cortex.Neurosurgery197954521710.1227/00006123‑197910000‑00022
    [Google Scholar]
  113. RizzoJ.F.III WyattJ. LoewensteinJ. KellyS. ShireD. Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays.Invest. Ophthalmol. Vis. Sci.200344125355536110.1167/iovs.02‑081914638738
    [Google Scholar]
  114. ChowA.Y. ChowV.Y. PackoK.H. PollackJ.S. PeymanG.A. SchuchardR. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa.Arch. Ophthalmol.2004122446046910.1001/archopht.122.4.46015078662
    [Google Scholar]
  115. AmeriH. RatanapakornT. UferS. EckhardtH. HumayunM.S. WeilandJ.D. Toward a wide-field retinal prosthesis.J. Neural Eng.20096303500210.1088/1741‑2560/6/3/03500219458405
    [Google Scholar]
  116. PeacheyN.S. ChowA.Y. Subretinal implantation of semiconductor-based photodiodes: Progress and challenges.J Rehabil Res Dev1999364371
    [Google Scholar]
  117. SchwahnH.N. GekelerF. KohlerK. KobuchK. SachsH.G. SchulmeyerF. JakobW. GabelV.P. ZrennerE. Studies on the feasibility of a subretinal visual prosthesis: Data from Yucatan micropig and rabbit.Graefes Arch. Clin. Exp. Ophthalmol.20012391296196710.1007/s00417010036811820703
    [Google Scholar]
  118. TordoirJ.H.M. ScheffersI. SchmidliJ. SavolainenH. LiebeskindU. HanskyB. HeroldU. IrwinE. KroonA.A. de LeeuwP. PetersT.K. KievalR. CodyR. An implantable carotid sinus baroreflex activating system: Surgical technique and short-term outcome from a multi-center feasibility trial for the treatment of resistant hypertension.Eur. J. Vasc. Endovasc. Surg.200733441442110.1016/j.ejvs.2006.11.02517227715
    [Google Scholar]
  119. GrondaE. SeravalleG. BrambillaG. CostantinoG. CasiniA. AlsheraeiA. LovettE.G. ManciaG. GrassiG. Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function, and cardiac haemodynamics in heart failure: A proof-of-concept study.Eur. J. Heart Fail.201416997798310.1002/ejhf.13825067799
    [Google Scholar]
  120. PenryJ.K. DeanJ.C. Prevention of intractable partial seizures by intermittent vagal stimulation in humans: Preliminary results.Epilepsia199031s2Suppl. 2S40S4310.1111/j.1528‑1157.1990.tb05848.x2121469
    [Google Scholar]
  121. SackeimH. RushA.J. GeorgeM.S. MarangellL.B. HusainM.M. NahasZ. JohnsonC.R. SeidmanS. GillerC. HainesS. SimpsonR.K.Jr GoodmanR.R. Vagus nerve stimulation (VNS) for treatment-resistant depression: Efficacy, side effects, and predictors of outcome.Neuropsychopharmacology200125571372810.1016/S0893‑133X(01)00271‑811682255
    [Google Scholar]
  122. LehtimäkiJ. HyvärinenP. YlikoskiM. BergholmM. MäkeläJ.P. AarnisaloA. PirvolaU. MäkitieA. YlikoskiJ. Transcutaneous vagus nerve stimulation in tinnitus: A pilot study.Acta Otolaryngol.2013133437838210.3109/00016489.2012.75073623237096
    [Google Scholar]
  123. SilbersteinS.D. MechtlerL.L. KudrowD.B. CalhounA.H. McClureC. SaperJ.R. LieblerE.J. Rubenstein EngelE. TepperS.J. Non–invasive vagus nerve stimulation for the ACUTE treatment of cluster headache: Findings from the randomized, double-blind, SHAM-controlled ACT1 study.Headache20165681317133210.1111/head.1289627593728
    [Google Scholar]
  124. StraubeA EllrichJ ErenO BlumB RuscheweyhR Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): A randomized, monocentric clinical trial.J Headache Pain20151654310.1186/s10194‑015‑0543‑3
    [Google Scholar]
  125. FassovJ. LundbyL. WorsøeJ. BuntzenS. LaurbergS. KroghK. A randomised, controlled study of small intestinal motility in patients treated with sacral nerve stimulation for irritable bowel syndrome.BMC Gastroenterol.201414111110.1186/1471‑230X‑14‑11124965754
    [Google Scholar]
  126. KnowlesC.H. ThinN. GillK. BhanC. GrimmerK. LunnissP.J. WilliamsN.S. ScottS.M. Prospective randomized double-blind study of temporary sacral nerve stimulation in patients with rectal evacuatory dysfunction and rectal hyposensitivity.Ann. Surg.2012255464364910.1097/SLA.0b013e318247d49f22418005
    [Google Scholar]
  127. DinningP.G. FuentealbaS.E. KennedyM.L. LubowskiD.Z. CookI.J. Sacral nerve stimulation induces pan-colonic propagating pressure waves and increases defecation frequency in patients with slow-transit constipation.Colorectal Dis.20079212313210.1111/j.1463‑1318.2006.01096.x17223936
    [Google Scholar]
  128. PattonV. StewartP. LubowskiD.Z. CookI.J. DinningP.G. Sacral nerve stimulation fails to offer long-term benefit in patients with Slow-Transit constipation.Dis. Colon Rectum201659987888510.1097/DCR.000000000000065327505117
    [Google Scholar]
  129. DinningPG HuntL PattonV ZhangT SzczesniakM GebskiV Treatment efficacy of sacral nerve stimulation in slow transit constipation: A two-phase, double-blind randomized controlled crossover study.Am J Gastroenterol201511057334010.1038/ajg.2015.101
    [Google Scholar]
  130. YiannakouY. EthersonK. CloseH. KasimA. Mercer-JonesM. PlusaS. MaierR. GreenS. CundallJ. KnowlesC. MasonJ. A randomized double-blinded sham-controlled cross-over trial of tined-lead sacral nerve stimulation testing for chronic constipation.Eur. J. Gastroenterol. Hepatol.201931665366010.1097/MEG.000000000000137931009400
    [Google Scholar]
  131. ZerbibF. SiproudhisL. LehurP-A. GermainC. MionF. LeroiA-M. CoffinB. Le SidanerA. VittonV. Bouyssou-CellierC. CheneG. ZerbibF. SimonM. DenostQ. LepicardP. LehurP-A. MeuretteG. WyartV. KubisC. MionF. RomanS. DamonH. BarthX. LeroiA-M. BridouxV. GourcerolG. CoffinB. CastelB. GorbatchefC. Le SidanerA. MathonnetM. VittonV. LesavreN. OrsoniP. SiproudhisL. BrochardC. DesfourneauxV. Randomized clinical trial of sacral nerve stimulation for refractory constipation.Br. J. Surg.2017104320521310.1002/bjs.1032627779312
    [Google Scholar]
  132. KenefickN.J. VaizeyC.J. CohenC.R.G. NichollsR.J. KammM.A. Double-blind placebo-controlled crossover study of sacral nerve stimulation for idiopathic constipation.Br. J. Surg.200289121570157110.1046/j.1365‑2168.2002.02278.x12445068
    [Google Scholar]
  133. ThomasG.P. Duelund-JakobsenJ. DuddingT.C. BradshawE. NichollsR.J. AlamA. EmmanuelA. ThinN. KnowlesC.H. LaurbergS. VaizeyC.J. A double-blinded randomized multicentre study to investigate the effect of changes in stimulation parameters on sacral nerve stimulation for constipation.Colorectal Dis.2015171199099510.1111/codi.1298225916959
    [Google Scholar]
  134. ZanosT.P. SilvermanH.A. LevyT. TsaavaT. BattinelliE. LorraineP.W. AsheJ.M. ChavanS.S. TraceyK.J. BoutonC.E. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity.Proc. Natl. Acad. Sci. USA201811521E4843E485210.1073/pnas.171908311529735654
    [Google Scholar]
  135. MasiE.B. LevyT. TsaavaT. BoutonC.E. TraceyK.J. ChavanS.S. ZanosT.P. Identification of hypoglycemia-specific neural signals by decoding murine vagus nerve activity.Bioelectron. Med.201951910.1186/s42234‑019‑0025‑z32232099
    [Google Scholar]
  136. CracchioloM. SacramentoJ.F. MazzoniA. PanareseA. CarpanetoJ. CondeS.V. MiceraS. Decoding neural metabolic markers from the carotid sinus nerve in a type 2 diabetes model.IEEE Trans. Neural Syst. Rehabil. Eng.201927102034204310.1109/TNSRE.2019.294239831545736
    [Google Scholar]
  137. ValloneF OttavianiMM DedolaF CutroneA RomeniS PanareseAM Simultaneous decoding of cardiovascular and respiratory functional changes from pig intraneural vagus nerve signals.J Neural Eng2021184ac0d4210.1088/1741‑2552/ac0d42
    [Google Scholar]
  138. AhmedU. ChangY.C. CracchioloM. LopezM.F. TomaioJ.N. Datta-ChaudhuriT. ZanosT.P. RiethL. Al-AbedY. ZanosS. Anodal block permits directional vagus nerve stimulation.Sci. Rep.2020101922110.1038/s41598‑020‑66332‑y32513973
    [Google Scholar]
  139. González-GonzálezM.A. KannegantiA. Joshi-ImreA. Hernandez-ReynosoA.G. BendaleG. ModiR. EckerM. KhurramA. CoganS.F. VoitW.E. Romero-OrtegaM.I. Thin film multi-electrode softening cuffs for selective neuromodulation.Sci. Rep.2018811639010.1038/s41598‑018‑34566‑630401906
    [Google Scholar]
  140. BrunsT.M. GauntR.A. WeberD.J. Multielectrode array recordings of bladder and perineal primary afferent activity from the sacral dorsal root ganglia.J. Neural Eng.20118505601010.1088/1741‑2560/8/5/05601021878706
    [Google Scholar]
  141. RossS.E. OuyangZ. RajagopalanS. BrunsT.M. Evaluation of decoding algorithms for estimating bladder pressure from dorsal root ganglia neural recordings.Ann. Biomed. Eng.201846223324610.1007/s10439‑017‑1966‑629181722
    [Google Scholar]
  142. DTRKey bioelectronic medical patent for cancer treatment issued by the U.S. Patent & Trademark Office. Available from: https://www.drugtargetreview.com/news/2414/key-bioelectronic-medical-patent-cancer-treatment-issued-u-s-patent-trademark-office/
  143. ChoiY.S. HsuehY.Y. KooJ. YangQ. AvilaR. HuB. XieZ. LeeG. NingZ. LiuC. XuY. LeeY.J. ZhaoW. FangJ. DengY. LeeS.M. Vázquez-GuardadoA. StepienI. YanY. SongJ.W. HaneyC. OhY.S. LiuW. YoonH.J. BanksA. MacEwanM.R. AmeerG.A. RayW.Z. HuangY. XieT. FranzC.K. LiS. RogersJ.A. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration.Nat. Commun.2020111599010.1038/s41467‑020‑19660‑633239608
    [Google Scholar]
  144. ChoiY.S. JeongH. YinR.T. AvilaR. PfennigerA. YooJ. LeeJ.Y. TzavelisA. LeeY.J. ChenS.W. KnightH.S. KimS. AhnH.Y. WickersonG. Vázquez-GuardadoA. Higbee-DempseyE. RussoB.A. NapolitanoM.A. HolleranT.J. RazzakL.A. MiniovichA.N. LeeG. GeistB. KimB. HanS. BrennanJ.A. ArasK. KwakS.S. KimJ. WatersE.A. YangX. BurrellA. San ChunK. LiuC. WuC. RweiA.Y. SpannA.N. BanksA. JohnsonD. ZhangZ.J. HaneyC.R. JinS.H. SahakianA.V. HuangY. TrachiotisG.D. KnightB.P. AroraR.K. EfimovI.R. RogersJ.A. A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy.Science202237665961006101210.1126/science.abm170335617386
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128326489240827100537
Loading
/content/journals/cpd/10.2174/0113816128326489240827100537
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test