Skip to content
2000
Volume 31, Issue 3
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Colorectal cancer (CRC) ranks among the most lethal malignancies globally, particularly following metastasis which results in poor prognosis. In recent years, CRC incidence in China has persistently increased. Total flavonoids (TFA) from , a natural compound, are recognized for their anti-inflammatory, analgesic, and antioxidant properties. However, despite extensive research into the therapeutic potential of TFA, coverage of its role in cancer treatment is notably lacking. To address this research void, our study aims to unveil the role and potential mechanisms of TFA in treating CRC.

Methods

We conducted a series of experiments to assess the impact of TFA on CRC cells. Two specific CRC cell lines, DLD-1 and HCT116, were employed in cell proliferation, colony formation, flow cytometry, and cell migration assays. Additionally, to test the effects of TFA, we developed a nude mouse xenograft tumor model to assess TFA's impact on tumor growth and liver metastasis. Furthermore, we meticulously analyzed the gene expression differences between CRC cells pretreated with TGF-β and those treated with TFA using RNA-seq technology. We also examined the molecular mechanisms of TFA and assessed the expression of proteins related to the STAT3/EMT signaling pathway through Western blotting and siRNA technology.

Results

Our research findings reveal for the first time the effect of TFA on CRC cells. Result shows that TFA could suppress cell proliferation, migration, and induce apoptosis. results showed that TFA inhibited tumor growth and liver metastasis. Molecular mechanism studies have shown that TFA exerts these effects by upregulating the expression of non-coding RNA AL137782, inhibiting the EMT/STAT3 signaling pathway. These results suggest that TFA is a potential candidate for mitigating CRC metastasis.

Conclusion

However, further research is needed to comprehensively evaluate the efficacy and safety of TFA in animal models and clinical settings. These findings bring great hope for the development of innovative CRC treatment methods.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128298998240828060306
2024-09-16
2025-04-02
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  2. DariyaB. AliyaS. MerchantN. Colorectal cancer biology, diagnosis, and therapeutic approaches.Crit. Rev. Oncog.2020252
    [Google Scholar]
  3. CaiX. SuY. NingJ. FanX. ShenM. Research on the effect and mechanism of selenium on colorectal cancer through TRIM32.Biol. Trace Elem. Res.202411410.1007/s12011‑024‑04206‑438691306
    [Google Scholar]
  4. LambertA.W. PattabiramanD.R. WeinbergR.A. Emerging biological principles of metastasis.Cell2017168467069110.1016/j.cell.2016.11.03728187288
    [Google Scholar]
  5. ZavadilJ. BöttingerE.P. TGF-β and epithelial-to-mesenchymal transitions.Oncogene200524375764577410.1038/sj.onc.120892716123809
    [Google Scholar]
  6. ThieryJ.P. AcloqueH. HuangR.Y. Epithelial-mesenchymal transitions in development and disease.Cell20091395871890
    [Google Scholar]
  7. ShinA.E. GiancottiF.G. RustgiA.K. Metastatic colorectal cancer: Mechanisms and emerging therapeutics.Trends Pharmacol. Sci.202344422223610.1016/j.tips.2023.01.00336828759
    [Google Scholar]
  8. FuxeJ. VincentT. Garcia de HerrerosA. Transcriptional crosstalk between TGFβ and stem cell pathways in tumor cell invasion: Role of EMT promoting Smad complexes.Cell Cycle20109122363237410.4161/cc.9.12.1205020519943
    [Google Scholar]
  9. SadrkhanlooM. EntezariM. OroueiS. GhollasiM. fathiN. RezaeiS. HejaziE.S. KakavandA. SaebfarH. HashemiM. GoharriziM.A.S.B. SalimimoghadamS. RashidiM. TaheriazamA. SamarghandianS. STAT3-EMT axis in tumors: Modulation of cancer metastasis, stemness and therapy response.Pharmacol. Res.202218210631110.1016/j.phrs.2022.10631135716914
    [Google Scholar]
  10. WuL.W. HuX. SSNA1 promotes hepatocellular carcinoma metastasis via STAT3/EMT induction.Anticancer Res.20234383479348610.21873/anticanres.1652437500134
    [Google Scholar]
  11. ChenY. ShaoZ. JiangE. ZhouX. WangL. WangH. LuoX. ChenQ. LiuK. ShangZ. CCL21/CCR7 interaction promotes EMT and enhances the stemness of OSCC via a JAK2/STAT3 signaling pathway.J. Cell. Physiol.202023595995600910.1002/jcp.2952532017846
    [Google Scholar]
  12. LiuW. GengC. LiX. LiY. SongS. WangC. Downregulation of SLC9A8 promotes epithelial–mesenchymal transition and metastasis in colorectal cancer cells via the IL6-JAK1/STAT3 signaling pathway.Dig. Dis. Sci.20236851873188410.1007/s10620‑022‑07805‑036583805
    [Google Scholar]
  13. BaiY. WangX. CaiM. MaC. XiangY. HuW. ZhouB. ZhaoC. DaiX. LiX. ZhaoH. Cinobufagin suppresses colorectal cancer growth via STAT3 pathway inhibition.Am. J. Cancer Res.202111120021433520369
    [Google Scholar]
  14. XieX. TangB. XiaoY.F. XieR. LiB.S. DongH. ZhouJ.Y. YangS.M. Long non-coding RNAs in colorectal cancer.Oncotarget2016755226523910.18632/oncotarget.644626637808
    [Google Scholar]
  15. BaiJ. XuJ. ZhaoJ. ZhangR. lncRNA SNHG1 cooperated with miR-497/miR-195-5p to modify epithelial–mesenchymal transition underlying colorectal cancer exacerbation.J. Cell. Physiol.202023521453146810.1002/jcp.2906531276207
    [Google Scholar]
  16. LiJ. ZhaoL. ZhangC. LiM. GaoB. HuX. CaoJ. WangG. The lncRNA FEZF1-AS1 promotes the progression of colorectal cancer through regulating OTX1 and targeting miR-30a-5p.Oncol. Res.2020281516310.3727/096504019X1561978396470031270006
    [Google Scholar]
  17. TsumbuC.N. Deby-DupontG. TitsM. AngenotL. FrederichM. KohnenS. Mouithys-MickaladA. SerteynD. FranckT. Polyphenol content and modulatory activities of some tropical dietary plant extracts on the oxidant activities of neutrophils and myeloperoxidase.Int. J. Mol. Sci.201213162865010.3390/ijms1301062822312276
    [Google Scholar]
  18. YangB.L. ZhuP. LiY.R. XuM.M. WangH. QiaoL.C. XuH.X. ChenH.J. Total flavone of Abelmoschus manihot suppresses epithelial-mesenchymal transition via interfering transforming growth factor-β1 signaling in Crohn’s disease intestinal fibrosis.World J. Gastroenterol.201824303414342510.3748/wjg.v24.i30.341430122880
    [Google Scholar]
  19. ZhangD. ZhuP. LiuY. ShuY. ZhouJ.Y. JiangF. ChenT. YangB.L. ChenY.G. Total flavone of Abelmoschus manihot ameliorates Crohn’s disease by regulating the NF-κB and MAPK signaling pathways.Int. J. Mol. Med.201944132433410.3892/ijmm.2019.418031059072
    [Google Scholar]
  20. HayE.D. An overview of epithelio-mesenchymal transformation.Cells Tissues Organs1995154182010.1159/0001477488714286
    [Google Scholar]
  21. SavagnerP. Leaving the neighborhood: Molecular mechanisms involved during epithelial-mesenchymal transition.BioEssays2001231091292310.1002/bies.113211598958
    [Google Scholar]
  22. KuangF. LuoD. ZhouM. DuJ. YangJ. lncRNAs AC156455.1 and AC104532.2 as biomarkers for diagnosis and prognosis in colorectal cancer.Dis. Markers2022202211310.1155/2022/487200136277972
    [Google Scholar]
  23. LaiX.Y. ZhaoY.Y. LiangH. Studies on chemical constituents in flower of Abelmoschus manihot.Zhongguo Zhongyao Zazhi200631191597160017165583
    [Google Scholar]
  24. TuY. SunW. WanY.G. CheX.Y. PuH.P. YinX. ChenH.L. MengX.J. HuangY.R. ShiX.M. Huangkui capsule, an extract from Abelmoschus manihot (L.) medic, ameliorates adriamycin-induced renal inflammation and glomerular injury via inhibiting p38MAPK signaling pathway activity in rats.J. Ethnopharmacol.2013147231132010.1016/j.jep.2013.03.00623518420
    [Google Scholar]
  25. AiG. LiuQ. HuaW. HuangZ. WangD. Hepatoprotective evaluation of the total flavonoids extracted from flowers of Abelmoschus manihot (L.) Medic: In vitro and in vivo studies.J. Ethnopharmacol.2013146379480210.1016/j.jep.2013.02.00523422335
    [Google Scholar]
  26. ZhangL. LiP. XingC. ZhaoJ. HeY. WangJ. WuX. LiuZ. ZhangA. LinH. DingX. YinA. YuanF. FuP. HaoL. MiaoL. XieR. WangR. ZhouC. GuanG. HuZ. LinS. ChangM. ZhangM. HeL. MeiC. WangL. ChenX. Efficacy and safety of Abelmoschus manihot for primary glomerular disease: A prospective, multicenter randomized controlled clinical trial.Am. J. Kidney Dis.2014641576510.1053/j.ajkd.2014.01.43124631042
    [Google Scholar]
  27. LamouilleS. XuJ. DerynckR. Molecular mechanisms of epithelial–mesenchymal transition.Nat. Rev. Mol. Cell Biol.201415317819610.1038/nrm375824556840
    [Google Scholar]
  28. CampanaleJ.P. SunT.Y. MontellD.J. Development and dynamics of cell polarity at a glance.J. Cell Sci.201713071201120710.1242/jcs.18859928365593
    [Google Scholar]
  29. Sousa-SquiavinatoA.C.M. RochaM.R. Barcellos-de-SouzaP. de SouzaW.F. Morgado-DiazJ.A. Cofilin-1 signaling mediates epithelial-mesenchymal transition by promoting actin cytoskeleton reorganization and cell-cell adhesion regulation in colorectal cancer cells.Biochim. Biophys. Acta Mol. Cell Res.20191866341842910.1016/j.bbamcr.2018.10.00330296500
    [Google Scholar]
  30. HeerbothS. HousmanG. LearyM. LongacreM. BylerS. LapinskaK. WillbanksA. SarkarS. EMT and tumor metastasis.Clin. Transl. Med.201541e610.1186/s40169‑015‑0048‑325852822
    [Google Scholar]
  31. MittalV. Epithelial mesenchymal transition in tumor metastasis.Annu. Rev. Pathol.201813139541210.1146/annurev‑pathol‑020117‑04385429414248
    [Google Scholar]
  32. HuX. XingW. ZhaoR. TanY. WuX. AoL. LiZ. YaoM. YuanM. GuoW. LiS. YuJ. AoX. XuX. HDAC2 inhibits EMT-mediated cancer metastasis by downregulating the long noncoding RNA H19 in colorectal cancer.J. Exp. Clin. Cancer Res.202039127010.1186/s13046‑020‑01783‑933267897
    [Google Scholar]
  33. RavehE. MatoukI.J. GilonM. HochbergA. The H19 long non- coding RNA in cancer initiation, progression and metastasis – A proposed unifying theory.Mol. Cancer201514118410.1186/s12943‑015‑0458‑226536864
    [Google Scholar]
  34. LiH. WangM. ZhouH. LuS. ZhangB. Long non-coding RNA EBLN3P promotes the progression of liver cancer via alteration of microRNA-144-3p/DOCK4 signal.Cancer Manag. Res.2020129339934910.2147/CMAR.S26197633061623
    [Google Scholar]
  35. ZhangY. HuangW. YuanY. LiJ. WuJ. YuJ. HeY. WeiZ. ZhangC. Long non-coding RNA H19 promotes colorectal cancer metastasis via binding to hnRNPA2B1.J. Exp. Clin. Cancer Res.202039114110.1186/s13046‑020‑01619‑632698890
    [Google Scholar]
  36. ChenY. YuX. XuY. ShenH. Identification of dysregulated lncRNAs profiling and metastasis-associated lncRNAs in colorectal cancer by genome-wide analysis.Cancer Med.20176102321233010.1002/cam4.116828857495
    [Google Scholar]
  37. LuoM. LiZ. WangW. ZengY. LiuZ. QiuJ. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression.Cancer Lett.2013333221322110.1016/j.canlet.2013.01.03323354591
    [Google Scholar]
  38. HaoY. YangX. ZhangD. LuoJ. ChenR. Long noncoding RNA LINC01186, regulated by TGF-β/SMAD3, inhibits migration and invasion through epithelial-mesenchymal-transition in lung cancer.Gene201760811210.1016/j.gene.2017.01.02328119085
    [Google Scholar]
  39. López-NovoaJ.M. NietoM.A. Inflammation and EMT: An alliance towards organ fibrosis and cancer progression.EMBO Mol. Med.200916-730331410.1002/emmm.20090004320049734
    [Google Scholar]
  40. Perwez HussainS. HarrisC.C. Inflammation and cancer: An ancient link with novel potentials.Int. J. Cancer2007121112373238010.1002/ijc.2317317893866
    [Google Scholar]
  41. SchwitallaS. ZieglerP.K. HorstD. BeckerV. KerleI. Begus-NahrmannY. LechelA. RudolphK.L. LangerR. Slotta-HuspeninaJ. BaderF.G. Prazeres da CostaO. NeurathM.F. MeiningA. KirchnerT. GretenF.R. Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors.Cancer Cell20132319310610.1016/j.ccr.2012.11.01423273920
    [Google Scholar]
  42. GrivennikovS.I. WangK. MucidaD. StewartC.A. SchnablB. JauchD. TaniguchiK. YuG.Y. ÖsterreicherC.H. HungK.E. DatzC. FengY. FearonE.R. OukkaM. TessarolloL. CoppolaV. YarovinskyF. CheroutreH. EckmannL. TrinchieriG. KarinM. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth.Nature2012491742325425810.1038/nature1146523034650
    [Google Scholar]
  43. GrivennikovS.I. KarinM. Inflammatory cytokines in cancer: Tumour necrosis factor and interleukin 6 take the stage.Ann. Rheum. Dis.201170Suppl. 1i104i10810.1136/ard.2010.14014521339211
    [Google Scholar]
  44. RokavecM. ÖnerM.G. LiH. JackstadtR. JiangL. LodyginD. KallerM. HorstD. ZieglerP.K. SchwitallaS. Slotta-HuspeninaJ. BaderF.G. GretenF.R. HermekingH. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis.J. Clin. Invest.201412441853186710.1172/JCI7353124642471
    [Google Scholar]
  45. YadavA. KumarB. DattaJ. TeknosT.N. KumarP. IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway.Mol. Cancer Res.20119121658166710.1158/1541‑7786.MCR‑11‑027121976712
    [Google Scholar]
  46. LiH. BaiR. ZhaoZ. TaoL. MaM. JiZ. JianM. DingZ. DaiX. BaoF. LiuA. Application of droplet digital PCR to detect the pathogens of infectious diseases.Biosci. Rep.2018386BSR2018117010.1042/BSR2018117030341241
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128298998240828060306
Loading
/content/journals/cpd/10.2174/0113816128298998240828060306
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test