Skip to content
2000
Volume 30, Issue 38
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Medicinal herbs have been utilized in the treatment of various pathologic conditions, including neoplasms, organ fibrosis, and diabetes mellitus. However, the precise pharmacological actions of plant miRNAs in animals remain to be fully elucidated, particularly in terms of their therapeutic efficacy and mechanism of action. In this review, some important miRNAs from foods and medicinal herbs are presented. Plant miRNAs exhibit a range of pharmacological properties, such as anti-cancer, anti-fibrosis, anti-viral, anti-inflammatory effects, and neuromodulation, among others. These results have not only demonstrated a cross-species regulatory effect, but also suggested that the miRNAs from medicinal herbs are their bioactive components. This shows a promising prospect for plant miRNAs to be used as drugs. Here, the pharmacological properties of plant miRNAs and their underlying mechanisms have been highlighted, which can provide new insights for clarifying the therapeutic mechanisms of medicinal herbs and suggest a new way for developing therapeutic drugs.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128310724240730072626
2024-11-01
2025-01-10
Loading full text...

Full text loading...

References

  1. XiaokaitiY. LiX. Natural product regulates autophagy in cancer.Adv. Exp. Med. Biol.2020120770972410.1007/978‑981‑15‑4272‑5_5332671788
    [Google Scholar]
  2. KashyapD. TuliH.S. YererM.B. SharmaA. SakK. SrivastavaS. PandeyA. GargV.K. SethiG. BishayeeA. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges.Semin. Cancer Biol.20216952310.1016/j.semcancer.2019.08.01431421264
    [Google Scholar]
  3. SflakidouE. LeonidisG. ForoglouE. SiokatasC. SarliV. Recent advances in natural product-based hybrids as anti-cancer agents.Molecules20222719663210.3390/molecules2719663236235168
    [Google Scholar]
  4. HasanM. PaulN.C. PaulS.K. SaikatA.S.M. AkterH. MandalM. LeeS.S. Natural product-based potential therapeutic interventions of pulmonary fibrosis.Molecules2022275148110.3390/molecules2705148135268581
    [Google Scholar]
  5. LiJ.Z. ChenN. MaN. LiM.R. Mechanism and progress of natural products in the treatment of NAFLD-related fibrosis.Molecules20232823793610.3390/molecules2823793638067665
    [Google Scholar]
  6. WangL. LiS. YaoY. YinW. YeT. The role of natural products in the prevention and treatment of pulmonary fibrosis: A review.Food Funct.2021123990100710.1039/D0FO03001E33459740
    [Google Scholar]
  7. MoudgilK.D. VenkateshaS.H. The anti-inflammatory and immunomodulatory activities of natural products to control autoimmune inflammation.Int. J. Mol. Sci.20222419510.3390/ijms2401009536613560
    [Google Scholar]
  8. FernandesA. RodriguesP.M. PintadoM. TavariaF.K. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging.Phytomedicine202311515482410.1016/j.phymed.2023.15482437119762
    [Google Scholar]
  9. ChenC.Y. TsaiY.F. ChangW.Y. YangS.C. HwangT.L. Marine natural product inhibitors of neutrophil-associated inflammation.Mar. Drugs201614814110.3390/md1408014127472345
    [Google Scholar]
  10. LiJ. CaiZ. LiXW. Natural product-inspired targeted protein degraders: Advances and perspectives.J Med Chem.20226520135331356010.1021/acs.jmedchem.2c01223
    [Google Scholar]
  11. FengY. WangW. NingY. ChenH. LiuP. Small molecules against the origin and activation of myofibroblast for renal interstitial fibrosis therapy.Biomed. Pharmacother.202113911138610.1016/j.biopha.2021.11138634243594
    [Google Scholar]
  12. FengY.L. YangY. ChenH. Small molecules as a source for acute kidney injury therapy.Pharmacol. Ther.202223710816910.1016/j.pharmthera.2022.10816935306111
    [Google Scholar]
  13. FengY.L. ChenD.Q. VaziriN.D. GuoY. ZhaoY.Y. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis.Med. Res. Rev.2020401547810.1002/med.2159631131921
    [Google Scholar]
  14. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b0128532162523
    [Google Scholar]
  15. LockeF.L. RossiJ.M. NeelapuS.S. JacobsonC.A. MiklosD.B. GhobadiA. OluwoleO.O. ReaganP.M. LekakisL.J. LinY. ShermanM. BetterM. GoW.Y. WiezorekJ.S. XueA. BotA. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma.Blood Adv.20204194898491110.1182/bloodadvances.202000239433035333
    [Google Scholar]
  16. KhareT. PalakurthiS.S. ShahB.M. PalakurthiS. KhareS. Natural product-based nanomedicine in treatment of inflammatory bowel disease.Int. J. Mol. Sci.20202111395610.3390/ijms2111395632486445
    [Google Scholar]
  17. WangY. SuiZ. WangM. LiuP. Natural products in attenuating renal inflammation via inhibiting the NLRP3 inflammasome in diabetic kidney disease.Front. Immunol.202314119601610.3389/fimmu.2023.119601637215100
    [Google Scholar]
  18. RamazaniE. AkaberiM. EmamiS.A. Tayarani-NajaranZ. Biological and pharmacological effects of gamma-oryzanol: An updated review of the molecular mechanisms.Curr. Pharm. Des.202127192299231610.2174/138161282666620110210142833138751
    [Google Scholar]
  19. ChengJ. LiJ. XiongR.G. WuS.X. XuX.Y. TangG.Y. HuangS.Y. ZhouD.D. LiH.B. FengY. GanR.Y. Effects and mechanisms of anti-diabetic dietary natural products: An updated review.Food Funct.20241541758177810.1039/D3FO04505F38240135
    [Google Scholar]
  20. RamachandranV. vI.K. hrK.K. TiwariR. TiwariG. Biochanin-A: A bioactive natural product with versatile therapeutic perspectives.Curr. Drug Res. Rev.202214322523810.2174/258997751466622050920180435579127
    [Google Scholar]
  21. PinelaJ. DiasM.I. PereiraC. Alonso-EstebanJ.I. Antioxidant activity of foods and natural products.Molecules2024298181410.3390/molecules2908181438675634
    [Google Scholar]
  22. HillM. TranN. miRNA interplay: Mechanisms and consequences in cancer.Dis. Model. Mech.2021144dmm04766210.1242/dmm.04766233973623
    [Google Scholar]
  23. ChenL. HeikkinenL. WangC. YangY. SunH. WongG. Trends in the development of miRNA bioinformatics tools.Brief. Bioinform.20192051836185210.1093/bib/bby05429982332
    [Google Scholar]
  24. DienerC. KellerA. MeeseE. Emerging concepts of miRNA therapeutics: From cells to clinic.Trends Genet.202238661362610.1016/j.tig.2022.02.00635303998
    [Google Scholar]
  25. Ferragut CardosoA.P. BanerjeeM. NailA.N. LykoudiA. StatesJ.C. miRNA dysregulation is an emerging modulator of genomic instability.Semin. Cancer Biol.20217612013110.1016/j.semcancer.2021.05.00433979676
    [Google Scholar]
  26. Ghafouri-FardS. ShooreiH. TaheriM. miRNA profile in ovarian cancer.Exp. Mol. Pathol.202011310438110.1016/j.yexmp.2020.10438131954715
    [Google Scholar]
  27. SumaiyaK. PonnusamyT. NatarajaseenivasanK. ShanmughapriyaS. Cardiac metabolism and miRNA interference.Int. J. Mol. Sci.20222415010.3390/ijms2401005036613495
    [Google Scholar]
  28. KabekkoduS.P. ShuklaV. VargheseV.K. D’ SouzaJ. ChakrabartyS. SatyamoorthyK. Clustered miRNAs and their role in biological functions and diseases.Biol. Rev. Camb. Philos. Soc.20189341955198610.1111/brv.1242829797774
    [Google Scholar]
  29. BernardoB.C. OoiJ.Y.Y. LinR.C.Y. McMullenJ.R. miRNA therapeutics: A new class of drugs with potential therapeutic applications in the heart.Future Med. Chem.20157131771179210.4155/fmc.15.10726399457
    [Google Scholar]
  30. ChakraborttyA. PattonD.J. SmithB.F. AgarwalP. miRNAs: Potential as biomarkers and therapeutic targets for cancer.Genes (Basel)2023147137510.3390/genes1407137537510280
    [Google Scholar]
  31. ShaoT. WangG. ChenH. XieY. JinX. BaiJ. XuJ. LiX. HuangJ. JinY. LiY. Survey of miRNA-miRNA cooperative regulation principles across cancer types.Brief. Bioinform.20192051621163810.1093/bib/bby03829800060
    [Google Scholar]
  32. HussenB.M. HidayatH.J. SalihiA. SabirD.K. TaheriM. Ghafouri-FardS. MicroRNA: A signature for cancer progression.Biomed. Pharmacother.202113811152810.1016/j.biopha.2021.11152833770669
    [Google Scholar]
  33. BudakotiM. PanwarA.S. MolpaD. SinghR.K. BüsselbergD. MishraA.P. CoutinhoH.D.M. NigamM. Micro-RNA: The darkhorse of cancer.Cell. Signal.20218310999510.1016/j.cellsig.2021.10999533785398
    [Google Scholar]
  34. HuangX. ZhuX. YuY. ZhuW. JinL. ZhangX. LiS. ZouP. XieC. CuiR. Dissecting miRNA signature in colorectal cancer progression and metastasis.Cancer Lett.2021501668210.1016/j.canlet.2020.12.02533385486
    [Google Scholar]
  35. Correia de SousaM. GjorgjievaM. DolickaD. SobolewskiC. FotiM. Deciphering miRNAs’ action through miRNA editing.Int. J. Mol. Sci.20192024624910.3390/ijms2024624931835747
    [Google Scholar]
  36. KhanA. AhmedE. ElareerN. JunejoK. SteinhoffM. UddinS. Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies.Cells20198884010.3390/cells808084031530793
    [Google Scholar]
  37. Van RoosbroeckK. CalinG.A. MicroRNAs in chronic lymphocytic leukemia: miRacle or miRage for prognosis and targeted therapies?Semin. Oncol.201643220921410.1053/j.seminoncol.2016.02.01527040698
    [Google Scholar]
  38. XieW. MelzigM.F. The stability of medicinal plant microRNAs in the herb preparation process.Molecules201823491910.3390/molecules2304091929659501
    [Google Scholar]
  39. DeverJ.T. KempM.Q. ThompsonA.L. KellerH.G.K. WaksmonskiJ.C. SchollC.D. BarnesD.M. Survival and diversity of human homologous dietary microRNAs in conventionally cooked top sirloin and dried bovine tissue extracts.PLoS One2015109e013827510.1371/journal.pone.013827526394052
    [Google Scholar]
  40. LinkJ. ThonC. SchanzeD. SteponaitieneR. KupcinskasJ. ZenkerM. CanbayA. MalfertheinerP. LinkA. Food-derived xeno-microRNAs: Influence of diet and detectability in gastrointestinal tract-proof-of-principle study.Mol. Nutr. Food Res.2019632180007610.1002/mnfr.20180007630378765
    [Google Scholar]
  41. PhilipA. FerroV.A. TateR.J. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process.Mol. Nutr. Food Res.201559101962197210.1002/mnfr.20150013726147655
    [Google Scholar]
  42. ZhuW.J. LiuY. CaoY.N. PengL.X. YanZ.Y. ZhaoG. Insights into health-promoting effects of plant microRNAs: A review.J. Agric. Food Chem.20216948143721438610.1021/acs.jafc.1c0473734813309
    [Google Scholar]
  43. ChenT. MaF. PengY. SunR. XiQ. SunJ. ZhangJ. ZhangY. LiM. Plant miR167e-5p promotes 3T3-L1 adipocyte adipogenesis by targeting β-catenin.In Vitro Cell. Dev. Biol. Anim.202258647147910.1007/s11626‑022‑00702‑w35829897
    [Google Scholar]
  44. YangL. FengH. Cross-kingdom regulation by plant-derived miRNAs in mammalian systems.Animal Model. Exp. Med.20236651852510.1002/ame2.1235838064180
    [Google Scholar]
  45. LiY. TengZ. ZhaoD. Plant-derived cross-kingdom gene regulation benefits human health.Trends Plant Sci.202328662662910.1016/j.tplants.2023.03.00437080836
    [Google Scholar]
  46. XuT. ZhuY. LinZ. LeiJ. LiL. ZhuW. WuD. Evidence of cross-kingdom gene regulation by plant microRNAs and possible reasons for inconsistencies.J. Agric. Food Chem.20247294564457310.1021/acs.jafc.3c0909738391237
    [Google Scholar]
  47. SamadA.F.A. KamaroddinM.F. SajadM. Cross-kingdom regulation by plant microRNAs provides novel insight into gene regulation.Adv. Nutr.202112119721110.1093/advances/nmaa09532862223
    [Google Scholar]
  48. LukasikA. ZielenkiewiczP. Plant microRNAs-novel players in natural medicine?Int. J. Mol. Sci.2016181910.3390/ijms1801000928025496
    [Google Scholar]
  49. HeX. WangY. FanX. LeiN. TianY. ZhangD. PanW. A schistosome miRNA promotes host hepatic fibrosis by targeting transforming growth factor beta receptor III.J. Hepatol.202072351952710.1016/j.jhep.2019.10.02931738999
    [Google Scholar]
  50. ZhangS. SangX. HouD. ChenJ. GuH. ZhangY. LiJ. YangD. ZhuH. YangX. WangF. ZhangC. ChenX. ZenK. ZhangC.Y. HongZ. Plant-derived RNAi therapeutics: A strategic inhibitor of HBsAg.Biomaterials2019210839310.1016/j.biomaterials.2019.04.03331078314
    [Google Scholar]
  51. ShuJ. ChiangK. ZempleniJ. CuiJ. Computational characterization of exogenous microRNAs that can be transferred into human circulation.PLoS One20151011e014058710.1371/journal.pone.014058726528912
    [Google Scholar]
  52. LukasikA. BrzozowskaI. ZielenkiewiczU. ZielenkiewiczP. Detection of plant miRNAs abundance in human breast milk.Int. J. Mol. Sci.20171913710.3390/ijms1901003729295476
    [Google Scholar]
  53. ZhangY. WigginsB.E. LawrenceC. PetrickJ. IvashutaS. HeckG. Analysis of plant-derived miRNAs in animal small RNA datasets.BMC Genomics201213138110.1186/1471‑2164‑13‑38122873950
    [Google Scholar]
  54. HuangF. DuJ. LiangZ. XuZ. XuJ. ZhaoY. LinY. MeiS. HeQ. ZhuJ. LiuQ. ZhangY. QinY. SunW. SongJ. ChenS. JiangC. Large-scale analysis of small RNAs derived from traditional Chinese herbs in human tissues.Sci. China Life Sci.201962332133210.1007/s11427‑018‑9323‑530238279
    [Google Scholar]
  55. ZhaoQ. LiuY. ZhangN. HuM. ZhangH. JoshiT. XuD. Evidence for plant-derived xenomiRs based on a large-scale analysis of public small RNA sequencing data from human samples.PLoS One2018136e018751910.1371/journal.pone.018751929949574
    [Google Scholar]
  56. KoupenovaM. MickE. CorkreyH.A. SinghA. TanriverdiS.E. VitsevaO. LevyD. KeelerA.M. Ezzaty MirhashemiM. ElMallahM.K. GersteinM. RozowskyJ. TanriverdiK. FreedmanJ.E. Pollen-derived RNAs are found in the human circulation.iScience20191991692610.1016/j.isci.2019.08.03531518900
    [Google Scholar]
  57. LiQ. LaiQ. HeC. FangY. YanQ. ZhangY. WangX. GuC. WangY. YeL. HanL. LinX. ChenJ. CaiJ. LiA. LiuS. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer.J. Exp. Clin. Cancer Res.201938133410.1186/s13046‑019‑1330‑931370857
    [Google Scholar]
  58. LanD. JinX. LiM. HeL. The expression and clinical significance of signal transducer and activator of transcription 3, tumor necrosis factor α induced protein 8-like 2, and runt-related transcription factor 1 in breast cancer patients.Gland Surg.20211031125113410.21037/gs‑21‑10833842256
    [Google Scholar]
  59. XieW. AdolfJ. MelzigM.F. Identification of Viscum album L. miRNAs and prediction of their medicinal values.PLoS One20171211e018777610.1371/journal.pone.018777629112983
    [Google Scholar]
  60. WeiZ. XiaJ. LiJ. CaiJ. ShanJ. ZhangC. ZhangL. WangT. QianC. LiuL. SIRT1 promotes glucolipid metabolic conversion to facilitate tumor development in colorectal carcinoma.Int. J. Biol. Sci.20231961925194010.7150/ijbs.7670437063423
    [Google Scholar]
  61. ZhangL. KangJ. XinB. CaoW. NDRG2 inhibition of glycolysis in liver tumor cells is regulated by SIRT1.J. Gastrointest. Oncol.202314256357110.21037/jgo‑23‑14937201050
    [Google Scholar]
  62. PlotnikJ.P. RichardsonA.E. YangH. RojasE. BontchevaV. DowellC. ParsonsS. WilsonA. RavanmehrV. WillC. JungP. ZhuH. ParthaS.K. PanchalS.C. MaliR.S. KohlhappF.J. McClureR.A. RamathalC.Y. GeorgeM.D. JhalaM. ElsenN.L. QiuW. JudgeR.A. PanC. MastracchioA. HendersonJ. MeulbroekJ.A. GreenM.R. PappanoW.N. Inhibition of MALT1 and BCL2 induces synergistic anti-tumor activity in models of B cell lymphoma.Mol. Cancer Ther.202423794996010.1158/1535‑7163.MCT‑23‑051838507740
    [Google Scholar]
  63. CerónR. MartínezA. RamosC. De la CruzA. GarcíaA. MendozaI. PalmerosG. Montaño FigueroaE.H. NavarreteJ. Jiménez-MoralesS. Martinez-MurilloC. OlarteI. Overexpression of BCL2, BCL6, VEGFR1 and TWIST1 in circulating tumor cells derived from patients with DLBCL decreases event-free survival.OncoTargets Ther.2022151583159510.2147/OTT.S38656236606244
    [Google Scholar]
  64. MinutoloA. PotestàM. GismondiA. PirròS. CirilliM. GattabriaF. GalganiA. SessaL. MatteiM. CaniniA. MuleoR. ColizziV. MontesanoC. Olea europaea small RNA with functional homology to human miR34a in cross-kingdom interaction of anti-tumoral response.Sci. Rep.2018811241310.1038/s41598‑018‑30718‑w30120339
    [Google Scholar]
  65. YuanD. FangY. ChenW. JiangK. ZhuG. WangW. ZhangW. YouG. JiaZ. ZhuJ. ZFP36 inhibits tumor progression of human prostate cancer by targeting CDK6 and oxidative stress.Oxid. Med. Cell. Longev.2022202212410.1155/2022/361154036111167
    [Google Scholar]
  66. JiaY. ZhaoL.M. BaiH.Y. ZhangC. DaiS.L. LvH. ShanB.E. The tumor-suppressive function of miR-1296-5p by targeting EGFR and CDK6 in gastric cancer.Biosci. Rep.2019391BSR2018155610.1042/BSR2018155630530570
    [Google Scholar]
  67. ManvarT. MangukiaN. PatelS. RawalR. Understanding the molecular mechanisms of betel miRNAs on human health.MicroRNA2022111455610.2174/221153661166622031814203135307000
    [Google Scholar]
  68. Sánchez-RomoD. Hernández-VásquezC.I. Pereyra-AlférezB. García-GarcíaJ.H. Identification of potential target genes in Homo sapiens, by miRNA of Triticum aestivum: A cross kingdom computational approach.Noncoding RNA Res.202272899710.1016/j.ncrna.2022.03.00235387280
    [Google Scholar]
  69. XuX. LiuZ. TianF. XuJ. ChenY. Clinical significance of transcription factor 7 (TCF7) as a prognostic factor in gastric cancer.Med. Sci. Monit.2019253957396310.12659/MSM.91391331133633
    [Google Scholar]
  70. ChinA.R. FongM.Y. SomloG. WuJ. SwiderskiP. WuX. WangS.E. Cross-kingdom inhibition of breast cancer growth by plant miR159.Cell Res.201626221722810.1038/cr.2016.1326794868
    [Google Scholar]
  71. BhadreshaK. PatelM. BrahmbhattJ. JainN. RawalR. Targeting bone metastases signaling pathway using Moringa oleifera seed nutri-miRs: A cross kingdom approach.Nutr. Cancer20227472522253910.1080/01635581.2021.200154734751606
    [Google Scholar]
  72. ZhaoJ. QiY.F. YuY.R. STAT3: A key regulator in liver fibrosis.Ann. Hepatol.20212110022410.1016/j.aohep.2020.06.01032702499
    [Google Scholar]
  73. BalaS. ZhuangY. NageshP.T. CatalanoD. ZivnyA. WangY. XieJ. GaoG. SzaboG. Therapeutic inhibition of miR-155 attenuates liver fibrosis via STAT3 signaling.Mol. Ther. Nucleic Acids20233341342710.1016/j.omtn.2023.07.01237547286
    [Google Scholar]
  74. JiangH. YangJ. LiT. WangX. FanZ. YeQ. DuY. JAK/STAT3 signaling in cardiac fibrosis: A promising therapeutic target.Front. Pharmacol.202415133610210.3389/fphar.2024.133610238495094
    [Google Scholar]
  75. ChenQ. ZhangF. DongL. WuH. XuJ. LiH. WangJ. ZhouZ. LiuC. WangY. LiuY. LuL. WangC. LiuM. ChenX. WangC. ZhangC. LiD. ZenK. WangF. ZhangQ. ZhangC.Y. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs.Cell Res.202131324725810.1038/s41422‑020‑0389‑332801357
    [Google Scholar]
  76. ZhangT. MaR. LiZ. LiuT. YangS. LiN. WangD. Nur77 alleviates cardiac fibrosis by upregulating GSK-3β transcription during aging.Eur. J. Pharmacol.202496517629010.1016/j.ejphar.2023.17629038158109
    [Google Scholar]
  77. TangX. TianJ. XieL. JiY. γ-catenin alleviates cardiac fibrosis through inhibiting phosphorylation of GSK-3β.J. Biomed. Res.20203412731741464
    [Google Scholar]
  78. YinJ. LiZ. ZhangX. WanZ. QinH. YaoL. LiB. GaoF. YangY. Bufotalin attenuates pulmonary fibrosis via inhibiting Akt/GSK-3β/β-catenin signaling pathway.Eur. J. Pharmacol.202496417629310.1016/j.ejphar.2023.17629338158113
    [Google Scholar]
  79. YuW.Y. CaiW. YingH.Z. ZhangW.Y. ZhangH.H. YuC.H. Exogenous plant gma-miR-159a, identified by miRNA library functional screening, ameliorated hepatic stellate cell activation and inflammation via inhibiting GSK-3β-mediated pathways.J. Inflamm. Res.2021142157217210.2147/JIR.S30482834079325
    [Google Scholar]
  80. ZhuH. ChangM. WangQ. ChenJ. LiuD. HeW. Identifying the potential of miRNAs in Houttuynia cordata-derived exosome-like nanoparticles against respiratory RNA viruses.Int. J. Nanomedicine2023185983600010.2147/IJN.S42517337901360
    [Google Scholar]
  81. MinutoloA. PotestàM. RogliaV. CirilliM. IacovelliF. CervaC. FokamJ. DesideriA. AndreoniM. GrelliS. ColizziV. MuleoR. MontesanoC. Plant microRNAs from Moringa oleifera regulate immune response and HIV infection.Front. Pharmacol.20211162003810.3389/fphar.2020.62003833643043
    [Google Scholar]
  82. ChiY. ShiL. LuS. CuiH. ZhaW. ShanL. ShenY. Inhibitory effect of Lonicera japonica-derived exosomal miR2911 on human papilloma virus.J. Ethnopharmacol.2024318Pt B11696910.1016/j.jep.2023.11696937516391
    [Google Scholar]
  83. QiuF.S. WangJ.F. GuoM.Y. LiX.J. ShiC.Y. WuF. ZhangH.H. YingH.Z. YuC.H. Rgl-exomiR-7972, a novel plant exosomal microRNA derived from fresh Rehmanniae radix, ameliorated lipopolysaccharide-induced acute lung injury and gut dysbiosis.Biomed. Pharmacother.202316511500710.1016/j.biopha.2023.11500737327587
    [Google Scholar]
  84. ZouM. YangL. NiuL. ZhaoY. SunY. FuY. PengX. Baicalin ameliorates Mycoplasma gallisepticum-induced lung inflammation in chicken by inhibiting TLR6-mediated NF-κB signalling.Br. Poult. Sci.202162219921010.1080/00071668.2020.184725133252265
    [Google Scholar]
  85. ZouM. YangW. NiuL. SunY. LuoR. WangY. PengX. Polydatin attenuates Mycoplasma gallisepticum (HS strain)-induced inflammation injury via inhibiting the TLR6/ MyD88/NF-κB pathway.Microb. Pathog.202014910455210.1016/j.micpath.2020.10455233010363
    [Google Scholar]
  86. ChoteauL. VancraeynesteH. Le RoyD. DubuquoyL. RomaniL. JouaultT. PoulainD. SendidB. CalandraT. RogerT. JawharaS. Role of TLR1, TLR2 and TLR6 in the modulation of intestinal inflammation and Candida albicans elimination.Gut Pathog.201791910.1186/s13099‑017‑0158‑028289440
    [Google Scholar]
  87. Díez-SainzE. Lorente-CebriánS. AranazP. AmriE.Z. Riezu-BojJ.I. MilagroF.I. miR482f and miR482c-5p from edible plant-derived foods inhibit the expression of pro-inflammatory genes in human THP-1 macrophages.Front. Nutr.202310128731210.3389/fnut.2023.128731238099184
    [Google Scholar]
  88. YinL. YanL. YuQ. WangJ. LiuC. WangL. ZhengL. Characterization of the microRNA profile of ginger exosome-like nanoparticles and their anti-inflammatory effects in intestinal caco-2 cells.J. Agric. Food Chem.202270154725473410.1021/acs.jafc.1c0730635261246
    [Google Scholar]
  89. CavalieriD. RizzettoL. TocciN. RiveroD. AsquiniE. Si-AmmourA. BonechiE. BalleriniC. ViolaR. Plant microRNAs as novel immunomodulatory agents.Sci. Rep.2016612576110.1038/srep2576127167363
    [Google Scholar]
  90. Llorens-MartínM. JuradoJ. HernándezF. AvilaJ. GSK-3β, a pivotal kinase in Alzheimer disease.Front. Mol. Neurosci.201474624904272
    [Google Scholar]
  91. SharmaS. ChauhanN. PaliwalS. JainS. VermaK. PaliwalS. GSK-3β and its inhibitors in Alzheimer’s disease: A recent update.Mini Rev. Med. Chem.202222222881289510.2174/138955752266622042009431735450523
    [Google Scholar]
  92. ZhangY. HuangN. YanF. JinH. ZhouS. ShiJ. JinF. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link.Behav. Brain Res.2018339576510.1016/j.bbr.2017.11.01529158110
    [Google Scholar]
  93. LuZ. FuJ. WuG. YangZ. WuX. WangD. YouZ. NieZ. ShengQ. Neuroprotection and mechanism of gas-miR36-5p from Gastrodia elata in an Alzheimer’s disease model by regulating glycogen synthase kinase-3β.Int. J. Mol. Sci.202324241729510.3390/ijms242417295
    [Google Scholar]
  94. AvsarB. ZhaoY. LiW. LukiwW.J. Atropa belladonna expresses a microRNA (aba-miRNA-9497) highly homologous to Homo sapiens miRNA-378 (hsa-miRNA-378); Both miRNAs target the 3′-Untranslated region (3′-UTR) of the mRNA encoding the neurologically relevant, zinc-finger transcription factor ZNF-691.Cell. Mol. Neurobiol.202040117918810.1007/s10571‑019‑00729‑w31456135
    [Google Scholar]
  95. HuangH. PhamQ. DavisC.D. YuL. WangT.T.Y. Delineating effect of corn microRNAs and matrix, ingested as whole food, on gut microbiota in a rodent model.Food Sci. Nutr.2020884066407710.1002/fsn3.167232884688
    [Google Scholar]
  96. XuQ. QinX. ZhangY. XuK. LiY. LiY. QiB. LiY. YangX. WangX. Plant miRNA bol-miR159 regulates gut microbiota composition in mice: In vivo evidence of the crosstalk between plant miRNAs and intestinal microbes.J. Agric. Food Chem.20237143161601617310.1021/acs.jafc.3c0610437862127
    [Google Scholar]
  97. ChenX. WuR. ZhuY. RenZ. TongY. YangF. DaiG. Study on the inhibition of Mfn1 by plant-derived miR5338 mediating the treatment of BPH with rape bee pollen.BMC Complement. Altern. Med.20181813810.1186/s12906‑018‑2107‑y29382326
    [Google Scholar]
  98. KrishnatreyaD.B. RayD. BaruahP.M. DowarahB. BordoloiK.S. AgarwalH. AgarwalaN. Identification of putative miRNAs from expressed sequence tags of Gnetum gnemon L. and their cross-kingdom targets.BioTechnologia2021102217919510.5114/bta.2021.10652536606027
    [Google Scholar]
  99. MengX. JinW. WuF. Novel tomato miRNA miR1001 initiates cross-species regulation to suppress the conidiospore germination and infection virulence of Botrytis cinerea in vitro. Gene202075914500210.1016/j.gene.2020.14500232726608
    [Google Scholar]
  100. SamaridouE. HeyesJ. LutwycheP. Lipid nanoparticles for nucleic acid delivery: Current perspectives.Adv. Drug Deliv. Rev.2020154-155376310.1016/j.addr.2020.06.00232526452
    [Google Scholar]
  101. LongW.J. WuH.L. WangT. DongM.Y. ChenL.Z. YuR.Q. Fast identification of the geographical origin of Gastrodia elata using excitation-emission matrix fluorescence and chemometric methods.Spectrochim. Acta A Mol. Biomol. Spectrosc.202125811979810.1016/j.saa.2021.11979833892304
    [Google Scholar]
  102. YeX. WangY. ZhaoJ. WangM. AvulaB. PengQ. OuyangH. LingyunZ. ZhangJ. KhanI.A. Identification and characterization of key chemical constituents in processed Gastrodia elata using UHPLC-MS/MS and chemometric methods.J. Anal. Methods Chem.2019201911010.1155/2019/439620131772815
    [Google Scholar]
  103. SuZ. YangY. ChenS. TangZ. XuH. The processing methods, phytochemistry and pharmacology of Gastrodia elata Bl.: A comprehensive review. J Ethnopharmacol 2023; 314: 116467.Evid. Based Complement. Alternat. Med.202320235606021
    [Google Scholar]
  104. WuYN. WenSH. ZhangW. YuSS. YangK. Gastrodia elata BI.: A comprehensive review of its traditional use, botany, phytochemistry, pharmacology, and pharmacokinetics.Evid. Based Complement. Alternat. Med.202320235606021
    [Google Scholar]
  105. LiuY. GaoJ. PengM. MengH. MaH. CaiP. XuY. ZhaoQ. SiG. A Review on central nervous system effects of gastrodin.Front. Pharmacol.201892410.3389/fphar.2018.0002429456504
    [Google Scholar]
  106. YinH. LiuR. BieL. Gastrodin ameliorates neuroinflammation in Alzheimer’s disease mice by inhibiting NF-κB signaling activation via PPARγ stimulation.Aging (Albany NY)202416108657866610.18632/aging.20583138752930
    [Google Scholar]
  107. HuY. LiC. ShenW. Gastrodin alleviates memory deficits and reduces neuropathology in a mouse model of Alzheimer’s disease.Neuropathology201434437037710.1111/neup.1211524661139
    [Google Scholar]
  108. WangW. WangY. WangF. XieG. LiuS. LiZ. WangP. LiuJ. LinL. Gastrodin regulates the TLR4/TRAF6/NF-κB pathway to reduce neuroinflammation and microglial activation in an AD model.Phytomedicine202412815551810.1016/j.phymed.2024.15551838552431
    [Google Scholar]
  109. AnandA. KhuranaN. KaurS. AliN. AlAsmariA.F. WaseemM. IqbalM. AlzahraniF.M. SharmaN. The multifactorial role of vanillin in amelioration of aluminium chloride and D-galactose induced Alzheimer’s disease in mice.Eur. J. Pharmacol.202395417583210.1016/j.ejphar.2023.17583237329974
    [Google Scholar]
  110. AlroujiM. YasminS. AlhumaydhiF.A. SharafS.E. ShahwanM. FurkanM. KhanR.H. ShamsiA. Comprehensive spectroscopic and computational insight into the binding of vanillin with human transferrin: Targeting neuroinflammation in Alzheimer’s disease therapeutics.Front. Pharmacol.202415139733210.3389/fphar.2024.139733238799161
    [Google Scholar]
  111. AnandA. KhuranaN. AliN. AlAsmariA.F. AlharbiM. WaseemM. SharmaN. Ameliorative effect of vanillin on scopolamine-induced dementia-like cognitive impairment in a mouse model.Front. Neurosci.202216100597210.3389/fnins.2022.100597236408377
    [Google Scholar]
  112. AlahmariA. Blood-brain barrier overview: Structural and functional correlation.Neural Plast.2021202111010.1155/2021/656458534912450
    [Google Scholar]
  113. KayaM. AhishaliB. Basic physiology of the blood-brain barrier in health and disease: A brief overview.Tissue Barriers202191184091310.1080/21688370.2020.184091333190576
    [Google Scholar]
  114. WuD. ChenQ. ChenX. HanF. ChenZ. WangY. The blood– brain barrier: Structure, regulation, and drug delivery.Signal Transduct. Target. Ther.20238121710.1038/s41392‑023‑01481‑w37231000
    [Google Scholar]
  115. KadryH. NooraniB. CuculloL. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity.Fluids Barriers CNS20201716910.1186/s12987‑020‑00230‑333208141
    [Google Scholar]
  116. StampM.E.M. HalwesM. NisbetD. CollinsD.J. Breaking barriers: Exploring mechanisms behind opening the blood–brain barrier.Fluids Barriers CNS20232018710.1186/s12987‑023‑00489‑238017530
    [Google Scholar]
  117. SweeneyM.D. ZhaoZ. MontagneA. NelsonA.R. ZlokovicB.V. Blood-brain barrier: From physiology to disease and back.Physiol. Rev.2019991217810.1152/physrev.00050.201730280653
    [Google Scholar]
  118. LinZ. SurS. LiuP. LiY. JiangD. HouX. DarrowJ. PillaiJ.J. YasarS. RosenbergP. AlbertM. MoghekarA. LuH. Blood-brain barrier breakdown in relationship to Alzheimer and vascular disease.Ann. Neurol.202190222723810.1002/ana.2613434041783
    [Google Scholar]
  119. TerstappenG.C. MeyerA.H. BellR.D. ZhangW. Strategies for delivering therapeutics across the blood–brain barrier.Nat. Rev. Drug Discov.202120536238310.1038/s41573‑021‑00139‑y33649582
    [Google Scholar]
  120. PardridgeW.M. Drug transport across the blood-brain barrier.J. Cereb. Blood Flow Metab.201232111959197210.1038/jcbfm.2012.12622929442
    [Google Scholar]
  121. DongX. Current strategies for brain drug delivery.Theranostics2018861481149310.7150/thno.2125429556336
    [Google Scholar]
  122. XiongB. WangY. ChenY. XingS. LiaoQ. ChenY. LiQ. LiW. SunH. Strategies for structural modification of small molecules to improve blood-brain barrier penetration: A recent perspective.J. Med. Chem.20216418131521317310.1021/acs.jmedchem.1c0091034505508
    [Google Scholar]
  123. MengF. XiY. HuangJ. AyersP.W. A curated diverse molecular database of blood-brain barrier permeability with chemical descriptors.Sci. Data20218128910.1038/s41597‑021‑01069‑534716354
    [Google Scholar]
  124. CornelissenF.M.G. MarkertG. DeutschG. AntonaraM. FaaijN. BartelinkI. NoskeD. VandertopW.P. BenderA. WestermanB.A. Explaining blood- brain barrier permeability of small molecules by integrated analysis of different transport mechanisms.J. Med. Chem.202366117253726710.1021/acs.jmedchem.2c0182437217193
    [Google Scholar]
  125. LuH. ZhangJ. CaoY. WuS. WeiY. YinR. Advances in applications of artificial intelligence algorithms for cancer-related miRNA research.Zhejiang Da Xue Xue Bao Yi Xue Ban202453223124338650448
    [Google Scholar]
  126. ParveenA. MustafaS.H. YadavP. KumarA. Applications of machine learning in miRNA discovery and target prediction.Curr. Genomics202020853754410.2174/138920292166620010611181332581642
    [Google Scholar]
  127. AzariH. NazariE. MohitR. AsadniaA. MaftoohM. NassiriM. HassanianS.M. Ghayour-MobarhanM. ShahidsalesS. KhazaeiM. FernsG.A. AvanA. Machine learning algorithms reveal potential miRNAs biomarkers in gastric cancer.Sci. Rep.2023131614710.1038/s41598‑023‑32332‑x37061507
    [Google Scholar]
  128. GuT. ZhaoX. BarbazukW.B. LeeJ.H. miTAR: A hybrid deep learning-based approach for predicting miRNA targets.BMC Bioinformatics20212219610.1186/s12859‑021‑04026‑633639834
    [Google Scholar]
  129. ZouS. TongQ. LiuB. HuangW. TianY. FuX. Targeting STAT3 in cancer immunotherapy.Mol. Cancer202019114510.1186/s12943‑020‑01258‑732972405
    [Google Scholar]
  130. LiuY. LiaoS. BennettS. TangH. SongD. WoodD. ZhanX. XuJ. STAT3 and its targeting inhibitors in osteosarcoma.Cell Prolif.2021542e1297410.1111/cpr.1297433382511
    [Google Scholar]
  131. MaJ. QinL. LiX. Role of STAT3 signaling pathway in breast cancer.Cell Commun. Signal.20201813310.1186/s12964‑020‑0527‑z32111215
    [Google Scholar]
  132. HuY.S. HanX. LiuX.H. STAT3: A potential drug target for tumor and inflammation.Curr. Top. Med. Chem.201919151305131710.2174/156802661966619062014505231218960
    [Google Scholar]
  133. HashemiM. AbbaszadehS. RashidiM. AminiN. Talebi AnarakiK. MotahharyM. KhalilipouyaE. Harif NashtifaniA. ShafieiS. Ramezani FaraniM. NabaviN. SalimimoghadamS. ArefA.R. RaesiR. TaheriazamA. EntezariM. ZhaW. STAT3 as a newly emerging target in colorectal cancer therapy: Tumorigenesis, therapy response, and pharmacological/nanoplatform strategies.Environ. Res.202323311645810.1016/j.envres.2023.11645837348629
    [Google Scholar]
  134. El-TananiM. Al KhatibA.O. AladwanS.M. AbuelhanaA. McCarronP.A. TambuwalaM.M. Importance of STAT3 signalling in cancer, metastasis and therapeutic interventions.Cell. Signal.20229211027510.1016/j.cellsig.2022.11027535122990
    [Google Scholar]
  135. LeeH. JeongA.J. YeS.K. Highlighted STAT3 as a potential drug target for cancer therapy.BMB Rep.201952741542310.5483/BMBRep.2019.52.7.15231186087
    [Google Scholar]
  136. LaudisiF. CherubiniF. MonteleoneG. StolfiC. STAT3 interactors as potential therapeutic targets for cancer treatment.Int. J. Mol. Sci.2018196178710.3390/ijms1906178729914167
    [Google Scholar]
  137. ZhengC. HuangL. LuoW. YuW. HuX. GuanX. CaiY. ZouC. YinH. XuZ. LiangG. WangY. Inhibition of STAT3 in tubular epithelial cells prevents kidney fibrosis and nephropathy in STZ-induced diabetic mice.Cell Death Dis.2019101184810.1038/s41419‑019‑2085‑031699972
    [Google Scholar]
  138. LiQ. ChengY. ZhangZ. BiZ. MaX. WeiY. WeiX. Inhibition of ROCK ameliorates pulmonary fibrosis by suppressing M2 macrophage polarisation through phosphorylation of STAT3.Clin. Transl. Med.20221210e103610.1002/ctm2.103636178087
    [Google Scholar]
  139. ChenW. YuanH. CaoW. WangT. ChenW. YuH. FuY. JiangB. ZhouH. GuoH. ZhaoX. Blocking interleukin-6 trans-signaling protects against renal fibrosis by suppressing STAT3 activation.Theranostics20199143980399110.7150/thno.3235231281526
    [Google Scholar]
  140. JiaY. WangQ. LiangM. HuangK. KPNA2 promotes angiogenesis by regulating STAT3 phosphorylation.J. Transl. Med.202220162710.1186/s12967‑022‑03841‑636578083
    [Google Scholar]
  141. DamascenoL.E.A. PradoD.S. VerasF.P. FonsecaM.M. Toller-KawahisaJ.E. RosaM.H. PúblioG.A. MartinsT.V. RamalhoF.S. WaismanA. CunhaF.Q. CunhaT.M. Alves-FilhoJ.C. PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine- tuning STAT3 activation.J. Exp. Med.202021710e2019061310.1084/jem.2019061332697823
    [Google Scholar]
  142. ParisA.J. HayerK.E. OvedJ.H. AvgoustiD.C. ToulminS.A. ZeppJ.A. ZachariasW.J. KatzenJ.B. BasilM.C. KrempM.M. SlamowitzA.R. JayachandranS. SivakumarA. DaiN. WangP. FrankD.B. EisenlohrL.C. CantuE.III BeersM.F. WeitzmanM.D. MorriseyE.E. WorthenG.S. STAT3–BDNF–TrkB signalling promotes alveolar epithelial regeneration after lung injury.Nat. Cell Biol.202022101197121010.1038/s41556‑020‑0569‑x32989251
    [Google Scholar]
  143. FuZ. WangL. LiS. ChenF. Au-YeungK.K.W. ShiC. MicroRNA as an important target for anticancer drug development.Front. Pharmacol.20211273632310.3389/fphar.2021.73632334512363
    [Google Scholar]
  144. SaiyedA.N. VasavadaA.R. JoharS.R.K. Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases.Future J Pharm Sci2022812410.1186/s43094‑022‑00413‑935382490
    [Google Scholar]
  145. BhatnagarD. LadheS. KumarD. Discerning the prospects of miRNAs as a multi-target therapeutic and diagnostic for Alzheimer’s disease.Mol. Neurobiol.202360105954597410.1007/s12035‑023‑03446‑037386272
    [Google Scholar]
  146. GaálZ. Role of microRNAs in immune regulation with translational and clinical applications.Int. J. Mol. Sci.2024253194210.3390/ijms2503194238339220
    [Google Scholar]
  147. ZhuS. PanW. QianY. MicroRNA in immunity and autoimmunity.J. Mol. Med. (Berl.)20139191039105010.1007/s00109‑013‑1043‑z23636510
    [Google Scholar]
  148. JiaY. WeiY. Modulators of microRNA function in the immune system.Int. J. Mol. Sci.2020217235710.3390/ijms2107235732235299
    [Google Scholar]
  149. ZhouX. LiX. WuM. miRNAs reshape immunity and inflammatory responses in bacterial infection.Signal Transduct. Target. Ther.2018311410.1038/s41392‑018‑0006‑929844933
    [Google Scholar]
  150. DasguptaI. ChatterjeeA. Recent advances in miRNA delivery systems.Methods Protoc.2021411010.3390/mps401001033498244
    [Google Scholar]
  151. GarreauM. WeidnerJ. HamiltonR. KolosionekE. TokiN. StavenhagenK. ParisC. BonettiA. CzechtizkyW. GnerlichF. RydzikA. Chemical modification patterns for microRNA therapeutic mimics: A structure-activity relationship (SAR) case-study on miR-200c.Nucleic Acids Res.20245262792280710.1093/nar/gkae14138421619
    [Google Scholar]
  152. LiangC. ZouT. ZhangM. FanW. ZhangT. JiangY. CaiY. ChenF. ChenX. SunY. ZhaoB. WangY. CuiL. MicroRNA-146a switches microglial phenotypes to resist the pathological processes and cognitive degradation of Alzheimer’s disease.Theranostics20211194103412110.7150/thno.5341833754051
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128310724240730072626
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test