Skip to content
2000
Volume 30, Issue 38
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

On a global scale, cancer is a difficult and devastating illness. Several problems with current chemotherapies include cytotoxicity, lack of selectivity, stem-like cell growth, and multi-drug resistance. The most appropriate nanomaterials for cancer treatment are those with characteristics, such as cytotoxicity, restricted specificity, and drug capacity and bioavailability; these materials are nanosized (1-100 nm). Nanodrugs are rarely licenced for therapeutic use despite growing research. These compounds need nanocarrier-targeted drug delivery experiments to improve their translation. This review describes new nanomaterials reported in the literature, impediments to their clinical studies, and their beneficial cancer therapeutic use. It also suggests ways to use nanomaterials in cancer therapy more efficiently and describes the intrinsic challenges of cancer treatment and the different nanocarriers and chemicals that can be utilised for specified tumour targeting. Furthermore, it provides a concise overview of cancer theranostics methods, with a focus on those that make use of nanomaterials. Although nanotechnology offers a great source for future advancements in cancer detection and therapy, there is an emerging need for more studies to address the present barriers to clinical translation.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128317407240724065912
2024-11-01
2025-01-10
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  2. CaoW. ChenH.D. YuY.W. LiN. ChenW.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020.Chin. Med. J.2021134778379110.1097/CM9.000000000000147433734139
    [Google Scholar]
  3. ArnoldM. MorganE. RumgayH. MafraA. SinghD. LaversanneM. VignatJ. GralowJ.R. CardosoF. SieslingS. SoerjomataramI. Current and future burden of breast cancer: Global statistics for 2020 and 2040.Breast202266152310.1016/j.breast.2022.08.01036084384
    [Google Scholar]
  4. HaierJ. SchaefersJ. Economic perspective of cancer care and its consequences for vulnerable groups.Cancers20221413315810.3390/cancers1413315835804928
    [Google Scholar]
  5. ZhongL. LiY. XiongL. WangW. WuM. YuanT. YangW. TianC. MiaoZ. WangT. YangS. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives.Signal Transduct. Target. Ther.20216120110.1038/s41392‑021‑00572‑w34054126
    [Google Scholar]
  6. XieY.H. ChenY.X. FangJ.Y. Comprehensive review of targeted therapy for colorectal cancer.Signal Transduct. Target. Ther.2020512210.1038/s41392‑020‑0116‑z32296018
    [Google Scholar]
  7. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.00737397557
    [Google Scholar]
  8. ZhuR. ZhangF. PengY. XieT. WangY. LanY. Current progress in cancer treatment using nanomaterials.Front. Oncol.20221293012510.3389/fonc.2022.93012535912195
    [Google Scholar]
  9. YangY. ChenQ. QiuY. WangY. HuangQ. AiK. Editorial: Nanomaterials and multimodal tumor therapy.Front. Oncol.202212108168710.3389/fonc.2022.108168736568218
    [Google Scholar]
  10. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑037814270
    [Google Scholar]
  11. KyriakidesT.R. RajA. TsengT.H. XiaoH. NguyenR. MohammedF.S. HalderS. XuM. WuM.J. BaoS. SheuW.C. Biocompatibility of nanomaterials and their immunological properties.Biomed. Mater.202116404200510.1088/1748‑605X/abe5fa33578402
    [Google Scholar]
  12. AbbasiR. ShinehG. MobarakiM. DoughtyS. TayebiL. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review.J. Nanopart. Res.20232534310.1007/s11051‑023‑05690‑w36875184
    [Google Scholar]
  13. DessaleM. MengistuG. MengistH.M. Nanotechnology: A promising approach for cancer diagnosis, therapeutics and theragnosis.Int. J. Nanomed2022173735374910.2147/IJN.S37807436051353
    [Google Scholar]
  14. VermaJ. WarsameC. SeenivasagamR.K. KatiyarN.K. AleemE. GoelS. Nanoparticle-mediated cancer cell therapy: Basic science to clinical applications.Cancer Metastasis Rev.202342360162710.1007/s10555‑023‑10086‑236826760
    [Google Scholar]
  15. KongX. GaoP. WangJ. FangY. HwangK.C. Advances of medical nanorobots for future cancer treatments.J. Hematol. Oncol.20231617410.1186/s13045‑023‑01463‑z37452423
    [Google Scholar]
  16. SubhanM.A. YalamartyS.S.K. FilipczakN. ParveenF. TorchilinV.P. Recent advances in tumor targeting via EPR effect for cancer treatment.J. Pers. Med.202111657110.3390/jpm1106057134207137
    [Google Scholar]
  17. ArgenzianoM. ArpiccoS. BrusaP. CavalliR. ChirioD. DosioF. GallarateM. PeiraE. StellaB. UgazioE. Developing actively targeted nanoparticles to fight cancer: Focus on italian research.Pharmaceutics20211310153810.3390/pharmaceutics1310153834683830
    [Google Scholar]
  18. TiwariH. RaiN. SinghS. GuptaP. VermaA. SinghA.K. Kajal SalviP. SinghS.K. GautamV. Recent advances in nanomaterials-based targeted drug delivery for preclinical cancer diagnosis and therapeutics.Bioengineering202310776010.3390/bioengineering1007076037508788
    [Google Scholar]
  19. MalikS. MuhammadK. WaheedY. Emerging applications of nanotechnology in healthcare and medicine.Molecules20232818662410.3390/molecules2818662437764400
    [Google Scholar]
  20. KumbharP.R. KumarP. LasureA. VelayuthamR. MandalD. An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: Recent trends and future directions with clinical success.Discover Nano202318115610.1186/s11671‑023‑03913‑638112935
    [Google Scholar]
  21. YusufA. AlmotairyA.R.Z. HenidiH. AlshehriO.Y. AldughaimM.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems.Polymers2023157159610.3390/polym1507159637050210
    [Google Scholar]
  22. GawaliP. SaraswatA. BhideS. GuptaS. PatelK. Human solid tumors and clinical relevance of the enhanced permeation and retention effect: A ‘golden gate’ for nanomedicine in preclinical studies?Nanomedicine202318216919010.2217/nnm‑2022‑025737042320
    [Google Scholar]
  23. KashyapB.K. SinghV.V. SolankiM.K. KumarA. RuokolainenJ. KesariK.K. Smart nanomaterials in cancer theranostics: Challenges and opportunities.ACS Omega2023816142901432010.1021/acsomega.2c0784037125102
    [Google Scholar]
  24. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.200721275176010.1038/nnano.2007.38718654426
    [Google Scholar]
  25. MaedaH. NakamuraH. FangJ. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo.Adv. Drug Deliv. Rev.2013651717910.1016/j.addr.2012.10.00223088862
    [Google Scholar]
  26. GantaS. DevalapallyH. ShahiwalaA. AmijiM. A review of stimuli-responsive nanocarriers for drug and gene delivery.J. Control. Release2008126318720410.1016/j.jconrel.2007.12.01718261822
    [Google Scholar]
  27. BoboD. RobinsonK.J. IslamJ. ThurechtK.J. CorrieS.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date.Pharm. Res.201633102373238710.1007/s11095‑016‑1958‑527299311
    [Google Scholar]
  28. JokerstJV. GambhirSS. The era of personalized oncology: From diagnosis to treatment with nanomicelles.Int. J. Nanomed20116211226
    [Google Scholar]
  29. FarokhzadO.C. LangerR. Impact of nanotechnology on drug delivery.ACS Nano200931162010.1021/nn900002m19206243
    [Google Scholar]
  30. MasoodF. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.Mater. Sci. Eng. C20166056957810.1016/j.msec.2015.11.06726706565
    [Google Scholar]
  31. VijayanV. ReddyK.R. SakthivelS. SwethaC. Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: In vitro and in vivo studies.Colloids Surf. B Biointerfaces201311115015510.1016/j.colsurfb.2013.05.02023792547
    [Google Scholar]
  32. ShastriV. Non-degradable biocompatible polymers in medicine: Past, present and future.Curr. Pharm. Biotechnol.20034533133710.2174/138920103348969414529423
    [Google Scholar]
  33. ElsabahyM. WooleyK.L. Design of polymeric nanoparticles for biomedical delivery applications.Chem. Soc. Rev.20124172545256110.1039/c2cs15327k22334259
    [Google Scholar]
  34. Martín-SaldañaS. Palao-SuayR. AguilarM.R. Ramírez-CamachoR. San RománJ. Polymeric nanoparticles loaded with dexamethasone or α-tocopheryl succinate to prevent cisplatin-induced ototoxicity.Acta Biomater.20175319921010.1016/j.actbio.2017.02.01928213099
    [Google Scholar]
  35. WangJ. SuiL. HuangJ. MiaoL. NieY. WangK. YangZ. HuangQ. GongX. NanY. AiK. MoS2-based nanocomposites for cancer diagnosis and therapy.Bioact. Mater.20216114209424210.1016/j.bioactmat.2021.04.02133997503
    [Google Scholar]
  36. HuangJ. HuangQ. LiuM. ChenQ. AiK. Emerging bismuth chalcogenides based nanodrugs for cancer radiotherapy.Front. Pharmacol.20221384403710.3389/fphar.2022.84403735250594
    [Google Scholar]
  37. LaiW.F. Non-conjugated polymers with intrinsic luminescence for drug delivery.J. Drug Deliv. Sci. Technol.20205910191610.1016/j.jddst.2020.101916
    [Google Scholar]
  38. AjorlouE. KhosroushahiA.Y. Trends on polymer and lipid-based nanostructures for parenteral drug delivery to tumors.Cancer Chemother. Pharmacol.201779225126510.1007/s00280‑016‑3168‑627744564
    [Google Scholar]
  39. TeixeiraM.C. CarboneC. SoutoE.B. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery.Prog. Lipid Res.20176811110.1016/j.plipres.2017.07.00128778472
    [Google Scholar]
  40. AndreiukB. ReischA. LindeckerM. FollainG. PeyriérasN. GoetzJ.G. KlymchenkoA.S. Fluorescent polymer nanoparticles for cell barcoding in vitro and in vivo.Small20171338170158210.1002/smll.20170158228791769
    [Google Scholar]
  41. KangE.B. LeeJ.E. MazradZ.A.I. InI. JeongJ.H. ParkS.Y. pH-Responsible fluorescent carbon nanoparticles for tumor selective theranostics via pH-turn on/off fluorescence and photothermal effect in vivo and in vitro.Nanoscale20181052512252310.1039/C7NR07900A29344592
    [Google Scholar]
  42. TangC. EdelsteinJ. MikitshJ.L. XiaoE. HemphillA.H.II PagelsR. ChackoA.M. Prud’hommeR. Biodistribution and fate of core-labeled125 I polymeric nanocarriers prepared by Flash NanoPrecipitation (FNP).J. Mater. Chem. B Mater. Biol. Med.20164142428243410.1039/C5TB02172C27073688
    [Google Scholar]
  43. GoelM. MackeyevY. KrishnanS. Radiolabeled nanomaterial for cancer diagnostics and therapeutics: Principles and concepts.Cancer Nanotechnol.20231411510.1186/s12645‑023‑00165‑y36865684
    [Google Scholar]
  44. DeyR. XiaY. NiehM.P. BurkhardP. Molecular design of a minimal peptide nanoparticle.ACS Biomater. Sci. Eng.20173572473210.1021/acsbiomaterials.6b0024333440498
    [Google Scholar]
  45. ThakkarD. GuptaR. MohanP. MonsonK. RapoportN. Overcoming biological barriers with ultrasound.AIP Conf. Proc.2012148138138710.1063/1.475736524839333
    [Google Scholar]
  46. BaruaS. MitragotriS. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects.Nano Today20149222324310.1016/j.nantod.2014.04.00825132862
    [Google Scholar]
  47. ZhouY. PengZ. SevenE.S. LeblancR.M. Crossing the blood- brain barrier with nanoparticles.J. Control. Release201827029030310.1016/j.jconrel.2017.12.01529269142
    [Google Scholar]
  48. TharkarP. VaranasiR. WongW.S.F. JinC.T. ChrzanowskiW. Nano-enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond.Front. Bioeng. Biotechnol.2019732410.3389/fbioe.2019.0032431824930
    [Google Scholar]
  49. LockmanP.R. MumperR.J. KhanM.A. AllenD.D. Nanoparticle technology for drug delivery across the blood-brain barrier.Drug Dev. Ind. Pharm.200228111310.1081/DDC‑12000148111858519
    [Google Scholar]
  50. AliE.S. SharkerS.M. IslamM.T. KhanI.N. ShawS. RahmanM.A. UddinS.J. ShillM.C. RehmanS. DasN. AhmadS. ShilpiJ.A. TripathiS. MishraS.K. MubarakM.S. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives.Semin. Cancer Biol.202169526810.1016/j.semcancer.2020.01.01132014609
    [Google Scholar]
  51. RosenblumD. JoshiN. TaoW. KarpJ.M. PeerD. Progress and challenges towards targeted delivery of cancer therapeutics.Nat. Commun.201891141010.1038/s41467‑018‑03705‑y29650952
    [Google Scholar]
  52. ShiJ. XiaoZ. KamalyN. FarokhzadO.C. Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation.Acc. Chem. Res.201144101123113410.1021/ar200054n21692448
    [Google Scholar]
  53. SharmaP. BhargavaM. Applications and characteristics of nanomaterials in industrial environment.Res. Dev.2013346372
    [Google Scholar]
  54. SongS. QinY. HeY. HuangQ. FanC. ChenH.Y. Functional nanoprobes for ultrasensitive detection of biomolecules.Chem. Soc. Rev.201039114234424310.1039/c000682n20871878
    [Google Scholar]
  55. OsakiT. YokoeI. SundenY. OtaU. IchikawaT. ImazatoH. IshiiT. TakahashiK. IshizukaM. TanakaT. LiL. YamashitaM. MurahataY. TsukaT. AzumaK. ItoN. ImagawaT. OkamotoY. Efcacy of 5-aminolevulinic acid in photodynamic detection and photodynamic therapy in veterinary medicine.Cancers201911449510.3390/cancers1104049530959982
    [Google Scholar]
  56. GaoW. WangZ. LvL. YinD. ChenD. HanZ. MaY. ZhangM. YangM. GuY. Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues.Theranostics2016681131114410.7150/thno.1526227279907
    [Google Scholar]
  57. HorstM.F. CoralD.F. Fernández van RaapM.B. AlvarezM. LassalleV. Hybrid nanomaterials based on gum Arabic and magnetite for hyperthermia treatments.Mater. Sci. Eng. C20177444345010.1016/j.msec.2016.12.03528254315
    [Google Scholar]
  58. SamadA. SultanaY. AqilM. Liposomal drug delivery systems: An update review.Curr. Drug Deliv.20074429730510.2174/15672010778215126917979650
    [Google Scholar]
  59. ZhangL. GuF.X. ChanJ.M. WangA.Z. LangerR.S. FarokhzadO.C. Nanoparticles in medicine: Therapeutic applications and developments.Clin. Pharmacol. Ther.200883576176910.1038/sj.clpt.610040017957183
    [Google Scholar]
  60. PortneyN.G. OzkanM. Nano-oncology: Drug delivery, imaging, and sensing.Anal. Bioanal. Chem.2006384362063010.1007/s00216‑005‑0247‑716440195
    [Google Scholar]
  61. CattelL. CerutiM. DosioF. From conventional to stealth liposomes: A new frontier in cancer chemotherapy.Tumori200389323724910.1177/03008916030890030212908776
    [Google Scholar]
  62. JamesN.D. CokerR.J. TomlinsonD. HarrisJ.R.W. GompelsM. PinchingA.J. StewartJ.S.W. Liposomal doxorubicin (Doxil): An effective new treatment for Kaposi’s sarcoma in AIDS.Clin. Oncol. (R. Coll. Radiol.)19946529429610.1016/S0936‑6555(05)80269‑97530036
    [Google Scholar]
  63. LaginhaK.M. VerwoertS. CharroisG.J.R. AllenT.M. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors.Clin. Cancer Res.200511196944694910.1158/1078‑0432.CCR‑05‑034316203786
    [Google Scholar]
  64. SriramanS.K. GeraldoV. LutherE. DegterevA. TorchilinV. Cytotoxicity of PEGylated liposomes co-loaded with novel pro-apoptotic drug NCL-240 and the MEK inhibitor cobimetinib against colon carcinoma in vitro.J. Control. Release2015220Pt A16016810.1016/j.jconrel.2015.10.03726497930
    [Google Scholar]
  65. BatistG. GelmonK.A. ChiK.N. MillerW.H.Jr ChiaS.K.L. MayerL.D. SwensonC.E. JanoffA.S. LouieA.C. Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors.Clin. Cancer Res.200915269270010.1158/1078‑0432.CCR‑08‑051519147776
    [Google Scholar]
  66. DengZ.J. MortonS.W. Ben-AkivaE. DreadenE.C. ShopsowitzK.E. HammondP.T. Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment.ACS Nano20137119571958410.1021/nn404792524144228
    [Google Scholar]
  67. ZhangH. LiR. LuX. MouZ. LinG. Docetaxel-loaded liposomes: Preparation, pH sensitivity, Pharmacokinetics, and tissue distribution.J. Zhejiang Univ. Sci. B2012131298198910.1631/jzus.B120009823225853
    [Google Scholar]
  68. ZhangN. SuZ. LiangY. YaoY. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery.Int. J. Nanomed2015106185619710.2147/IJN.S9052426491291
    [Google Scholar]
  69. NaseriN. ValizadehH. Zakeri-MilaniP. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.04326504751
    [Google Scholar]
  70. KraftJ.C. FreelingJ.P. WangZ. HoR.J.Y. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems.J. Pharm. Sci.20141031295210.1002/jps.2377324338748
    [Google Scholar]
  71. DasS. ChaudhuryA. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery.AAPS PharmSciTech2011121627610.1208/s12249‑010‑9563‑021174180
    [Google Scholar]
  72. SelvamuthukumarS. VelmuruganR. Nanostructured lipid carriers: A potential drug carrier for cancer chemotherapy.Lipids Health Dis.201211115910.1186/1476‑511X‑11‑15923167765
    [Google Scholar]
  73. IqbalM.A. MdS. SahniJ.K. BabootaS. DangS. AliJ. Nanostructured lipid carriers system: Recent advances in drug delivery.J. Drug Target.2012201081383010.3109/1061186X.2012.71684522931500
    [Google Scholar]
  74. Ramezani DanaH. EbrahimiF. Synthesis, properties, and applications of polylactic acid-based polymers.Polym. Eng. Sci.2023631224310.1002/pen.26193
    [Google Scholar]
  75. ChengZ. LiM. DeyR. ChenY. Nanomaterials for cancer therapy: Current progress and perspectives.J. Hematol. Oncol.20211418510.1186/s13045‑021‑01096‑034059100
    [Google Scholar]
  76. PeltekO.O. MuslimovA.R. ZyuzinM.V. TiminA.S. Current outlook on radionuclide delivery systems: From design consideration to translation into clinics.J. Nanobiotechnol20191719010.1186/s12951‑019‑0524‑931434562
    [Google Scholar]
  77. ZhouH. GeJ. MiaoQ. ZhuR. WenL. ZengJ. GaoM. Biodegradable inorganic nanoparticles for cancer theranostics: Insights into the degradation behavior.Bioconjug. Chem.202031231533110.1021/acs.bioconjchem.9b0069931765561
    [Google Scholar]
  78. ShettyA. ChandraS. Inorganic hybrid nanoparticles in cancer theranostics: Understanding their combinations for better clinical translation.Mater. Today Chem.20201810038110.1016/j.mtchem.2020.100381
    [Google Scholar]
  79. GobboO.L. SjaastadK. RadomskiM.W. VolkovY. Prina-MelloA. Magnetic nanoparticles in cancer theranostics.Theranostics20155111249126310.7150/thno.1154426379790
    [Google Scholar]
  80. KaphleA. NavyaP.N. UmapathiA. DaimaH.K. Nanomaterials for agriculture, food and environment: Applications, toxicity and regulation.Environ. Chem. Lett.2018161435810.1007/s10311‑017‑0662‑y
    [Google Scholar]
  81. YoussefF.S. El-BannaH.A. ElzorbaH.Y. GalalA.M. Application of some nanoparticles in the field of veterinary medicine.Int. J. Vet. Sci. Med.201971789310.1080/23144599.2019.169137932010725
    [Google Scholar]
  82. MadhyasthaH. MadhyasthaR. ThakurA. KentaroS. DevA. SinghS. Chandrashekharappa RB. KumarH. AcevedoO. NakajimaY. DaimaH.K. AradhyaA. Nagaraj PN. MaruyamaM. c-Phycocyanin primed silver nano conjugates: Studies on red blood cell stress resilience mechanism.Colloids Surf. B Biointerfaces202019411121110.1016/j.colsurfb.2020.11121132615521
    [Google Scholar]
  83. AustinL.A. KangB. YenC.W. El-SayedM.A. Plasmonic imaging of human oral cancer cell communities during programmed cell death by nuclear-targeting silver nanoparticles.J. Am. Chem. Soc.201113344175941759710.1021/ja207807t21981727
    [Google Scholar]
  84. LiuK. LiuK. LiuJ. RenQ. ZhaoZ. WuX. LiD. YuanF. YeK. LiB. Copper chalcogenide materials as photothermal agents for cancer treatment.Nanoscale20201252902291310.1039/C9NR08737K31967164
    [Google Scholar]
  85. YunB. ZhuH. YuanJ. SunQ. LiZ. Synthesis, modification and bioapplications of nanoscale copper chalcogenides.J. Mater. Chem. B Mater. Biol. Med.20208224778481210.1039/D0TB00182A32226981
    [Google Scholar]
  86. NetamA.K. PrasadJ. SatapathyT. JainP. Evaluation for toxicity and improved therapeutic effectiveness of natural polymer co-administered along with venocin in acetic acid-induced colitis using rat model BT - advances in biomedical engineering and technology. RizvanovA.A. SinghB.K. GanasalaP. SingaporeSpringer Singapore2021207220
    [Google Scholar]
  87. ZhaoY. SongM. YangX. YangJ. DuC. WangG. YiJ. ShanG. LiD. LiuL. YanD. LiY. LiuX. Amorphous Ag2-xCuxS quantum dots: “All-in-one” theranostic nanomedicines for near-infrared fluorescence/photoacoustics dual-modal-imaging-guided photothermal therapy.Chem. Eng. J.202039912577710.1016/j.cej.2020.125777
    [Google Scholar]
  88. LiX. PanZ. XiangC. YuanY. ChenJ. QingG. MaJ. LiangX-J. WuY. GuoW. Structure transformable nanoparticles for photoacoustic imaging-guided photothermal ablation of tumors via enzyme-induced multistage delivery.Chem. Eng. J.202142112774710.1016/j.cej.2020.127747
    [Google Scholar]
  89. WangS. ZhangL. ZhaoJ. HeM. HuangY. ZhaoS. A tumor microenvironment-induced absorption red-shifted polymer nanoparticle for simultaneously activated photoacoustic imaging and photothermal therapy.Sci. Adv.2021712eabe3588
    [Google Scholar]
  90. SieversE.L. SenterP.D. Antibody-drug conjugates in cancer therapy.Annu. Rev. Med.2013641152910.1146/annurev‑med‑050311‑20182323043493
    [Google Scholar]
  91. NietoC. VegaM.A. Martín del ValleE.M. Trastuzumab: More than a guide in HER2-positive cancer nanomedicine.Nanomaterials2020109167410.3390/nano1009167432859026
    [Google Scholar]
  92. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑634866166
    [Google Scholar]
  93. FuQ. WangJ. LiuH. Chemo-immune synergetic therapy of esophageal carcinoma: Trastuzumab modified, cisplatin and fluorouracil co-delivered lipid–polymer hybrid nanoparticles.Drug Deliv.20202711535154310.1080/10717544.2020.183729433118428
    [Google Scholar]
  94. LiangS. SunM. LuY. ShiS. YangY. LinY. FengC. LiuJ. DongC. Cytokine-induced killer cells-assisted tumor-targeting delivery of HER-2 monoclonal antibody-conjugated gold nanostars with NIR photosensitizer for enhanced therapy of cancer.J. Mater. Chem. B Mater. Biol. Med.20208368368838210.1039/D0TB01391A32966532
    [Google Scholar]
  95. de CharetteM. MarabelleA. HouotR. Turning tumour cells into antigen presenting cells: The next step to improve cancer immunotherapy?Eur. J. Cancer20166813414710.1016/j.ejca.2016.09.01027755997
    [Google Scholar]
  96. XuP. WangR. YangW. LiuY. HeD. YeZ. ChenD. DingY. TuJ. ShenY. A DM1-doped porous gold nanoshell system for NIR accelerated redox-responsive release and triple modal imaging guided photothermal synergistic chemotherapy.J. Nanobiotechnol20211917710.1186/s12951‑021‑00824‑533741008
    [Google Scholar]
  97. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.10827834398
    [Google Scholar]
  98. KubotaT. KurodaS. KanayaN. MorihiroT. AoyamaK. YoshihikoK. HER2-targeted gold nanoparticles potentially overcome resistance to trastuzumab in gastric cancer. Nanomed Nanotechnol Biol Med20181461919-29
    [Google Scholar]
  99. GyörgyB. SzabóT.G. PásztóiM. PálZ. MisjákP. AradiB. LászlóV. PállingerÉ. PapE. KittelÁ. NagyG. FalusA. BuzásE.I. Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles.Cell. Mol. Life Sci.201168162667268810.1007/s00018‑011‑0689‑321560073
    [Google Scholar]
  100. RaposoG. StoorvogelW. Extracellular vesicles: Exosomes, microvesicles, and friends.J. Cell Biol.2013200437338310.1083/jcb.20121113823420871
    [Google Scholar]
  101. ColomboM. RaposoG. ThéryC. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.Annu. Rev. Cell Dev. Biol.201430125528910.1146/annurev‑cellbio‑101512‑12232625288114
    [Google Scholar]
  102. BatrakovaE.V. KimM.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery.J. Control. Release201521939640510.1016/j.jconrel.2015.07.03026241750
    [Google Scholar]
  103. PhelpsM.P. YangH. PatelS. RahmanM.M. McFaddenG. ChenE. Oncolytic virus-mediated RAS targeting in rhabdomyosarcoma.Mol. Ther. Oncolytics201811526110.1016/j.omto.2018.09.00130364635
    [Google Scholar]
  104. Sudhir DhoteN. Dineshbhai PatelR. KuwarU. AgrawalM. AlexanderA. JainP. Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting.Curr. Cancer Drug Targets2024244375-96
    [Google Scholar]
  105. MossK.H. PopovaP. HadrupS.R. AstakhovaK. TaskovaM. Lipid nanoparticles for delivery of therapeutic RNA oligonucleotides.Mol. Pharm.20191662265227710.1021/acs.molpharmaceut.8b0129031063396
    [Google Scholar]
  106. BriolayT. PetithommeT. FouetM. Nguyen-PhamN. BlanquartC. BoisgeraultN. Delivery of cancer therapies by synthetic and bio-inspired nanovectors.Mol. Cancer20212015510.1186/s12943‑021‑01346‑233761944
    [Google Scholar]
  107. Alvarez-ErvitiL. SeowY. YinH. BettsC. LakhalS. WoodM.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes.Nat. Biotechnol.201129434134510.1038/nbt.180721423189
    [Google Scholar]
  108. KimM.S. HaneyM.J. ZhaoY. YuanD. DeygenI. KlyachkoN.L. KabanovA.V. BatrakovaE.V. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: In vitro and in vivo evaluations.Nanomedicine201814119520410.1016/j.nano.2017.09.01128982587
    [Google Scholar]
  109. JaiswalM DudheR SharmaPK Nanoemulsion: An advanced mode of drug delivery system.3 Biotech2015512312710.1007/s13205‑014‑0214‑0
    [Google Scholar]
  110. GorainB. ChoudhuryH. NairA.B. DubeyS.K. KesharwaniP. Theranostic application of nanoemulsions in chemotherapy.Drug Discov. Today20202571174118810.1016/j.drudis.2020.04.01332344042
    [Google Scholar]
  111. GadhaveD.G. KokareC.R. Nanostructured lipid carriers engineered for intranasal delivery of teriflunomide in multiple sclerosis: Optimization and in vivo studies.Drug Dev. Ind. Pharm.201945583985110.1080/03639045.2019.157672430702966
    [Google Scholar]
  112. PrasadJ. NetamA.K. SatapathyT. Prakash RaoS. JainP. Anti-hyperlipidemic and antioxidant activities of a combination of terminalia arjuna and commiphora mukul on experimental animals BT - advances in biomedical engineering and technology. RizvanovA.A. SinghB.K. GanasalaP. SingaporeSpringer Singapore2021175188
    [Google Scholar]
  113. AzambujaJ.H. SchuhR.S. MichelsL.R. GelsleichterN.E. BeckenkampL.R. IserI.C. LenzG.S. de OliveiraF.H. VenturinG. GreggioS. daCostaJ.C. WinkM.R. SevignyJ. StefaniM.A. BattastiniA.M.O. TeixeiraH.F. BraganholE. Nasal administration of cationic nanoemulsions as CD73-siRNA delivery system for glioblastoma treatment: A new therapeutical approach.Mol. Neurobiol.202057263564910.1007/s12035‑019‑01730‑631407144
    [Google Scholar]
  114. DuM. YangZ. LuW. WangB. WangQ. ChenZ. ChenL. HanS. CaiT. CaiY. Design and development of spirulina polysaccharide-loaded nanoemulsions with improved the antitumor effects of paclitaxel.J. Microencapsul.202037640341210.1080/02652048.2020.176722432401077
    [Google Scholar]
  115. DianzaniC. MongeC. MiglioG. SerpeL. MartinaK. CangemiL. FerrarisC. MiolettiS. OsellaS. GigliottiC.L. BoggioE. ClementeN. DianzaniU. BattagliaL. Nanoemulsions as delivery systems for poly-chemotherapy aiming at melanoma treatment.Cancers2020125119810.3390/cancers1205119832397484
    [Google Scholar]
  116. RibeiroE.B. de MarchiP.G.F. Honorio-FrançaA.C. FrançaE.L. SolerM.A.G. Interferon-gamma carrying nanoemulsion with immunomodulatory and anti-tumor activities.J. Biomed. Mater. Res. A2020108223424510.1002/jbm.a.3680831587469
    [Google Scholar]
  117. MengL. XiaX. YangY. YeJ. DongW. MaP. JinY. LiuY. Co-encapsulation of paclitaxel and baicalein in nanoemulsions to overcome multidrug resistance via oxidative stress augmentation and P-glycoprotein inhibition.Int. J. Pharm.20165131-281610.1016/j.ijpharm.2016.09.00127596118
    [Google Scholar]
  118. BalachandranP. PughN.D. MaG. PascoD.S. Toll-like receptor 2-dependent activation of monocytes by Spirulina polysaccharide and its immune enhancing action in mice.Int. Immunopharmacol.20066121808181410.1016/j.intimp.2006.08.00117052671
    [Google Scholar]
  119. BakerJ.R.Jr Dendrimer-based nanoparticles for cancer therapy.Hematology20092009170871910.1182/asheducation‑2009.1.70820008257
    [Google Scholar]
  120. BhairamM. PrasadJ. VermaK. JainP. GidwaniB. Formulation of transdermal patch of losartan potassium & glipizide for the treatment of hypertension & diabetes.Mater. Today Proc.202383596810.1016/j.matpr.2023.01.147
    [Google Scholar]
  121. LoS.T. KumarA. HsiehJ.T. SunX Dendrimer nanoscaffolds for potential theranostics of prostate cancer with a focus on radiochemistry.Mol. Pharm.201310379381210.1021/mp300532523294202
    [Google Scholar]
  122. LiD. FanY. ShenM. BányaiI. ShiX. Design of dual drug-loaded dendrimer/carbon dot nanohybrids for fluorescence imaging and enhanced chemotherapy of cancer cells.J. Mater. Chem. B Mater. Biol. Med.20197227728510.1039/C8TB02723D32254552
    [Google Scholar]
  123. PishavarE. RamezaniM. HashemiM. Co-delivery of doxorubicin and TRAIL plasmid by modified PAMAM dendrimer in colon cancer cells, in vitro and in vivo evaluation.Drug Dev. Ind. Pharm.201945121931193910.1080/03639045.2019.168099531609130
    [Google Scholar]
  124. TarachP. JanaszewskaA. Recent advances in preclinical research using PAMAM dendrimers for cancer gene therapy.Int. J. Mol. Sci.2021226291210.3390/ijms2206291233805602
    [Google Scholar]
  125. IslamM. HuangY. JainP. FanB. TongL. WangF. Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno- functional property.Biocatal. Agric. Biotechnol.20235010270010.1016/j.bcab.2023.102700
    [Google Scholar]
  126. ThiT.T.H. SuysE.J.A. LeeJ.S. NguyenD.H. ParkK.D. TruongN.P. Lipid-based nanoparticles in the clinic and clinical trials: From cancer nanomedicine to COVID-19 vaccines.Vaccines20219435910.3390/vaccines904035933918072
    [Google Scholar]
  127. OlusanyaT. Haj AhmadR. IbegbuD. SmithJ. ElkordyA. Liposomal drug delivery systems and anticancer drugs.Molecules201823490710.3390/molecules2304090729662019
    [Google Scholar]
  128. LaiX. JiangH. WangX. Biodegradable metal organic frameworks for multimodal imaging and targeting theranostics.Biosensors202111929910.3390/bios1109029934562889
    [Google Scholar]
  129. AnselmoA. C. MitragotriS. Nanoparticles in the clinic: An update.Bioeng. Transl. Med.201943e10143
    [Google Scholar]
  130. ChenF. EhlerdingE.B. CaiW. Theranostic nanoparticles.J. Nucl. Med.201455121919192210.2967/jnumed.114.14601925413134
    [Google Scholar]
  131. RajakumarG. ZhangX.H. GomathiT. WangS.F. Azam AnsariM. MydhiliG. NirmalaG. AlzohairyM.A. ChungI.M. Current use of carbon-based materials for biomedical applications. A prospective and review.Processes20208335510.3390/pr8030355
    [Google Scholar]
  132. DhasN. PastagiaM. SharmaA. KheraA. KudarhaR. KulkarniS. SomanS. MutalikS. BarnwalR.P. SinghG. PatelM. Organic quantum dots: An ultrasmall nanoplatform for cancer theranostics.J. Control. Release202234879882410.1016/j.jconrel.2022.06.03335752250
    [Google Scholar]
  133. SaleemJ. WangL. ChenC. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment.Adv. Healthcare Mater.2018720180052510.1002/adhm.20180052530073803
    [Google Scholar]
  134. FadeelB. BussyC. MerinoS. VázquezE. FlahautE. MouchetF. EvaristeL. GauthierL. KoivistoA.J. VogelU. MartínC. DeloguL.G. Buerki-ThurnherrT. WickP. Beloin-Saint-PierreD. HischierR. PelinM. Candotto CarnielF. TretiachM. CescaF. BenfenatiF. ScainiD. BalleriniL. KostarelosK. PratoM. BiancoA. Safety assessment of graphene-based materials: Focus on human health and the environment.ACS Nano20181211105821062010.1021/acsnano.8b0475830387986
    [Google Scholar]
  135. OuL. SongB. LiangH. LiuJ. FengX. DengB. SunT. ShaoL. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms.Part. Fibre Toxicol.20161315710.1186/s12989‑016‑0168‑y27799056
    [Google Scholar]
  136. KrishnaK.V. Ménard-MoyonC. VermaS. BiancoA. Graphene-based nanomaterials for nanobiotechnology and biomedical applications.Nanomedicine20138101669168810.2217/nnm.13.14024074389
    [Google Scholar]
  137. NovoselovK.S. GeimA.K. MorozovS.V. JiangD. ZhangY. DubonosS.V. GrigorievaI.V. FirsovA.A. Electric field effect in atomically thin carbon films.Science2004306569666666910.1126/science.110289615499015
    [Google Scholar]
  138. LiuJ. DongJ. ZhangT. PengQ. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy.J. Control. Release2018286647310.1016/j.jconrel.2018.07.03430031155
    [Google Scholar]
  139. VerdeV. LongoA. CucciL.M. SanfilippoV. MagrìA. SatrianoC. AnfusoC.D. LupoG. La MendolaD. Anti-angiogenic and anti-proliferative graphene oxide nanosheets for tumor cell therapy.Int. J. Mol. Sci.20202115557110.3390/ijms2115557132759830
    [Google Scholar]
  140. RebuttiniV. FazioE. SantangeloS. NeriF. CaputoG. MartinC. BrousseT. FavierF. PinnaN. Chemical modification of graphene oxide through diazonium chemistry and its influence on the structure–property relationships of graphene oxide–iron oxide nanocomposites.Chemistry20152135124651247410.1002/chem.20150083626178747
    [Google Scholar]
  141. JainA. JainP. SoniP. TiwariA. TiwariS.P. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29).J. Gastrointest. Cancer2023541909510.1007/s12029‑021‑00788‑735043370
    [Google Scholar]
  142. EmaM. GamoM. HondaK. A review of toxicity studies on graphene-based nanomaterials in laboratory animals.Regul. Toxicol. Pharmacol.20178572410.1016/j.yrtph.2017.01.01128161457
    [Google Scholar]
  143. ZhangZ. LiuQ. GaoD. LuoD. NiuY. YangJ. LiY. Graphene oxide as a multifunctional platform for raman and fluorescence imaging of cells.Small201511253000300510.1002/smll.20140345925708171
    [Google Scholar]
  144. GeimA.K. Graphene: Status and prospects.Science200932459341530153410.1126/science.115887719541989
    [Google Scholar]
  145. GoenkaS. SantV. SantS. Graphene-based nanomaterials for drug delivery and tissue engineering.J. Control. Release2014173758810.1016/j.jconrel.2013.10.01724161530
    [Google Scholar]
  146. MaJ. LiuR. WangX. LiuQ. ChenY. ValleR.P. ZuoY.Y. XiaT. LiuS. Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals.ACS Nano2015910104981051510.1021/acsnano.5b0475126389709
    [Google Scholar]
  147. FeitoM.J. VilaM. MatesanzM.C. LinaresJ. GonçalvesG. MarquesP.A.A.P. Vallet-RegíM. RojoJ.M. PortolésM.T. In vitro evaluation of graphene oxide nanosheets on immune function.J. Colloid Interface Sci.201443222122810.1016/j.jcis.2014.07.00425086397
    [Google Scholar]
  148. BurnettM. AbuetabhY. WronskiA. ShenF. PersadS. LengR. EisenstatD. SergiC. Graphene oxide nanoparticles induce apoptosis in wild-type and CRISPR/Cas9-IGF/IGFBP3 knocked-out osteosarcoma cells.J. Cancer202011175007502310.7150/jca.4646432742448
    [Google Scholar]
  149. NajafiM. MortezaeeK. MajidpoorJ. Cancer stem cell (CSC) resistance drivers.Life Sci.201923411678110.1016/j.lfs.2019.11678131430455
    [Google Scholar]
  150. FiorilloM. VerreA.F. IliutM. Peiris-PagésM. OzsvariB. GandaraR. CappelloA.R. SotgiaF. VijayaraghavanA. LisantiM.P. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”.Oncotarget2015663553356210.18632/oncotarget.334825708684
    [Google Scholar]
  151. MengJ. YangM. JiaF. KongH. ZhangW. WangC. XingJ. XieS. XuH. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity.Nanotechnology2010211414510410.1088/0957‑4484/21/14/14510420234075
    [Google Scholar]
  152. MengJ. MengJ. DuanJ. KongH. LiL. WangC. XieS. ChenS. GuN. XuH. YangX.D. Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy.Small2008491364137010.1002/smll.20070105918720440
    [Google Scholar]
  153. SundaramP. AbrahamseH. Effective photodynamic therapy for colon cancer cells using chlorin e6 coated hyaluronic acid-based carbon nanotubes.Int. J. Mol. Sci.20202113474510.3390/ijms2113474532635295
    [Google Scholar]
  154. ParkY.H. ParkS.Y. InI. Direct noncovalent conjugation of folic acid on reduced graphene oxide as anticancer drug carrier.J. Ind. Eng. Chem.20153019019610.1016/j.jiec.2015.05.021
    [Google Scholar]
  155. LiuY. ZhongH. QinY. ZhangY. LiuX. ZhangT. Non-covalent hydrophilization of reduced graphene oxide used as a paclitaxel vehicle.RSC Advances2016636301843019310.1039/C6RA04349F
    [Google Scholar]
  156. MasoudipourE. KashanianS. MalekiN. A targeted drug delivery system based on dopamine functionalized nano graphene oxide.Chem. Phys. Lett.2017668566310.1016/j.cplett.2016.12.019
    [Google Scholar]
  157. JafarizadA. AghanejadA. SevimM. MetinÖ. BararJ. OmidiY. EkinciD. Gold nanoparticles and reduced graphene oxide-gold nanoparticle composite materials as covalent drug delivery systems for breast cancer treatment.ChemistrySelect20172236663667210.1002/slct.201701178
    [Google Scholar]
  158. NieX. TangJ. LiuY. CaiR. MiaoQ. ZhaoY. ChenC. Fullerenol inhibits the cross-talk between bone marrow-derived mesenchymal stem cells and tumor cells by regulating MAPK signaling.Nanomedicine20171361879189010.1016/j.nano.2017.03.01328365417
    [Google Scholar]
  159. RaoZ GeH LiuL ZhuC MinL LiuM FanL LiD Carboxymethyl cellulose modifed graphene oxide as pH-sensitive drug delivery system.Int J Biol Macromol2018107Part A11841192
    [Google Scholar]
  160. GuY.J. ChengJ. JinJ. ChengS.H. WongW.T. Development and evaluation of pH-responsive single-walled carbon nanotube-doxorubicin complexes in cancer cells.Int. J. Nanomed201162889289822131835
    [Google Scholar]
  161. MengH. XingG. SunB. ZhaoF. LeiH. LiW. SongY. ChenZ. YuanH. WangX. LongJ. ChenC. LiangX. ZhangN. ChaiZ. ZhaoY. Potent angiogenesis inhibition by the particulate form of fullerene derivatives.ACS Nano2010452773278310.1021/nn100448z20429577
    [Google Scholar]
  162. ZhouL. LiZ. LiuZ. RenJ. QuX. Luminescent carbon dot-gated nanovehicles for pH-triggered intracellular controlled release and imaging.Langmuir201329216396640310.1021/la400479n23642102
    [Google Scholar]
  163. DongX. SunZ. WangX. LengX. An innovative MWCNTs/DOX/TC nanosystem for chemo-photothermal combination therapy of cancer.Nanomedicine20171372271228010.1016/j.nano.2017.07.00228712919
    [Google Scholar]
  164. DubertretB. SkouridesP. NorrisD.J. NoireauxV. BrivanlouA.H. LibchaberA. In vivo imaging of quantum dots encapsulated in phospholipid micelles.Science200229855991759176210.1126/science.107719412459582
    [Google Scholar]
  165. GaoX. CuiY. LevensonR.M. ChungL.W.K. NieS. In vivo cancer targeting and imaging with semiconductor quantum dots.Nat. Biotechnol.200422896997610.1038/nbt99415258594
    [Google Scholar]
  166. PooresmaeilM. NamaziH. SalehiR. Synthesis of photoluminescent glycodendrimer with terminal β-cyclodextrin molecules as a biocompatible pH-sensitive carrier for doxorubicin delivery.Carbohydr. Polym.202024611665810.1016/j.carbpol.2020.11665832747290
    [Google Scholar]
  167. LinH. ChenY. ShiJ. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy.Chem. Soc. Rev.20184761938195810.1039/C7CS00471K29417106
    [Google Scholar]
  168. HanY. GaoS. ZhangY. NiQ. LiZ. LiangX.J. ZhangJ. Metal-based nanocatalyst for combined cancer therapeutics.Bioconjug. Chem.20203151247125810.1021/acs.bioconjchem.0c0019432319762
    [Google Scholar]
  169. TangZ. ZhangH. LiuY. NiD. ZhangH. ZhangJ. YaoZ. HeM. ShiJ. BuW. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy.Adv. Mater.20172947170168310.1002/adma.20170168329094389
    [Google Scholar]
  170. LeeK.T. LuY.J. MiF.L. BurnoufT. WeiY.T. ChiuS.C. ChuangE.Y. LuS.Y. Catalase-modulated heterogeneous fenton reaction for selective cancer cell eradication: SnFe2O4 nanocrystals as an effective reagent for treating lung cancer cells.ACS Appl. Mater. Interfaces2017921273127910.1021/acsami.6b1352928006093
    [Google Scholar]
  171. ZhangX. ZhengY. WangZ. HuangS. ChenY. JiangW. ZhangH. DingM. LiQ. XiaoX. LuoX. WangZ. QiH. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted therapy of residual tumor during HIFU ablation.Biomaterials201435195148516110.1016/j.biomaterials.2014.02.03624680663
    [Google Scholar]
  172. MaghsoudniaN. Baradaran EftekhariR. Naderi SohiA. NorouziP. AkbariH. GhahremaniM.H. SoleimaniM. AminiM. SamadiH. DorkooshF.A. Mitochondrial delivery of microRNA mimic let-7b to NSCLC cells by PAMAM-based nanoparticles.J. Drug Target.2020287-881883010.1080/1061186X.2020.177459432452217
    [Google Scholar]
  173. JeongK. YuY.J. YouJ.Y. RheeW.J. KimJ.A. Exosome-mediated microRNA-497 delivery for anti-cancer therapy in a microfluidic 3D lung cancer model.Lab Chip202020354855710.1039/C9LC00958B31942592
    [Google Scholar]
  174. ZhangK. DongC. ChenM. YangT. WangX. GaoY. WangL. WenY. ChenG. WangX. YuX. ZhangY. WangP. ShangM. HanK. ZhouY. Extracellular vesicle-mediated delivery of miR-101 inhibits lung metastasis in osteosarcoma.Theranostics202010141142510.7150/thno.3348231903129
    [Google Scholar]
  175. RoyB. GhoseS. BiswasS. Therapeutic strategies for miRNA delivery to reduce hepatocellular carcinoma.Semin. Cell Dev. Biol.202133926792
    [Google Scholar]
  176. NicolasJ. MuraS. BrambillaD. MackiewiczN. CouvreurP. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery.Chem. Soc. Rev.20134231147123510.1039/C2CS35265F23238558
    [Google Scholar]
  177. WangW. ZhouF. GeL. LiuX. KongF. Transferrin-PEG-PE modified dexamethasone conjugated cationic lipid carrier mediated gene delivery system for tumor-targeted transfection.Int. J. Nanomed201272513252222679364
    [Google Scholar]
  178. MarkmanJ.L. RekechenetskiyA. HollerE. LjubimovaJ.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance.Adv. Drug Deliv. Rev.20136513-141866187910.1016/j.addr.2013.09.01924120656
    [Google Scholar]
  179. Ryman-RasmussenJ.P. RiviereJ.E. Monteiro-RiviereN.A. Penetration of intact skin by quantum dots with diverse physicochemical properties.Toxicol. Sci.200691115916510.1093/toxsci/kfj12216443688
    [Google Scholar]
  180. XiaT. KovochichM. BrantJ. HotzeM. SempfJ. OberleyT. SioutasC. YehJ.I. WiesnerM.R. NelA.E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm.Nano Lett.2006681794180710.1021/nl061025k16895376
    [Google Scholar]
  181. PennA. MurphyG. BarkerS. HenkW. PennL. Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells.Environ. Health Perspect.2005113895696310.1289/ehp.766116079063
    [Google Scholar]
  182. VallhovH. QinJ. JohanssonS.M. AhlborgN. MuhammedM.A. ScheyniusA. GabrielssonS. The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications.Nano Lett.2006681682168610.1021/nl060860z16895356
    [Google Scholar]
  183. BertrandN. WuJ. XuX. KamalyN. FarokhzadO.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology.Adv. Drug Deliv. Rev.20146622510.1016/j.addr.2013.11.00924270007
    [Google Scholar]
  184. AlbaneseA. LamA.K. SykesE.A. RocheleauJ.V. ChanW.C.W. Tumour-on-a-chip provides an optical window into nanoparticle tissue transport.Nat. Commun.201341271810.1038/ncomms371824177351
    [Google Scholar]
  185. DuttaD. HeoI. CleversH. Disease modeling in stem cell-derived 3D organoid systems.Trends Mol. Med.201723539341010.1016/j.molmed.2017.02.00728341301
    [Google Scholar]
  186. BleijsM. van de WeteringM. CleversH. DrostJ. Xenograft and organoid model systems in cancer research.EMBO J.20193815e10165410.15252/embj.201910165431282586
    [Google Scholar]
  187. SebakA.A. GomaaI.E.O. ElMeshadA.N. FaragM.H. BreitingerU. BreitingerH.G. AbdelKaderM.H. Distinct proteins in protein corona of nanoparticles represent a promising venue for endogenous targeting-part I: In vitro release and intracellular uptake perspective.Int. J. Nanomed2020158845886210.2147/IJN.S27371333204091
    [Google Scholar]
  188. VromanL. AdamsA.L. FischerG.C. MunozP.C. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces.Blood198055115615910.1182/blood.V55.1.156.1567350935
    [Google Scholar]
  189. PederzoliF. TosiG. VandelliM.A. BellettiD. ForniF. RuoziB. Protein corona and nanoparticles: How can we investigate on?Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201796e146710.1002/wnan.146728296346
    [Google Scholar]
  190. RishaY. MinicZ. GhobadlooS.M. BerezovskiM.V. The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers.Sci. Rep.20201011357210.1038/s41598‑020‑70393‑432782317
    [Google Scholar]
  191. ElzekM.A. RodlandK.D. Proteomics of ovarian cancer: Functional insights and clinical applications.Cancer Metastasis Rev.2015341839610.1007/s10555‑014‑9547‑825736266
    [Google Scholar]
  192. HanahanD. WeinbergR.A. The hallmarks of cancer.Cell20001001577010.1016/S0092‑8674(00)81683‑910647931
    [Google Scholar]
  193. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  194. HartshornC.M. BradburyM.S. LanzaG.M. NelA.E. RaoJ. WangA.Z. WiesnerU.B. YangL. GrodzinskiP. Nanotechnology strategies to advance outcomes in clinical cancer care.ACS Nano2018121244310.1021/acsnano.7b0510829257865
    [Google Scholar]
  195. AvulaL.R. GrodzinskiP. Nanotechnology-aided advancement in the combating of cancer metastasis.Cancer Metastasis Rev.202241238340410.1007/s10555‑022‑10025‑735366154
    [Google Scholar]
  196. ChaturvediV.K. SinghA. SinghV.K. SinghM.P. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy.Curr. Drug Metab.201920641642910.2174/138920021966618091811152830227814
    [Google Scholar]
  197. SulaimanG.M. WaheebH.M. JabirM.S. KhazaalS.H. DewirY.H. NaidooY. Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, antiinflammatory and phagocytosis inducer model.Sci. Rep.2020101936210.1038/s41598‑020‑66419‑632518242
    [Google Scholar]
  198. TomarN. Dendrimers as nanocarriers in cancer chemotherapy.Anticancer Res.2019812
    [Google Scholar]
  199. PucciC. MartinelliC. CiofaniG. Innovative approaches for cancer treatment: Current perspectives and new challenges.ecancermedicalscience201913961
    [Google Scholar]
  200. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.0019332974385
    [Google Scholar]
  201. ZhaoC.Y. ChengR. YangZ. TianZ.M. Nanotechnology for cancer therapy based on chemotherapy.Molecules201823482610.3390/molecules2304082629617302
    [Google Scholar]
  202. ZhouF. HuangL. LiS. YangW. ChenF. CaiZ. LiuX. XuW. LehtoV.P. LächeltU. HuangR. ShiY. LammersT. TaoW. XuZ.P. WagnerE. XuZ. YuH. From structural design to delivery: MRNA therapeutics for cancer immunotherapy.Exploration2024422021014610.1002/EXP.2021014638855617
    [Google Scholar]
  203. JainP. Acaricidal activity and biochemical analysis of citrus limetta seed oil for controlling ixodid tick rhipicephalus microplus infesting cattle.Syst. Appl. Acarol.20212671350-60
    [Google Scholar]
  204. MaJ. WuC. Bioactive inorganic particles-based biomaterials for skin tissue engineering.Exploration2022252021008310.1002/EXP.2021008337325498
    [Google Scholar]
  205. JainP. SatapathyT. PandeyR.K. First report on efficacy of Citrus limetta seed oil in controlling cattle tick Rhipicephalus microplus in red Sahiwal calves.Vet. Parasitol.2021296June10950810.1016/j.vetpar.2021.10950834218174
    [Google Scholar]
  206. YangC. XiongW. QiuQ. TahiriH. SupersteinR. CarretA.S. SapiehaP. HardyP. Anti-proliferative and anti-tumour effects of lymphocyte-derived microparticles are neither species- nor tumour-type specific.J. Extracell. Vesicles2014312303410.3402/jev.v3.2303424834146
    [Google Scholar]
  207. SinghR PrasadJ SatapathyT JainP SinghS Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles.Indian J. Biochem. Biophys.2021582156161
    [Google Scholar]
  208. LeeR. KoH.J. KimK. SohnY. MinS.Y. KimJ.A. NaD. YeonJ.H. Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin.J. Extracell. Vesicles202091170348010.1080/20013078.2019.170348032002169
    [Google Scholar]
  209. PatelR. KuwarU. DhoteN. AlexanderA. NakhateK. JainP. Ajazuddin Natural polymers as a carrier for the effective delivery of antineoplastic drugs.Curr. Drug Deliv.202421219321010.2174/156720182066623011217003536644864
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128317407240724065912
Loading
/content/journals/cpd/10.2174/0113816128317407240724065912
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test