Skip to content
2000
Volume 30, Issue 38
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Cancer is the leading cause of mortality worldwide, requiring continuous advancements in diagnosis and treatment. Traditional methods often lack sensitivity and specificity, leading to the need for new methods. 3D printing has emerged as a transformative tool in cancer diagnosis, offering the potential for precise and customizable nanosensors. These advancements are critical in cancer research, aiming to improve early detection and monitoring of tumors. In current times, the usage of the 3D printing technique has been more prevalent as a flexible medium for the production of accurate and adaptable nanosensors characterized by exceptional sensitivity and specificity. The study aims to enhance early cancer diagnosis and prognosis by developing advanced 3D-printed nanosensors using 3D printing technology. The research explores various 3D printing techniques, design strategies, and functionalization strategies for cancer-specific biomarkers. The integration of these nanosensors with detection modalities like fluorescence, electrochemical, and surface-enhanced Raman spectroscopy is also evaluated. The study explores the use of inkjet printing, stereolithography, and fused deposition modeling to create nanostructures with enhanced performance. It also discusses the design and functionalization methods for targeting cancer indicators. The integration of 3D-printed nanosensors with multiple detection modalities, including fluorescence, electrochemical, and surface-enhanced Raman spectroscopy, enables rapid and reliable cancer diagnosis. The results show improved sensitivity and specificity for cancer biomarkers, enabling early detection of tumor indicators and circulating cells. The study highlights the potential of 3D-printed nanosensors to transform cancer diagnosis by enabling highly sensitive and specific detection of tumor biomarkers. It signifies a pivotal step forward in cancer diagnostics, showcasing the capacity of 3D printing technology to produce advanced nanosensors that can significantly improve early cancer detection and patient outcomes.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128322300240725052530
2024-11-01
2025-01-10
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2015.CA Cancer J. Clin.201565152910.3322/caac.2125425559415
    [Google Scholar]
  2. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  3. VockleyJ.G. NiederhuberJ.E. Diagnosis and treatment of cancer using genomics.BMJ2015350may28 9h183210.1136/bmj.h183226022222
    [Google Scholar]
  4. JonesM. Non-communicable diseases. Striving for equity: Healthcare in Sri Lanka from independence to the millennium, 1948-2000. Orient Blackswan 2020; 156.
    [Google Scholar]
  5. BolokerG. WangC. ZhangJ. Updated statistics of lung and bronchus cancer in United States (2018).J. Thorac. Dis.20181031158116110.21037/jtd.2018.03.1529708136
    [Google Scholar]
  6. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2019.CA Cancer J. Clin.201969173410.3322/caac.2155130620402
    [Google Scholar]
  7. SohrabiH. BolandiN. HemmatiA. EyvaziS. GhasemzadehS. BaradaranB. OroojalianF. Reza MajidiM. de la GuardiaM. MokhtarzadehA. State-of-the-art cancer biomarker detection by portable (Bio) sensing technology: A critical review.Microchem. J.202217710724810.1016/j.microc.2022.107248
    [Google Scholar]
  8. SafhiA.Y. Three-dimensional (3D) printing in cancer therapy and diagnostics: Current status and future perspectives.Pharmaceuticals (Basel)202215667810.3390/ph1506067835745597
    [Google Scholar]
  9. ChinnakornA. NuansingW. BodaghiM. RolfeB. ZolfagharianA. Recent progress of 4D printing in cancer therapeutics studies.SLAS Technol.202328312714110.1016/j.slast.2023.02.00236804175
    [Google Scholar]
  10. HuberF. LangH.P. ZhangJ. RimoldiD. GerberC. Nanosensors for cancer detection.Swiss Med. Wkly.2015145w1409225664868
    [Google Scholar]
  11. CashK.J. ClarkH.A. Nanosensors and nanomaterials for monitoring glucose in diabetes.Trends Mol. Med.2010161258459310.1016/j.molmed.2010.08.00220869318
    [Google Scholar]
  12. BirdD.T. RavindraN.M. Additive manufacturing of sensors for military monitoring applications.Polymers (Basel)2021139145510.3390/polym1309145533946226
    [Google Scholar]
  13. SuiX. DowningJ.R. HersamM.C. ChenJ. Additive manufacturing and applications of nanomaterial-based sensors.Mater. Today20214813515410.1016/j.mattod.2021.02.001
    [Google Scholar]
  14. SolliniM. BartoliF. MarcianoA. ZancaR. SlartR.H.J.A. ErbaP.A. Artificial intelligence and hybrid imaging: The best match for personalized medicine in oncology.Eur. J. Hybrid Imaging2020412410.1186/s41824‑020‑00094‑834191197
    [Google Scholar]
  15. SerranoD.R. KaraA. YusteI. LucianoF. C. OngorenB. AnayaB. J. MolinaG. DiezL. RamirezB. I. RamirezI. O. Sánchez-GuiralesS. A. Fernández-GarcíaR. BautistaL. RuizH. K. LalatsaA. 3D printing technologies in personalized medicine, nanomedicines, and biopharmaceuticals.Pharmaceutics2023152313
    [Google Scholar]
  16. MuldoonK. SongY. AhmadZ. ChenX. ChangM.W. High precision 3D printing for micro to nano scale biomedical and electronic devices.Micromachines (Basel)202213464210.3390/mi1304064235457946
    [Google Scholar]
  17. PadashM. EnzC. CarraraS. Microfluidics by additive manufacturing for wearable biosensors: A review.Sensors (Basel)20202015423610.3390/s2015423632751404
    [Google Scholar]
  18. KumariM. GuptaV. KumarN. ArunR.K. Microfluidics-based nano biosensors for healthcare monitoring.Mol. Biotechnol.202466337840110.1007/s12033‑023‑00760‑937166577
    [Google Scholar]
  19. KumarA PandaU Chapter 12 - Microfluidics-based devices and their role on point-of-care testing.Biosensor Based Advanced Cancer Diagnostics - From Lab to ClinicsAcademic Press202219722410.1016/B978‑0‑12‑823424‑2.00011‑9
    [Google Scholar]
  20. HohmannJ.K. RennerM. WallerE.H. von FreymannG. Three-dimensional μ-printing: An enabling technology.Adv. Opt. Mater.20153111488150710.1002/adom.201500328
    [Google Scholar]
  21. TumblestonJ.R. ShirvanyantsD. ErmoshkinN. JanusziewiczR. JohnsonA.R. KellyD. ChenK. PinschmidtR. RollandJ.P. ErmoshkinA. SamulskiE.T. DeSimoneJ.M. Continuous liquid interface production of 3D objects.Science201534762281349135210.1126/science.aaa239725780246
    [Google Scholar]
  22. SunK. WeiT.S. AhnB.Y. SeoJ.Y. DillonS.J. LewisJ.A. 3D printing of interdigitated Li-ion microbattery architectures.Adv. Mater.201325334539454310.1002/adma.20130103623776158
    [Google Scholar]
  23. XuY. WuX. GuoX. KongB. ZhangM. QianX. MiS. SunW. The boom in 3D-printed sensor technology.Sensors (Basel)2017175116610.3390/s1705116628534832
    [Google Scholar]
  24. RenY. SunX. LiuJ. Advances in liquid metal-enabled flexible and wearable sensors.Micromachines (Basel)202011220010.3390/mi1102020032075215
    [Google Scholar]
  25. NiY. JiR. LongK. BuT. ChenK. ZhuangS. A review of 3D-printed sensors.Appl. Spectrosc. Rev.201752762365210.1080/05704928.2017.1287082
    [Google Scholar]
  26. KhosravaniM.R. ReinickeT. 3D-printed sensors: Current progress and future challenges.Sens. Actuators A Phys.202030511191610.1016/j.sna.2020.111916
    [Google Scholar]
  27. OzbolatI.T. HospodiukM. Current advances and future perspectives in extrusion-based bioprinting.Biomaterials20167632134310.1016/j.biomaterials.2015.10.07626561931
    [Google Scholar]
  28. NingF. CongW. HuY. WangH. ZhangH. 3D printing of thermoplastic composites: A review.Compos., Part B Eng.2018143172196
    [Google Scholar]
  29. GongH. BeauchampM. PerryS. WoolleyA.T. NordinG.P. Optical approach to resin formulation for 3D printed microfluidics.RSC Advances2016654485474855126744624
    [Google Scholar]
  30. UshaS.P. ManoharanH. DeshmukhR. Álvarez-DidukR. CaluchoE. SaiV.V.R. MerkoçiA. Attomolar analyte sensing techniques (AttoSens): A review on a decade of progress on chemical and biosensing nanoplatforms.Chem. Soc. Rev.20215023130121308910.1039/D1CS00137J34673860
    [Google Scholar]
  31. YildirimDU GhobadiA OzbayE Nanosensors based on localized surface plasmon resonance.Plasmonic Sensors and their ApplicationsWiley202110.1002/9783527830343.ch2
    [Google Scholar]
  32. NocerinoV. MirandaB. TramontanoC. ChianeseG. DardanoP. ReaI. De StefanoL. Plasmonic nanosensors: design, fabrication, and applications in biomedicine.Chemosensors (Basel)202210515010.3390/chemosensors10050150
    [Google Scholar]
  33. KhazaeiM. HosseiniM.S. HaghighiA.M. MisaghiM. Nanosensors and their applications in early diagnosis of cancer.Sens. Biosensing Res.20234110056910.1016/j.sbsr.2023.100569
    [Google Scholar]
  34. NorizanM.N. MoklisM.H. Ngah DemonS.Z. HalimN.A. SamsuriA. MohamadI.S. KnightV.F. AbdullahN. Carbon nanotubes: Functionalisation and their application in chemical sensors.RSC Advances20201071437044373210.1039/D0RA09438B35519676
    [Google Scholar]
  35. Nardi-AgmonI. Abud-HawaM. LiranO. Gai-MorN. IlouzeM. OnnA. BarJ. ShlomiD. HaickH. PeledN. Exhaled breath analysis for monitoring response to treatment in advanced lung cancer.J. Thorac. Oncol.201611682783710.1016/j.jtho.2016.02.01726968885
    [Google Scholar]
  36. ChenY. WangX. HongM.K. RosenbergC.L. ReinhardB.M. ErramilliS. MohantyP. Nanoelectronic detection of breast cancer biomarker.Appl. Phys. Lett.2010972323370210.1063/1.3519983
    [Google Scholar]
  37. LyuQ. ZhaiQ. DysonJ. GongS. ZhaoY. LingY. ChandrasekaranR. DongD. ChengW. Real-time and in-situ monitoring of H2O2 release from living cells by a stretchable electrochemical biosensor based on vertically aligned gold nanowires.Anal. Chem.20199121135211352710.1021/acs.analchem.9b0261031549803
    [Google Scholar]
  38. ButovaV.V. SoldatovM.A. GudaA.A. LomachenkoK.A. LambertiC. Metal-organic frameworks: structure, properties, methods of synthesis and characterization.Russ. Chem. Rev.201685328030710.1070/RCR4554
    [Google Scholar]
  39. ZhuQ.L. XuQ. Metal–organic framework composites.Chem. Soc. Rev.201443165468551210.1039/C3CS60472A24638055
    [Google Scholar]
  40. LiY. LiuJ. WangZ. JinJ. LiuY. ChenC. TangZ. Optimizing energy transfer in nanostructures enables in vivo cancer lesion tracking via near-infrared excited hypoxia imaging.Adv. Mater.20203214190771810.1002/adma.20190771832091152
    [Google Scholar]
  41. CarrascoS. Metal-organic frameworks for the development of biosensors: A current overview.Biosensors (Basel)2018849210.3390/bios804009230332786
    [Google Scholar]
  42. BoriniS. WhiteR. WeiD. AstleyM. HaqueS. SpigoneE. HarrisN. KiviojaJ. RyhänenT. Ultrafast graphene oxide humidity sensors.ACS Nano2013712111661117310.1021/nn404889b24206232
    [Google Scholar]
  43. Peña-BahamondeJ. NguyenH.N. FanourakisS.K. RodriguesD.F. Recent advances in graphene-based biosensor technology with applications in life sciences.J. Nanobiotechnol20181617510.1186/s12951‑018‑0400‑z30243292
    [Google Scholar]
  44. LiW. WangH. ZhaoZ. GaoH. LiuC. ZhuL. WangC. YangY. Emerging nanotechnologies for liquid biopsy: The detection of circulating tumor cells and extracellular vesicles.Adv. Mater.20193145180534410.1002/adma.20180534430589111
    [Google Scholar]
  45. SalvatiE. StellacciF. KrolS. Nanosensors for early cancer detection and for therapeutic drug monitoring.Nanomedicine (Lond.)201510233495351210.2217/nnm.15.18026606949
    [Google Scholar]
  46. SodaN. RehmB.H.A. SonarP. NguyenN.T. ShiddikyM.J.A. Advanced liquid biopsy technologies for circulating biomarker detection.J. Mater. Chem. B Mater. Biol. Med.20197436670670410.1039/C9TB01490J31646316
    [Google Scholar]
  47. IftikharF.J. ShahA. AkhterM.S. KurbanogluS. OzkanS.A. Introduction to nanosensors.New Developments in Nanosensors for Pharmaceutical Analysis.Academic Press201914610.1016/B978‑0‑12‑816144‑9.00001‑8
    [Google Scholar]
  48. NimalR. SelcukO. KurbanogluS. ShahA. SiddiqM. UsluB. Trends in electrochemical nanosensors for the analysis of antioxidants.Trends Analyt. Chem.202215311662610.1016/j.trac.2022.116626
    [Google Scholar]
  49. OliveiraO.N.Jr IostR.M. SiqueiraJ.R.Jr CrespilhoF.N. CaseliL. Nanomaterials for diagnosis: challenges and applications in smart devices based on molecular recognition.ACS Appl. Mater. Interfaces2014617147451476610.1021/am501505624968359
    [Google Scholar]
  50. JohnSA ChattreeA RamtekePW ShanthyP NguyenTA RajendranS 20 - Nanosensors for plant health monitoring.Nanosensors for Smart Agriculture - Micro and Nano TechnologiesElsevier202244946110.1016/B978‑0‑12‑824554‑5.00012‑4
    [Google Scholar]
  51. ButtZ AzizMS AamirM SyedAS AkhtarJ Chapter 21- Next- generation self-powered nanosensors.Nanosensors for Smart Manufacturing - Micro and Nano TechnologiesElsevier202148751510.1016/B978‑0‑12‑823358‑0.00023‑X
    [Google Scholar]
  52. McFarlandA.D. Van DuyneR.P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity.Nano Lett.2003381057106210.1021/nl034372s
    [Google Scholar]
  53. HaesA.J. Van DuyneR.P. A unified view of propagating and localized surface plasmon resonance biosensors.Anal. Bioanal. Chem.20043797-892093010.1007/s00216‑004‑2708‑915338088
    [Google Scholar]
  54. LeeH. KangT. YoonK.A. LeeS.Y. JooS.W. LeeK. Colorimetric detection of mutations in epidermal growth factor receptor using gold nanoparticle aggregation.Biosens. Bioelectron.20102571669167410.1016/j.bios.2009.12.00220036793
    [Google Scholar]
  55. BakerG.A. MooreD.S. Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis.Anal. Bioanal. Chem.200538281751177010.1007/s00216‑005‑3353‑716049671
    [Google Scholar]
  56. IsraelsenN.D. HansonC. VargisE. Nanoparticle properties and synthesis effects on surface-enhanced Raman scattering enhancement factor: An introduction.ScientificWorldJournal2015201511210.1155/2015/12458225884017
    [Google Scholar]
  57. MarsichL. BonifacioA. MandalS. KrolS. BeleitesC. SergoV. Poly-L-lysine-coated silver nanoparticles as positively charged substrates for surface-enhanced Raman scattering.Langmuir20122837131661317110.1021/la302383r22958086
    [Google Scholar]
  58. HayatA. CatananteG. MartyJ. Current trends in nanomaterial-based amperometric biosensors.Sensors (Basel)20141412234392346110.3390/s14122343925494347
    [Google Scholar]
  59. MungeB.S. KrauseC.E. MalhotraR. PatelV. Silvio GutkindJ. RuslingJ.F. Electrochemical immunosensors for interleukin-6. Comparison of carbon nanotube forest and gold nanoparticle platforms.Electrochem. Commun.20091151009101210.1016/j.elecom.2009.02.04420046945
    [Google Scholar]
  60. FloreaA. GuoZ. CristeaC. BessueilleF. VocansonF. GoutalandF. DzyadevychS. SăndulescuR. Jaffrezic-RenaultN. Anticancer drug detection using a highly sensitive molecularly imprinted electrochemical sensor based on an electropolymerized microporous metal organic framework.Talanta2015138717610.1016/j.talanta.2015.01.01325863374
    [Google Scholar]
  61. SwierczewskaM. LiuG. LeeS. ChenX. High-sensitivity nanosensors for biomarker detection.Chem. Soc. Rev.20124172641265510.1039/C1CS15238F22187721
    [Google Scholar]
  62. PerfézouM. TurnerA. MerkoçiA. Cancer detection using nanoparticle-based sensors.Chem. Soc. Rev.20124172606262210.1039/C1CS15134G21796315
    [Google Scholar]
  63. ShiddikyM.J.A. RaufS. KithvaP.H. TrauM. Graphene/quantum dot bionanoconjugates as signal amplifiers in stripping voltammetric detection of EpCAM biomarkers.Biosens. Bioelectron.201235125125710.1016/j.bios.2012.02.05722465446
    [Google Scholar]
  64. LiuX. LiuW. RenZ. MaY. DongB. ZhouG. LeeC. Progress of optomechanical micro/nano sensors: A review.Int. J. Optomechatron202115112015910.1080/15599612.2021.1986612
    [Google Scholar]
  65. ArlettJ.L. MyersE.B. RoukesM.L. Comparative advantages of mechanical biosensors.Nat. Nanotechnol.20116420321510.1038/nnano.2011.4421441911
    [Google Scholar]
  66. FediA. VitaleC. GiannoniP. CaluoriG. MarrellaA. Biosensors to monitor cell activity in 3D hydrogel-based tissue models.Sensors (Basel)2022224151710.3390/s2204151735214418
    [Google Scholar]
  67. WuJ. LiangB. LuS. XieJ. SongY. WangL. GaoL. HuangZ. Application of 3D printing technology in tumor diagnosis and treatment.Biomed. Mater.202419101200210.1088/1748‑605X/ad08e137918002
    [Google Scholar]
  68. JohnsonB.N. MutharasanR. Biosensing using dynamic-mode cantilever sensors: A review.Biosens. Bioelectron.201232111810.1016/j.bios.2011.10.05422119230
    [Google Scholar]
  69. MelliM. ScolesG. LazzarinoM. Fast detection of biomolecules in diffusion-limited regime using micromechanical pillars.ACS Nano20115107928793510.1021/nn202224g21955070
    [Google Scholar]
  70. MunawarA. OngY. SchirhaglR. TahirM.A. KhanW.S. BajwaS.Z. Nanosensors for diagnosis with optical, electric and mechanical transducers.RSC Advances20199126793680310.1039/C8RA10144B35518460
    [Google Scholar]
  71. JavaidM. HaleemA. SinghR.P. RabS. SumanR. Exploring the potential of nanosensors: A brief overview.Sensors Int.2021210013010.1016/j.sintl.2021.100130
    [Google Scholar]
  72. BhuskuteH. ShendeP. PrabhakarB. 3D printed personalized medicine for cancer: Applications for the betterment of diagnosis, prognosis and treatment.AAPS PharmSciTech2021231810.1208/s12249‑021‑02153‑034853934
    [Google Scholar]
  73. GalstyanA. BunkerM.J. LoboF. SimsR. InzielloJ. StubbsJ. MukhtarR. KelilT. Applications of 3D printing in breast cancer management. 3D Print Med.202171934232424
    [Google Scholar]
  74. HaleemA. JavaidM. VaishyaR. 3D printing applications for the treatment of cancer.Clin. Epidemiol. Glob. Health2020841072107610.1016/j.cegh.2020.03.022
    [Google Scholar]
  75. ChiadòA. PalmaraG. ChiapponeA. TanzanuC. PirriC.F. RoppoloI. FrascellaF. A modular 3D printed lab-on-a-chip for early cancer detection.Lab Chip202020366567410.1039/C9LC01108K31939966
    [Google Scholar]
  76. SheilC.J. KhanU. ZakharovY.N. CoughlanM.F. PleskowD.K. SawhneyM.S. BerzinT.M. CohenJ.M. GlyavinaM. ZhangL. ItzkanI. PerelmanL.T. QiuL. Two-photon polymerization nanofabrication of ultracompact light scattering spectroscopic probe for detection of pre-cancer in pancreatic cyst.Opt. Lasers Eng.202114210661610.1016/j.optlaseng.2021.10661634305200
    [Google Scholar]
  77. JiaoZ. ZhaoL. TangC. ShiH. WangF. HuB. Droplet-based PCR in a 3D-printed microfluidic chip for miRNA-21 detection.Anal. Methods201911263286329310.1039/C9AY01108K
    [Google Scholar]
  78. WangL. PumeraM. Covalently modified enzymatic 3D-printed bioelectrode.Mikrochim. Acta20211881137410.1007/s00604‑021‑05006‑634628520
    [Google Scholar]
  79. WangP. SunL. LiC. JinB. YangH. WuB. MaoY. Study on drug screening multicellular model for colorectal cancer constructed by three-dimensional bioprinting technology.Int J Bioprint20239369410.18063/ijb.69437273979
    [Google Scholar]
  80. SomersN. JeanF. LasgorceixM. PreuxN. DelmotteC. BoiletL. PetitF. LericheA. Fabrication of doped β-tricalcium phosphate bioceramics by Direct Ink Writing for bone repair applications.J. Eur. Ceram. Soc.202343262963810.1016/j.jeurceramsoc.2022.10.018
    [Google Scholar]
  81. Heidari-RaraniM. Rafiee-AfaraniM. ZahediA.M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites.Compos., Part B Eng.201917510714710.1016/j.compositesb.2019.107147
    [Google Scholar]
  82. LiuC. HuangN. XuF. TongJ. ChenZ. GuiX. FuY. LaoC. 3D printing technologies for flexible tactile sensors toward wearable electronics and electronic skin.Polymers (Basel)201810662910.3390/polym1006062930966663
    [Google Scholar]
  83. KamyshnyA. MagdassiS. Conductive nanomaterials for 2D and 3D printed flexible electronics.Chem. Soc. Rev.20194861712174010.1039/C8CS00738A30569917
    [Google Scholar]
  84. LeighS.J. BradleyR.J. PurssellC.P. BillsonD.R. HutchinsD.A. A simple, low-cost conductive composite material for 3D printing of electronic sensors.PLoS One2012711e4936510.1371/journal.pone.004936523185319
    [Google Scholar]
  85. RobersonD. ShemelyaC.M. MacDonaldE. WickerR. Expanding the applicability of FDM-type technologies through materials development.Rapid Prototyping J.201521213714310.1108/RPJ‑12‑2014‑0165
    [Google Scholar]
  86. ZhangY. 3D printing for cancer diagnosis: What unique advantages are gained?ACS Materials Au20233662063510.1021/acsmaterialsau.3c0004638089653
    [Google Scholar]
  87. VargheseG. MoralM. Castro-GarcíaM. López-LópezJ. J. Marín-RuedaJ. R. Yagüe-AlcarazV. Hernández-AfonsoL. Fabrication and characterisation of ceramics via low-cost DLP 3D printing.Boletin de la Sociedad Espanola de Ceramica y Vidrio20185711-18
    [Google Scholar]
  88. KhashayarP. Al-MadhagiS. AzimzadehM. ScognamiglioV. ArduiniF. New frontiers in microfluidics devices for miRNA analysis.Trends Analyt. Chem.202215611670610.1016/j.trac.2022.116706
    [Google Scholar]
  89. AhrbergC.D. ManzA. ChungB.G. Polymerase chain reaction in microfluidic devices.Lab Chip201616203866388410.1039/C6LC00984K27713993
    [Google Scholar]
  90. KhaingM.W. FuhJ.Y.H. LuL. Direct metal laser sintering for rapid tooling: Processing and characterisation of EOS parts.J. Mater. Process. Technol.20011131-326927210.1016/S0924‑0136(01)00584‑2
    [Google Scholar]
  91. KumarS. Selective laser sintering: A qualitative and objective approach.J. Miner. Met. Mater. Soc.20035510434710.1007/s11837‑003‑0175‑y
    [Google Scholar]
  92. SchmidM. AmadoA. WegenerK. Polymer powders for selective laser sintering (SLS).AIP Conference proceedings166416641
    [Google Scholar]
  93. ZhangL. YangG. JohnsonB.N. JiaX. Three-dimensional (3D) printed scaffold and material selection for bone repair.Acta Biomater.201984163310.1016/j.actbio.2018.11.03930481607
    [Google Scholar]
  94. ZhangY. ThakkarR. ZhangJ. LuA. DuggalI. PillaiA. WangJ. AghdaN.H. ManiruzzamanM. Investigating the use of magnetic nanoparticles as alternative sintering agents in selective laser sintering (SLS) 3D printing of oral tablets.ACS Biomater. Sci. Eng.2023962924293610.1021/acsbiomaterials.2c0029936744796
    [Google Scholar]
  95. FarsariM. ChichkovB. N. Two-photon fabrication.Nature Photonics20093845045210.1038/nphoton.2009.131
    [Google Scholar]
  96. XingJ.F. ZhengM.L. DuanX.M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery.Chem. Soc. Rev.201544155031503910.1039/C5CS00278H25992492
    [Google Scholar]
  97. SaadiM.A.S.R. MaguireA. PottackalN.T. ThakurM.S.H. IkramM.M. HartA.J. AjayanP.M. RahmanM.M. Direct ink writing: A 3D printing technology for diverse materials.Adv. Mater.20223428210885510.1002/adma.20210885535246886
    [Google Scholar]
  98. SamavediS. JoyN.III 3D printing for the development of in vitro cancer models.Curr. Opin. Biomed. Eng.20172354210.1016/j.cobme.2017.06.003
    [Google Scholar]
  99. LeeS.Y. KooI.S. HwangH.J. LeeD.W. In vitro three-dimensional (3D) cell culture tools for spheroid and organoid models.SLAS Discov.202328411913710.1016/j.slasd.2023.03.00636997090
    [Google Scholar]
  100. ShenY. TangH. HuangX. HangR. ZhangX. WangY. YaoX. DLP printing photocurable chitosan to build bio-constructs for tissue engineering.Carbohydr. Polym.202023511597010.1016/j.carbpol.2020.11597032122504
    [Google Scholar]
  101. LiX. LiuB. PeiB. ChenJ. ZhouD. PengJ. ZhangX. JiaW. XuT. Inkjet bioprinting of biomaterials.Chem. Rev.202012019107931083310.1021/acs.chemrev.0c0000832902959
    [Google Scholar]
  102. SinghM. HaverinenH.M. DhagatP. JabbourG.E. Inkjet printing-process and its applications.Adv. Mater.201022667368510.1002/adma.20090114120217769
    [Google Scholar]
  103. ZubK. HoeppenerS. SchubertU.S. Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications.Adv. Mater.20223431210501510.1002/adma.20210501535338719
    [Google Scholar]
  104. SalmoriaG. Espíndola VieiraF. 3D printing of PCL/fluorouracil tablets by selective laser sintering: Properties of implantable drug delivery for cartilage cancer treatment.Rheumatol Orthoped Med2017217
    [Google Scholar]
  105. AlmelaT. TayebiL. MoharamzadehK. 3D bioprinting for in vitro models of oral cancer: Toward development and validation.Bioprinting202122e0013210.1016/j.bprint.2021.e0013234368488
    [Google Scholar]
  106. SharmaR. Restan PerezM. da SilvaV.A. ThomsenJ. BhardwajL. AndradeT.A.M. AlhussanA. WillerthS.M. 3D bioprinting complex models of cancer.Biomater. Sci.202311103414343010.1039/D2BM02060B37000528
    [Google Scholar]
  107. DamiatiS. KüpcüS. PeacockM. EilenbergerC. ZamzamiM. QadriI. ChoudhryH. SleytrU.B. SchusterB. Acoustic and hybrid 3D-printed electrochemical biosensors for the real-time immunodetection of liver cancer cells (HepG2).Biosens. Bioelectron.20179450050610.1016/j.bios.2017.03.04528343102
    [Google Scholar]
  108. AnL. WangG. HanY. LiT. JinP. LiuS. Electrochemical biosensor for cancer cell detection based on a surface 3D micro-array.Lab Chip201818233534210.1039/C7LC01117B29260185
    [Google Scholar]
  109. TangC.K. VazeA. RuslingJ.F. Automated 3D-printed unibody immunoarray for chemiluminescence detection of cancer biomarker proteins.Lab Chip201717348448910.1039/C6LC01238H28067370
    [Google Scholar]
  110. MotaghiH. ZiyaeeS. MehrgardiM.A. KajaniA.A. BordbarA.K. Electrochemiluminescence detection of human breast cancer cells using aptamer modified bipolar electrode mounted into 3D printed microchannel.Biosens. Bioelectron.201811821722310.1016/j.bios.2018.07.06630092457
    [Google Scholar]
  111. ParkC. AbafogiA.T. PonnuveluD.V. SongI. KoK. ParkS. Enhanced luminescent detection of circulating tumor cells by a 3D printed immunomagnetic concentrator.Biosensors (Basel)202111827810.3390/bios1108027834436080
    [Google Scholar]
  112. KadimisettyK. MallaS. BhaleraoK.S. MosaI.M. BhaktaS. LeeN.H. RuslingJ.F. Automated 3D-printed microfluidic array for rapid nanomaterial-enhanced detection of multiple proteins.Anal. Chem.201890127569757710.1021/acs.analchem.8b0119829779368
    [Google Scholar]
  113. ChenJ. LiuC.Y. WangX. SweetE. LiuN. GongX. LinL. 3D printed microfluidic devices for circulating tumor cells (CTCs) isolation.Biosens. Bioelectron.202015011190010.1016/j.bios.2019.11190031767348
    [Google Scholar]
  114. WangJ. LiY. WangR. HanC. XuS. YouT. LiY. XiaJ. XuX. WangD. TangH. YangC. ChenX. PengZ. A fully automated and integrated microfluidic system for efficient CTC detection and its application in hepatocellular carcinoma screening and prognosis.ACS Appl. Mater. Interfaces20211325301743018610.1021/acsami.1c0633734142547
    [Google Scholar]
  115. KadimisettyK. MosaI.M. MallaS. Satterwhite-WardenJ.E. KuhnsT.M. FariaR.C. LeeN.H. RuslingJ.F. 3D-printed supercapacitor-powered electrochemiluminescent protein immunoarray.Biosens. Bioelectron.20167718819310.1016/j.bios.2015.09.01726406460
    [Google Scholar]
  116. HegerZ. ŽitkaJ. CerneiN. KrizkovaS. SztalmachovaM. KopelP. MasarikM. HodekP. ZitkaO. AdamV. KizekR. 3D-printed biosensor with poly(dimethylsiloxane) reservoir for magnetic separation and quantum dots-based immunolabeling of metallothionein.Electrophoresis20153611-121256126410.1002/elps.20140055925735231
    [Google Scholar]
  117. DamiatiS. PeacockM. LeonhardtS. DamiatiL. BaghdadiM. BeckerH. KodziusR. SchusterB. Embedded disposable functionalized electrochemical biosensor with a 3D-printed flow cell for detection of hepatic oval cells (HOCs).Genes (Basel)2018928910.3390/genes902008929443890
    [Google Scholar]
  118. DiamandisE.P. Cancer biomarkers: Can we turn recent failures into success?J. Natl. Cancer Inst.2010102191462146710.1093/jnci/djq30620705936
    [Google Scholar]
  119. AhmedS.M. Patient Care Management of Cancer.Thesis, Brac University2019
    [Google Scholar]
  120. WuX. LuoL. YangS. MaX. LiY. DongC. TianY. ZhangL. ShenZ. WuA. Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood.ACS Appl. Mater. Interfaces20157189965997110.1021/acsami.5b0227625875511
    [Google Scholar]
  121. BajajA. MirandaO.R. KimI.B. PhillipsR.L. JerryD.J. BunzU.H.F. RotelloV.M. Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle-polymer sensor arrays.Proc. Natl. Acad. Sci. USA200910627109121091610.1073/pnas.090097510619549846
    [Google Scholar]
  122. RahmanA.P.H. MisraA.J. PandaS. DasB. BholP. MohantyP.S. TamhankarA.J. MishraA. LundborgC.S. TripathyS.K. Sonophotocatalysis-mediated morphological transition modulates virulence and antibiotic resistance in Salmonella typhimurium.Environ. Sci. Water Res. Technol.2020671917193010.1039/D0EW00224K
    [Google Scholar]
  123. ChongH. ZhuC. SongJ. FengL. YangQ. LiuL. LvF. WangS. Preparation and optical property of new fluorescent nanoparticles.Macromol. Rapid Commun.201334973674210.1002/marc.20120075523468167
    [Google Scholar]
  124. DiamantidesN. WangL. PruiksmaT. SiemiatkoskiJ. DugopolskiC. ShortkroffS. KennedyS. BonassarL.J. Correlating rheological properties and printability of collagen bioinks: The effects of riboflavin photocrosslinking and pH.Biofabrication20179303410210.1088/1758‑5090/aa780f28677597
    [Google Scholar]
  125. CuiX. LiJ. HartantoY. DurhamM. TangJ. ZhangH. HooperG. LimK. WoodfieldT. Advances in extrusion 3D bioprinting: A focus on multicomponent hydrogel-based bioinks.Adv. Health Mater20209151901648
    [Google Scholar]
  126. KashteS. JaiswalA.K. KadamS. Artificial bone via bone tissue engineering: current scenario and challenges.Tissue Eng. Regen. Med.201714111410.1007/s13770‑016‑0001‑630603457
    [Google Scholar]
  127. HughesA.M. KolbA.D. ShuppA.B. ShineK.M. BussardK.M. Printing the pathway forward in bone metastatic cancer research: Applications of 3D engineered models and bioprinted scaffolds to recapitulate the bone–tumor niche.Cancers (Basel)202113350710.3390/cancers1303050733572757
    [Google Scholar]
  128. RanaS. SinglaA.K. BajajA. ElciS.G. MirandaO.R. MoutR. YanB. JirikF.R. RotelloV.M. Array-based sensing of metastatic cells and tissues using nanoparticle-fluorescent protein conjugates.ACS Nano2012698233824010.1021/nn302917e22920837
    [Google Scholar]
  129. RocoMC HersamMC MirkinCA MirkinCA NelA ThaxtonCS Applications: Nanobiosystems, medicine, and health.Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and OutlookSpringerDordrecht2011
    [Google Scholar]
  130. LiZ ShumHC Nanotechnology and Microfluidics for Biosensing and Biophysical Property Assessment.Nanotechnology and MicrofluidicsWiley202010.1002/9783527818341.ch3
    [Google Scholar]
  131. DarwishM.A. Abd-ElaziemW. ElsheikhA. ZayedA.A. Advancements in nanomaterials for nanosensors: A comprehensive review. Nanoscale Adv 2024; 6: 4015-4046.10.1039/D4NA00214H
    [Google Scholar]
  132. LigonS.C. LiskaR. StampflJ. GurrM. MülhauptR. Polymers for 3D printing and customized additive manufacturing.Chem. Rev.201711715102121029010.1021/acs.chemrev.7b0007428756658
    [Google Scholar]
  133. ZhangJ. HuangH. SongG. HuangK. LuoY. LiuQ. HeX. ChengN. Intelligent biosensing strategies for rapid detection in food safety: A review.Biosens. Bioelectron.202220211400310.1016/j.bios.2022.11400335065479
    [Google Scholar]
  134. RaghuH.V. ParkunanT. KumarN. Application of nano biosensors for food safety monitoring.Environ Nanotechnol2020493129
    [Google Scholar]
  135. XiangL. ZengX. XiaF. JinW. LiuY. HuY. Recent advances in flexible and stretchable sensing systems: From the perspective of system integration.ACS Nano20201466449646910.1021/acsnano.0c0116432479071
    [Google Scholar]
  136. YiQ. NajafikhoshnooS. DasP. NohS. HoangE. KimT. EsfandyarpourR. All-3D-printed, flexible, and hybrid wearable bioelectronic tactile sensors using biocompatible nanocomposites for health monitoring.Adv. Mater. Technol.202275210103410.1002/admt.202101034
    [Google Scholar]
  137. LutzW de JongK RubelJA DelgadilloJ Measuring, predicting, and tracking change in psychotherapy.Bergin and Garfield’s Handbook of Psychotherapy and Behavior ChangeWiley202189133
    [Google Scholar]
  138. Tovar-LopezF.J. Recent progress in micro-and nanotechnology-enabled sensors for biomedical and environmental challenges.Sensors (Basel)20232312540610.3390/s2312540637420577
    [Google Scholar]
  139. HanT. KunduS. NagA. XuY. 3D printed sensors for biomedical applications: A review.Sensors (Basel)2019197170610.3390/s1907170630974757
    [Google Scholar]
  140. ParupelliS.K. DesaiS. The 3D printing of nanocomposites for wearable biosensors: Recent advances, challenges, and prospects.Bioengineering (Basel)20231113210.3390/bioengineering1101003238247910
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128322300240725052530
Loading
/content/journals/cpd/10.2174/0113816128322300240725052530
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test