Skip to content
2000
Volume 30, Issue 8
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Chronic kidney disease (CKD) refers to the presence of structural or functional abnormalities in the kidneys that affect health, lasting for more than 3 months. CKD is not only the direct cause of global incidence rate and mortality, but also an important risk factor for cardiovascular disease. Persistent microinflammatory state has been recognized as an important component of CKD, which can lead to renal fibrosis and loss of renal function, and plays a crucial role in the pathophysiology and progression of the disease. Simultaneously, compound α-Ketoacid can bind nitrogen-containing metabolites in the blood and accelerate their excretion from the body, thereby reducing the level of metabolic waste, alleviating gastrointestinal reactions in patients, and reducing the inflammatory response and oxidative stress state of the body. Compoundα-Ketoacid contains amino acids required by CKD patients. In this review, we explore the relationship between compound α-Ketoacid and microinflammation in patients with CKD. The review indicated that compound α-Ketoacid can improve the microinflammatory state in CKD patients by improving the nutritional status of CKD patients, improving patient's acid-base balance disorder, regulating oxidative stress, improving gut microbiota, and regulating abnormal lipid metabolism.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128291248240131102709
2024-03-01
2024-11-06
Loading full text...

Full text loading...

References

  1. RovinB.H. AdlerS.G. BarrattJ. BridouxF. BurdgeK.A. ChanT.M. CookH.T. FervenzaF.C. GibsonK.L. GlassockR.J. JayneD.R.W. JhaV. LiewA. LiuZ-H. Mejía-ViletJ.M. NesterC.M. RadhakrishnanJ. RaveE.M. ReichH.N. RoncoP. SandersJ-S.F. SethiS. SuzukiY. TangS.C.W. TesarV. VivarelliM. WetzelsJ.F.M. FloegeJ. KDIGO 2021 clinical practice guideline for the management of glomerular diseases.Kidney Int.20211004S1S27610.1016/j.kint.2021.05.02134556256
    [Google Scholar]
  2. ChenT.K. KnicelyD.H. GramsM.E. Chronic kidney disease diagnosis and management.JAMA2019322131294130410.1001/jama.2019.1474531573641
    [Google Scholar]
  3. BikbovB. PurcellC.A. LeveyA.S. SmithM. AbdoliA. AbebeM. AdebayoO.M. AfaridehM. AgarwalS.K. Agudelo-BoteroM. AhmadianE. Al-AlyZ. AlipourV. Almasi-HashianiA. Al-RaddadiR.M. Alvis-GuzmanN. AminiS. AndreiT. AndreiC.L. AndualemZ. AnjomshoaM. ArablooJ. AshagreA.F. AsmelashD. AtaroZ. AtoutM.M.W. AyanoreM.A. BadawiA. BakhtiariA. BallewS.H. BalouchiA. BanachM. BarqueraS. BasuS. BayihM.T. BediN. BelloA.K. BensenorI.M. BijaniA. BoloorA. BorzìA.M. CámeraL.A. CarreroJ.J. CarvalhoF. CastroF. Catalá-LópezF. ChangA.R. ChinK.L. ChungS-C. CirilloM. CousinE. DandonaL. DandonaR. DaryaniA. Das GuptaR. DemekeF.M. DemozG.T. DestaD.M. DoH.P. DuncanB.B. EftekhariA. EsteghamatiA. FatimaS.S. FernandesJ.C. FernandesE. FischerF. FreitasM. GadM.M. GebremeskelG.G. GebresillassieB.M. GetaB. GhafourifardM. GhajarA. GhithN. GillP.S. GinawiI.A. GuptaR. Hafezi-NejadN. Haj-MirzaianA. Haj-MirzaianA. HariyaniN. HasanM. HasankhaniM. HasanzadehA. HassenH.Y. HayS.I. HeidariB. HerteliuC. HoangC.L. HosseiniM. HostiucM. IrvaniS.S.N. IslamS.M.S. Jafari BalalamiN. JamesS.L. JassalS.K. JhaV. JonasJ.B. JoukarF. JozwiakJ.J. KabirA. KahsayA. KasaeianA. KassaT.D. KassayeH.G. KhaderY.S. KhalilovR. KhanE.A. KhanM.S. KhangY-H. KisaA. KovesdyC.P. Kuate DefoB. KumarG.A. LarssonA.O. LimL-L. LopezA.D. LotufoP.A. MajeedA. MalekzadehR. MärzW. MasakaA. MeheretuH.A.A. MiazgowskiT. MiricaA. MirrakhimovE.M. MithraP. MoazenB. MohammadD.K. MohammadpourhodkiR. MohammedS. MokdadA.H. MoralesL. Moreno VelasquezI. MousaviS.M. MukhopadhyayS. NachegaJ.B. NadkarniG.N. NansseuJ.R. NatarajanG. NazariJ. NealB. NegoiR.I. NguyenC.T. NikbakhshR. NoubiapJ.J. NowakC. OlagunjuA.T. OrtizA. OwolabiM.O. PalladinoR. PathakM. PoustchiH. PrakashS. PrasadN. RafieiA. RajuS.B. RamezanzadehK. RawafS. RawafD.L. RawalL. ReinerR.C.Jr RezapourA. RibeiroD.C. RoeverL. RothenbacherD. RwegereraG.M. SaadatagahS. SafariS. SahleB.W. SalemH. SanabriaJ. SantosI.S. SarveazadA. SawhneyM. SchaeffnerE. SchmidtM.I. SchutteA.E. SepanlouS.G. ShaikhM.A. SharafiZ. SharifM. SharifiA. SilvaD.A.S. SinghJ.A. SinghN.P. SisayM.M.M. SoheiliA. SutradharI. TeklehaimanotB.F. TesfayB. TeshomeG.F. ThakurJ.S. TonelliM. TranK.B. TranB.X. Tran NgocC. UllahI. ValdezP.R. VarugheseS. VosT. VuL.G. WaheedY. WerdeckerA. WoldeH.F. WondmienehA.B. Wulf HansonS. YamadaT. YeshawY. YonemotoN. YusefzadehH. ZaidiZ. ZakiL. ZamanS.B. ZamoraN. ZarghiA. ZewdieK.A. ÄrnlövJ. CoreshJ. PericoN. RemuzziG. MurrayC.J.L. VosT. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017.Lancet20203951022570973310.1016/S0140‑6736(20)30045‑332061315
    [Google Scholar]
  4. AkchurinO.M. KaskelF. Update on inflammation in chronic kidney disease.Blood Purif.2015391-3849210.1159/00036894025662331
    [Google Scholar]
  5. StenvinkelP. Inflammation in end-stage renal failure: Could it be treated?Nephrol. Dial. Transplant.20021790008333810.1093/ndt/17.suppl_8.3312147775
    [Google Scholar]
  6. TaoYX HuangGX LiZJ JiangH ZengJ The efficacy of low protein diet intervention added with α-ketoacid on clinical outcome of chronic kidney disease patient.Sichuan Med. J.2016370440440810.16252/j.cnki.issn1004‑0501‑2016.04.013
    [Google Scholar]
  7. ZhuH ZouY Effect of α-ketoacid on the nutrition related indicators for chronic kidney disease.J Clin Nephrol.2018181169870110.3969/j.issn.1671‑2390.2018.11.009
    [Google Scholar]
  8. SchömigM. EisenhardtA. RitzE. The microinflammatory state of uremia.Blood Purif.200018432733210.1159/00001445710965076
    [Google Scholar]
  9. ZhangJ. LuX. WangS. LiH. High neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio are associated with poor survival in patients with hemodialysis.BioMed Res. Int.202120211610.1155/2021/995808134104653
    [Google Scholar]
  10. LiQ. ChenP. ShiS. LiuL. LvJ. ZhuL. ZhangH. Neutrophil-to-lymphocyte ratio as an independent inflammatory indicator of poor prognosis in IgA nephropathy.Int. Immunopharmacol.20208710681110.1016/j.intimp.2020.10681132711375
    [Google Scholar]
  11. LiP. XiaC. LiuP. PengZ. HuangH. WuJ. HeZ. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in evaluation of inflammation in non-dialysis patients with end-stage renal disease (ESRD).BMC Nephrol.202021151110.1186/s12882‑020‑02174‑033238906
    [Google Scholar]
  12. YoshitomiR. NakayamaM. SakohT. FukuiA. KatafuchiE. SekiM. TsudaS. NakanoT. TsuruyaK. KitazonoT. High neutrophil/lymphocyte ratio is associated with poor renal outcomes in Japanese patients with chronic kidney disease.Ren. Fail.201941123824310.1080/0886022X.2019.159564530942116
    [Google Scholar]
  13. MihaiS. CodriciE. PopescuI.D. EnciuA.M. AlbulescuL. NeculaL.G. MambetC. AntonG. TanaseC. Inflammation-related mechanisms in chronic kidney disease prediction, progression, and outcome.J. Immunol. Res.2018201811610.1155/2018/218037330271792
    [Google Scholar]
  14. AmdurR.L. FeldmanH.I. GuptaJ. YangW. KanetskyP. ShlipakM. RahmanM. LashJ.P. TownsendR.R. OjoA. Roy-ChaudhuryA. GoA.S. JoffeM. HeJ. BalakrishnanV.S. KimmelP.L. KusekJ.W. RajD.S. Inflammation and progression of CKD: The CRIC study.Clin. J. Am. Soc. Nephrol.20161191546155610.2215/CJN.1312121527340285
    [Google Scholar]
  15. WhiteS. LinL. HuK. NF-κB and tPA signaling in kidney and other diseases.Cells202096134810.3390/cells906134832485860
    [Google Scholar]
  16. SunT DongW JiangG Cordyceps militaris improves chronic kidney disease by affecting TLR4/NF-κB redox signaling pathway.Oxidat. Med. Cell. Longev.2019785086310.1155/2019/7850863
    [Google Scholar]
  17. DengX WangY Research advances of role of TLR4/NLRP3 inflammasome in diabetic nephropathy.J Clin Nephrol.2022220759560110.3969/j.issn.1671‑2390.2022.07.011
    [Google Scholar]
  18. OriY. BergmanM. BesslerH. ZingermanB. Levy-DrummerR.S. GafterU. SalmanH. Cytokine secretion and markers of inflammation in relation to acidosis among chronic hemodialysis patients.Blood Purif.2013351-318118610.1159/00034668923463880
    [Google Scholar]
  19. NiebauerJ. VolkH.D. KempM. DominguezM. SchumannR.R. RauchhausM. Poole-WilsonP.A. CoatsA.J.S. AnkerS.D. Endotoxin and immune activation in chronic heart failure: A prospective cohort study.Lancet199935391671838184210.1016/S0140‑6736(98)09286‑110359409
    [Google Scholar]
  20. Torre-AmioneG. KapadiaS. BenedictC. OralH. YoungJ.B. MannD.L. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: A report from the studies of left ventricular dysfunction (SOLVD).J. Am. Coll. Cardiol.19962751201120610.1016/0735‑1097(95)00589‑78609343
    [Google Scholar]
  21. CachofeiroV. GoicocheaM. de VinuesaS.G. OubiñaP. LaheraV. LuñoJ. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease.Kidney Int.200874111S4S910.1038/ki.2008.51619034325
    [Google Scholar]
  22. RuizS. PergolaP.E. ZagerR.A. VaziriN.D. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease.Kidney Int.20138361029104110.1038/ki.2012.43923325084
    [Google Scholar]
  23. XuG. GuY. YanN. LiY. SunL. LiB. Curcumin functions as an anti-inflammatory and antioxidant agent on arsenic-induced hepatic and kidney injury by inhibiting MAPKs/NF-κB and activating Nrf2 pathways.Environ. Toxicol.202136112161217310.1002/tox.2333034272803
    [Google Scholar]
  24. BellezzaI GiambancoI MinelliA DonatoR. Nrf2-Keap1 signaling in oxidative and reductive stress.Biochim Biophys Acta Mol Cell Res.20180167488910.1016/j.bbamcr.2018.02.010
    [Google Scholar]
  25. KimH.J. VaziriN.D. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure.Am. J. Physiol. Renal Physiol.20102983F662F67110.1152/ajprenal.00421.200920007347
    [Google Scholar]
  26. DrüekeT. Witko-SarsatV. MassyZ. Descamps-LatschaB. GuerinA.P. MarchaisS.J. GaussonV. LondonG.M. Iron therapy, advanced oxidation protein products, and carotid artery intima-media thickness in end-stage renal disease.Circulation2002106172212221710.1161/01.CIR.0000035250.66458.6712390950
    [Google Scholar]
  27. LiF. WangM. WangJ. LiR. ZhangY. Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease.Front. Cell. Infect. Microbiol.2019920620610.3389/fcimb.2019.0020631245306
    [Google Scholar]
  28. YangJ. LimS.Y. KoY.S. LeeH.Y. OhS.W. KimM.G. ChoW.Y. JoS.K. Intestinal barrier disruption and dysregulated mucosal immunity contribute to kidney fibrosis in chronic kidney disease.Nephrol. Dial. Transplant.201934341942810.1093/ndt/gfy17229939312
    [Google Scholar]
  29. NishiyamaK. AonoK. FujimotoY. KuwamuraM. OkadaT. TokumotoH. IzawaT. OkanoR. NakajimaH. TakeuchiT. AzumaY.T. Chronic kidney disease after 5/6 nephrectomy disturbs the intestinal microbiota and alters intestinal motility.J. Cell. Physiol.201923456667667810.1002/jcp.2740830317589
    [Google Scholar]
  30. WangF. ZhangP. JiangH. ChengS. Gut bacterial translocation contributes to microinflammation in experimental uremia.Dig. Dis. Sci.201257112856286210.1007/s10620‑012‑2242‑022615020
    [Google Scholar]
  31. ClàriaJ. Flores-CostaR. Duran-GüellM. López-VicarioC. Proresolving lipid mediators and liver disease.Biochim. Biophys. Acta Mol. Cell Biol. Lipids202118661115902310.1016/j.bbalip.2021.15902334352389
    [Google Scholar]
  32. NoelsH. LehrkeM. VanholderR. JankowskiJ. Lipoproteins and fatty acids in chronic kidney disease: Molecular and metabolic alterations.Nat. Rev. Nephrol.202117852854210.1038/s41581‑021‑00423‑533972752
    [Google Scholar]
  33. MemoliB. MinutoloR. BisestiV. PostiglioneL. ContiA. MarzanoL. CapuanoA. AndreucciM. BallettaM.M. GuidaB. TettaC. Changes of serum albumin and C-reactive protein are related to changes of interleukin-6 release by peripheral blood mononuclear cells in hemodialysis patients treated with different membranes.Am. J. Kidney Dis.200239226627310.1053/ajkd.2002.3054511840366
    [Google Scholar]
  34. KohlováM. AmorimC.G. AraújoA. Santos-SilvaA. SolichP. MontenegroM.C.B.S.M. The biocompatibility and bioactivity of hemodialysis membranes: Their impact in end-stage renal disease.J. Artif. Organs2019221142810.1007/s10047‑018‑1059‑930006787
    [Google Scholar]
  35. SusantitaphongP. RiellaC. JaberB.L. Effect of ultrapure dialysate on markers of inflammation, oxidative stress, nutrition and anemia parameters: A meta-analysis.Nephrol. Dial. Transplant.201328243844610.1093/ndt/gfs51423291370
    [Google Scholar]
  36. DukkipatiR. MolnarM.Z. ParkJ. JingJ. KovesdyC.P. KajaniR. Kalantar-ZadehK. Association of vascular access type with inflammatory marker levels in maintenance hemodialysis patients.Semin. Dial.201427441542310.1111/sdi.1214624118625
    [Google Scholar]
  37. BayraktarG. KurtulusI. KazanciogluR. BayramgurlerI. CintanS. BuralC. BozfakiogluS. IsseverH. YildizA. Oral health and inflammation in patients with end-stage renal failure.Perit. Dial. Int.200929447247910.1177/08968608090290041519602614
    [Google Scholar]
  38. SumidaK. KovesdyC.P. The gut-kidney-heart axis in chronic kidney disease.Physiol. Int.2019106319520610.1556/2060.106.2019.1931560235
    [Google Scholar]
  39. LauW.L. Kalantar-ZadehK. VaziriN.D. The gut as a source of inflammation in chronic kidney disease.Nephron J.20151302929810.1159/00038199025967288
    [Google Scholar]
  40. LauW.L. SavojJ. NakataM.B. VaziriN.D. Altered microbiome in chronic kidney disease: Systemic effects of gut-derived uremic toxins.Clin. Sci.2018132550952210.1042/CS2017110729523750
    [Google Scholar]
  41. FouqueD. Kalantar-ZadehK. KoppleJ. CanoN. ChauveauP. CuppariL. FranchH. GuarnieriG. IkizlerT.A. KaysenG. LindholmB. MassyZ. MitchW. PinedaE. StenvinkelP. Trevinho-BecerraA. WannerC. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease.Kidney Int.200873439139810.1038/sj.ki.500258518094682
    [Google Scholar]
  42. CarreroJ.J. ThomasF. NagyK. ArogundadeF. AvesaniC.M. ChanM. ChmielewskiM. CordeiroA.C. Espinosa-CuevasA. FiaccadoriE. Guebre-EgziabherF. HandR.K. HungA.M. IkizlerT.A. JohanssonL.R. Kalantar-ZadehK. KarupaiahT. LindholmB. MarckmannP. MafraD. ParekhR.S. ParkJ. RussoS. SaxenaA. SezerS. TetaD. Ter WeeP.M. VerseputC. WangA.Y.M. XuH. LuY. MolnarM.Z. KovesdyC.P. Global prevalence of protein-energy wasting in kidney disease: A meta-analysis of contemporary observational studies from the international society of renal nutrition and metabolism.J. Ren. Nutr.201828638039210.1053/j.jrn.2018.08.00630348259
    [Google Scholar]
  43. IoremberF.M. Malnutrition in chronic kidney disease.Front Pediatr.2018616110.3389/fped.2018.0016129974043
    [Google Scholar]
  44. AnderstamB. MamounA.H. SöderstenP. BergströmJ. Middle-sized molecule fractions isolated from uremic ultrafiltrate and normal urine inhibit ingestive behavior in the rat.J. Am. Soc. Nephrol.19967112453246010.1681/ASN.V71124538959639
    [Google Scholar]
  45. MafraD. Guebre-EgziabherF. CleaudC. ArkoucheW. MialonA. DraiJ. FouqueD. Obestatin and ghrelin interplay in hemodialysis patients.Nutrition20102611-121100110410.1016/j.nut.2009.09.00320018486
    [Google Scholar]
  46. MuscaritoliM. MolfinoA. ChiappiniM.G. LavianoA. AmmannT. SpinsantiP. MelchiorriD. InuiA. AlegianiF. Rossi FanelliF. Anorexia in hemodialysis patients: The possible role of des-acyl ghrelin.Am. J. Nephrol.200727436036510.1159/00010379817556836
    [Google Scholar]
  47. KaysenG.A. GreeneT. DaugirdasJ.T. KimmelP.L. SchulmanG.W. TotoR.D. LevinN.W. YanG. Longitudinal and cross-sectional effects of C-reactive protein, equilibrated normalized protein catabolic rate, and serum bicarbonate on creatinine and albumin levels in dialysis patients.Am. J. Kidney Dis.20034261200121110.1053/j.ajkd.2003.08.02114655192
    [Google Scholar]
  48. SnaedalS. QureshiA.R. LundS.H. GermanisG. HylanderB. HeimbürgerO. CarreroJ.J. StenvinkelP. BárányP. Dialysis modality and nutritional status are associated with variability of inflammatory markers.Nephrol. Dial. Transplant.20163181320132710.1093/ndt/gfw10427220753
    [Google Scholar]
  49. BiX. ChuM. AiH. HuC. DingW. Association of serum IL-18 with protein-energy wasting in end-stage renal disease patients on haemodialysis.Int. Urol. Nephrol.20195171271127810.1007/s11255‑019‑02167‑531119516
    [Google Scholar]
  50. LeeB.T. AhmedF.A. HammL.L. TeranF.J. ChenC.S. LiuY. ShahK. RifaiN. BatumanV. SimonE.E. HeJ. ChenJ. Association of C-reactive protein, tumor necrosis factor-alpha, and interleukin-6 with chronic kidney disease.BMC Nephrol.20151617710.1186/s12882‑015‑0068‑726025192
    [Google Scholar]
  51. CanepaA. PerfumoF. CarreaA. MenoniS. TrivelliA. DelucchiP. GusmanoR. Nutritional status in children receiving chronic peritoneal dialysis.Perit. Dial. Int.1996161_suppl52653110.1177/089686089601601S1088728263
    [Google Scholar]
  52. KrautJ.A. MadiasN.E. Adverse effects of the metabolic acidosis of chronic kidney disease.Adv. Chronic Kidney Dis.201724528929710.1053/j.ackd.2017.06.00529031355
    [Google Scholar]
  53. Alp IkizlerT. CanoN.J. FranchH. FouqueD. HimmelfarbJ. Kalantar-ZadehK. KuhlmannM.K. StenvinkelP. TerWeeP. TetaD. WangA.Y.M. WannerC. Prevention and treatment of protein energy wasting in chronic kidney disease patients: A consensus statement by the International Society of Renal Nutrition and Metabolism.Kidney Int.20138461096110710.1038/ki.2013.14723698226
    [Google Scholar]
  54. RoelfsemaV. ClarkR.G. The growth hormone and insulin-like growth factor axis: Its manipulation for the benefit of growth disorders in renal failure.J. Am. Soc. Nephrol.20011261297130610.1681/ASN.V126129711373355
    [Google Scholar]
  55. MaK.W. GreeneE.L. RaijL. Cardiovascular risk factors in chronic renal failure and hemodialysis populations.Am. J. Kidney Dis.199219650551310.1016/S0272‑6386(12)80827‑41534442
    [Google Scholar]
  56. StenvinkelP. HeimbürgerO. LindholmB. KaysenG.A. BergströmJ. Are there two types of malnutrition in chronic renal failure? Evidence for relationships between malnutrition, inflammation and atherosclerosis (MIA syndrome).Nephrol. Dial. Transplant.200015795396010.1093/ndt/15.7.95310862630
    [Google Scholar]
  57. JankowskaM. CoboG. LindholmB. StenvinkelP. Inflammation and protein-energy wasting in the uremic milieu.Contrib. Nephrol.2017191587110.1159/00047925628910791
    [Google Scholar]
  58. de MutsertR. GrootendorstD.C. AxelssonJ. BoeschotenE.W. KredietR.T. DekkerF.W. Excess mortality due to interaction between protein-energy wasting, inflammation and cardiovascular disease in chronic dialysis patients.Nephrol. Dial. Transplant.20082392957296410.1093/ndt/gfn16718400817
    [Google Scholar]
  59. YanBJ WangLH Low protein diet and progression of chronic kidney disease.J Nephrol Dialy Transplant2017260217918310.3969/cndt.j.issn.1006‑298X.2017.02.017
    [Google Scholar]
  60. CaoQF WangLF LanWH Application value of C-reactive protein detection in diagnosis and treatment of upper urinary tract stones combined with renal suppurative infection.Lab Med Clin201613213091309310.3969/j.issn.1672‑9455.2016.21.044
    [Google Scholar]
  61. LeveyA.S. Greene BeckG.J. CaggiulaA.W. KusekJ.W. HunsickerL.G. KlahrS. Dietary protein restriction and the progression of chronic renal disease: What have all of the results of the MDRD study shown? Modification of Diet in Renal Disease Study group.J. Am. Soc. Nephrol.199910112426243910.1681/ASN.V1011242610541304
    [Google Scholar]
  62. DongHY JinSK JinLY HanF MaJL Effects of compound α-ketoacid tablets on renal function, renal fibrosis indexes and oxidative stress in patients with diabetic nephropathy.J. Hainan Med. Univer.201824171558156110.13210/j.cnki.jhmu.20180725.005
    [Google Scholar]
  63. WangXH LinJC ZengY Effects of compound α-ketoacid tablets on renal function and oxidative stress in patients with diabetic nephropathy.Pract. Clin. Med.20202111111310.13764/j.cnki.lcsy.2020.11.004
    [Google Scholar]
  64. WangL. PangM. WangX. WangP. XiaoY. LiuQ. Characteristics, composition, and antioxidant activities in vitro and in vivo of Gynostemma pentaphyllum (Thunb.) Makino seed oil.J. Sci. Food Agric.20179772084209310.1002/jsfa.801327569782
    [Google Scholar]
  65. ZhangM. DuN. WangL. WangX. XiaoY. ZhangK. LiuQ. WangP. Conjugated fatty acid-rich oil from Gynostrmma pentaphyllum seed can ameliorate lipid and glucose metabolism in type 2 diabetes mellitus mice.Food Funct.20178103696370610.1039/C7FO00712D28944807
    [Google Scholar]
  66. TsuzukiT. KawakamiY. AbeR. NakagawaK. KobaK. ImamuraJ. IwataT. IkedaI. MiyazawaT. Conjugated linolenic acid is slowly absorbed in rat intestine, but quickly converted to conjugated linoleic acid.J. Nutr.200613682153215910.1093/jn/136.8.215316857834
    [Google Scholar]
  67. ChaplinA. ParraP. SerraF. PalouA. Conjugated linoleic acid supplementation under a high-fat diet modulates stomach protein expression and intestinal microbiota in adult mice.PLoS One2015104e012509110.1371/journal.pone.012509125915857
    [Google Scholar]
  68. DruartC. NeyrinckA.M. DewulfE.M. De BackerF.C. PossemiersS. Van de WieleT. MoensF. De VuystL. CaniP.D. LarondelleY. DelzenneN.M. Implication of fermentable carbohydrates targeting the gut microbiota on conjugated linoleic acid production in high-fat-fed mice.Br. J. Nutr.20131106998101110.1017/S000711451300012323507010
    [Google Scholar]
  69. HartighD. Obese mice losing weight due to trans-10, cis-12 conjugated linoleic acid supplementation or food restriction harbor distinct gut microbiota (vol 148, pg 562, 2018).J. Nutr.2019149588488410.1093/jn/nxy31231050744
    [Google Scholar]
  70. BorghiM PuccettiM ParianoM Tryptophan as a central hub for host/microbial symbiosis.Int. J. Trypt. Res.2020131178646910.1177/1178646920919755
    [Google Scholar]
  71. SchefoldJ.C. ZedenJ.P. FotopoulouC. von HaehlingS. PschowskiR. HasperD. VolkH.D. SchuettC. ReinkeP. Increased indoleamine 2,3-dioxygenase (IDO) activity and elevated serum levels of tryptophan catabolites in patients with chronic kidney disease: A possible link between chronic inflammation and uraemic symptoms.Nephrol. Dial. Transplant.20092461901190810.1093/ndt/gfn73919155537
    [Google Scholar]
  72. HondaH. QureshiA.R. HeimbürgerO. BaranyP. WangK. Pecoits-FilhoR. StenvinkelP. LindholmB. Serum albumin, C-reactive protein, interleukin 6, and fetuin a as predictors of malnutrition, cardiovascular disease, and mortality in patients with ESRD.Am. J. Kidney Dis.200647113914810.1053/j.ajkd.2005.09.01416377395
    [Google Scholar]
  73. LuoWR YaoSD ChenJ Effect of Qinghua decoction combined with hormone therapy on renal function and lipid metabolism disorder in patients with nephrotic syndrome.Clin. Educ. General Prac.2019179822510.13558/j.cnki.issn1672‑3686.2019.09.015
    [Google Scholar]
  74. XuY GaoYX MaRX Lipid metabolism disorders and chronic renal failure.Int. J. Urol. Nephrol.2003040444945210.3760/cma.j.issn.1673‑4416.2003.04.035
    [Google Scholar]
  75. LongK ZhuZZ LuL WuCX Dyslipidemias and their risk factors in patients with chronic kidney disease stages 3 and 4.Shandong Med. J.201353481618
    [Google Scholar]
  76. RenH ChenN ZhaoQ Evaluation of the effect of low-protein diet and combination diet withα-ketoacid therapy in chronic renal failure.Shanghai Med. J.2002251167167410.3969/j.issn.0253‑9934.2002.11.002
    [Google Scholar]
  77. CaiZY ZhouWC Progresses in researches of HMG CoA reductase inhibitors.Chinese J. New Drugs200615221907191210.3321/j.issn:1003‑3734.2006.22.005
    [Google Scholar]
  78. XiangQ HuangXX ZengJF WuYJ WangL Clinical observation on nutrition and lipid metabolism in patients with maintenance hemodialysis treated with low calcium dialysate combined with compound alpha-ketoic acid.Elec. J. Clin. Med. Literat.20196324510.16281/j.cnki.jocml.2019.32.003
    [Google Scholar]
  79. LiY DongXH ZouZJ Effect of nutrition and lipid metabolism in maintenance hemodialysis patients treated with α-keto acids.Prog. Modern Biomed.201111132528253110.13241/j.cnki.pmb.2011.13.012
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128291248240131102709
Loading
/content/journals/cpd/10.2174/0113816128291248240131102709
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test