Skip to content
2000
Volume 30, Issue 8
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

2,5-Diketopiperazine (2,5-DKP) derivatives represent a family of secondary metabolites widely produced by bacteria, fungi, plants, animals, and marine organisms. Many natural products with DKP scaffolds exhibited various pharmacological activities such as antiviral, antifungal, antibacterial, and antitumor. 2,5-DKPs are recognized as privileged structures in medicinal chemistry, and compounds that incorporate the 2,5-DKP scaffold have been extensively investigated for their anticancer properties. This review is a thorough update on the anti-cancer activity of natural and synthesized 2,5-DKPs from 1997 to 2022. We have explored various aspects of 2,5-DKPs modifications and summarized their structure-activity relationships (SARs) to gain insight into their anticancer activities. We have also highlighted the novel approaches to enhance the specificity and pharmacokinetics of 2,5-DKP-based anticancer agents.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128291798240201112916
2024-03-01
2024-11-06
Loading full text...

Full text loading...

References

  1. BorthwickA.D. 2,5-Diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products.Chem. Rev.201211273641371610.1021/cr200398y22575049
    [Google Scholar]
  2. HuangR. ZhouX. XuT. YangX. LiuY. Diketopiperazines from marine organisms.Chem. Biodivers.20107122809282910.1002/cbdv.20090021121161995
    [Google Scholar]
  3. MartinsM.B. CarvalhoI. Diketopiperazines: Biological activity and synthesis.Tetrahedron200763409923993210.1016/j.tet.2007.04.105
    [Google Scholar]
  4. GreveH. MohamedI.E. PontiusA. KehrausS. GrossH. KönigG.M. Fungal metabolites: Structural diversity as incentive for anticancer drug development.Phytochem. Rev.20109453754510.1007/s11101‑010‑9198‑5
    [Google Scholar]
  5. MaharK.M. EnslinM.B. GressA. Amrine-MadsenH. CooperM. Single‐ and multiple‐day dosing studies to investigate high‐dose pharmacokinetics of epelsiban and its metabolite, gsk2395448, in healthy female volunteers.Clin. Pharmacol. Drug Dev.201871334310.1002/cpdd.36328556598
    [Google Scholar]
  6. GrundmannA. LiS.M. Overproduction, purification and characterization of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus.Microbiology (Reading)200515172199220710.1099/mic.0.27962‑016000710
    [Google Scholar]
  7. GresserU. GleiterC.H. Erectile dysfunction: Comparison of efficacy and side effects of the PDE-5 inhibitors sildenafil, vardenafil and tadalafil-review of the literature.Eur. J. Med. Res.200271043544612435622
    [Google Scholar]
  8. DinsmoreC.J. BeshoreD.C. Recent advances in the synthesis of diketopiperazines.Tetrahedron200258173297331210.1016/S0040‑4020(02)00239‑9
    [Google Scholar]
  9. GongX. YangX.X. WangD.X. A new route for the synthesis of N-substituted diketopiperazine derivatives.Chin. Chem. Lett.2006174469
    [Google Scholar]
  10. NicholsonB. LloydG.K. MillerB.R. NPI-2358 is a tubulin-depolymerizing agent: In-vitro evidence for activity as a tumor vascular-disrupting agent.Anticancer Drugs2006171253110.1097/01.cad.0000182745.01612.8a16317287
    [Google Scholar]
  11. BertelsenL.B. ShenY.Y. NielsenT. Vascular effects of plinabulin (NPI-2358) and the influence on tumour response when given alone or combined with radiation.Int. J. Radiat. Biol.201187111126113410.3109/09553002.2011.60541821815749
    [Google Scholar]
  12. PosterD.S. PentaJ. MarsoniS. BrunoS. MacdonaldJ.S. Bis-diketopiperazine derivatives in clinical oncology: ICRF-159.Cancer Clin. Trials1980343153207000389
    [Google Scholar]
  13. ChenX. ChenX. SteimbachR.R. Novel 2, 5-diketopiperazine derivatives as potent selective histone deacetylase 6 inhibitors: Rational design, synthesis and antiproliferative activity.Eur. J. Med. Chem.202018711195010.1016/j.ejmech.2019.11195031865013
    [Google Scholar]
  14. GaultonA. HerseyA. NowotkaM. The ChEMBL database in 2017.Nucleic Acids Res.201745D1D945D95410.1093/nar/gkw107427899562
    [Google Scholar]
  15. DaviesM. NowotkaM. PapadatosG. ChEMBL web services: Streamlining access to drug discovery data and utilities.Nucleic Acids Res.201543W1W612-2010.1093/nar/gkv35225883136
    [Google Scholar]
  16. McKinneyW. Data Structures for Statistical Computing in PythonProc. 9th Python Sci Con.1566110.25080/Majora‑92bf1922‑00a
    [Google Scholar]
  17. HarrisC.R. MillmanK.J. van der WaltS.J. Array programming with NumPy.Nature2020585782535736210.1038/s41586‑020‑2649‑232939066
    [Google Scholar]
  18. HunterJ.D. Matplotlib: A 2D graphics environment.Comput. Sci. Eng.200793909510.1109/MCSE.2007.55
    [Google Scholar]
  19. WaskomM. Seaborn: Statistical data visualization.J. Open Source Softw.2021660302110.21105/joss.03021
    [Google Scholar]
  20. van RossumG. Python tutorial, technical report CS-R9526.Cent Voor Wiskd En Inform1995
    [Google Scholar]
  21. KluyverT. Ragan-KelleyB. PérezF. Jupyter Notebooks-a publishing format for reproducible computational workflows, Position. Power Acad. Publ. Play. Agents Agendas - Proc. 20th Int Conf Electron Publ ELPUB2016879010.3233/978‑1‑61499‑649‑1‑87
    [Google Scholar]
  22. ZhangQ. LiS. ChenY. New diketopiperazine derivatives from a deep-sea-derived Nocardiopsis alba SCSIO 03039.J. Antibiot.2013661313610.1038/ja.2012.8823093033
    [Google Scholar]
  23. HartungA. SeufertF. BergesC. GessnerV. HolzgrabeU. One-pot Ugi/Aza-Michael synthesis of highly substituted 2,5-diketopiperazines with anti-proliferative properties.Molecules20121712146851469910.3390/molecules17121468523519247
    [Google Scholar]
  24. PurushothamM. PaulB. Iodinated diketopiperazines: Synthesis and biological evaluation of iodinated analogues of cyclo(L‐Tyrosine‐L‐Tyrosine) Peptides.ChemistrySelect2022716e20220112010.1002/slct.202201120
    [Google Scholar]
  25. KanohK. KohnoS. AsariT. (−)-Phenylahistin: A new mammalian cell cycle inhibitor produced by Aspergillus ustus.Bioorg. Med. Chem. Lett.19977222847285210.1016/S0960‑894X(97)10104‑4
    [Google Scholar]
  26. KanohK. KohnoS. KatadaJ. TakahashiJ. UnoI. (-)-Phenylahistin arrests cells in mitosis by inhibiting tubulin polymerization.J. Antibiot.199952213414110.7164/antibiotics.52.13410344567
    [Google Scholar]
  27. TianZ. ChuY. WangH. ZhongL. DengM. LiW. Biological activity and interaction mechanism of the diketopiperazine derivatives as tubulin polymerization inhibitors.RSC Advances2018821055106410.1039/C7RA12173C35538960
    [Google Scholar]
  28. DingZ. LiF. ZhongC. Structure-based design and synthesis of novel furan-diketopiperazine-type derivatives as potent microtubule inhibitors for treating cancer.Bioorg. Med. Chem.2020281011543510.1016/j.bmc.2020.11543532278711
    [Google Scholar]
  29. SinghA.V. BandiM. RajeN. A novel vascular disrupting agent plinabulin triggers JNK-mediated apoptosis and inhibits angiogenesis in multiple myeloma cells.Blood2011117215692570010.1182/blood‑2010‑12‑32385721454451
    [Google Scholar]
  30. YamazakiY. SumikuraM. MasudaY. Synthesis and structure-activity relationships of benzophenone-bearing diketopiperazine-type anti-microtubule agents.Bioorg. Med. Chem.201220144279428910.1016/j.bmc.2012.05.05922727370
    [Google Scholar]
  31. Honda-UezonoA. KaidaA. MichiY. Unusual expression of red fluorescence at M phase induced by anti-microtubule agents in HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci).Biochem. Biophys. Res. Commun.2012428222422910.1016/j.bbrc.2012.10.01423063846
    [Google Scholar]
  32. FuZ. HouY. JiC. Design, synthesis and biological evaluation of anti-pancreatic cancer activity of plinabulin derivatives based on the co-crystal structure.Bioorg. Med. Chem.20182682061207210.1016/j.bmc.2018.03.00529571653
    [Google Scholar]
  33. MaM. ZhaoJ. ChengH. In vitro and in vivo pharmacokinetic and pharmacodynamic study of MBRI-001, a deuterium-substituted plinabulin derivative as a potent anti-cancer agent.Bioorg. Med. Chem.201826164687469210.1016/j.bmc.2018.08.00930119994
    [Google Scholar]
  34. DingZ. ChengH. WangS. Development of MBRI-001, a deuterium-substituted plinabulin derivative as a potent anti-cancer agent.Bioorg. Med. Chem. Lett.20172761416141910.1016/j.bmcl.2017.01.09628228362
    [Google Scholar]
  35. YamazakiY. TanakaK. NicholsonB. Synthesis and structure-activity relationship study of antimicrotubule agents phenylahistin derivatives with a didehydropiperazine-2,5-dione structure.J. Med. Chem.20125531056107110.1021/jm200908822185476
    [Google Scholar]
  36. DengM. LiL. ZhaoJ. YuanS. LiW. Antitumor activity of the microtubule inhibitor MBRI-001 against human hepatocellular carcinoma as monotherapy or in combination with sorafenib.Cancer Chemother. Pharmacol.201881585386210.1007/s00280‑018‑3547‑229532153
    [Google Scholar]
  37. WangY. ZhangH. GigantB. Structures of a diverse set of colchicine binding site inhibitors in complex with tubulin provide a rationale for drug discovery.FEBS J.2016283110211110.1111/febs.1355526462166
    [Google Scholar]
  38. ChinhPT ThamPT QuynhDH Synthesis and cytotoxic activity of several novel n-alkyl-plinabulin derivatives with aryl group moieties.Nat Prod Commun20211641934578X211010010.1177/1934578X211010040
    [Google Scholar]
  39. SodeokaM. DodoK. TengY. Synthesis and biological activities of chaetocin and its derivatives.Pure Appl. Chem.20128461369137810.1351/PAC‑CON‑11‑10‑31
    [Google Scholar]
  40. GardinerD.M. WaringP. HowlettB.J. The epipolythiodioxopiperazine (ETP) class of fungal toxins: Distribution, mode of action, functions and biosynthesis.Microbiology200515141021103210.1099/mic.0.27847‑015817772
    [Google Scholar]
  41. WaringP. EichnerR.D. MüllbacherA. The chemistry and biology of the immunomodulating agent gliotoxin and related epipolythiodioxopiperazines.Med. Res. Rev.19888449952410.1002/med.26100804042461498
    [Google Scholar]
  42. HauserD. WeberH.P. SiggH.P. Isolierung und strukturaufklärung von chaetocin.Helv. Chim. Acta19705351061107310.1002/hlca.197005305215448218
    [Google Scholar]
  43. BoyerN. MorrisonK.C. KimJ. HergenrotherP.J. MovassaghiM. Synthesis and anticancer activity of epipolythiodiketopiperazine alkaloids.Chem. Sci.2013441646165710.1039/c3sc50174d23914293
    [Google Scholar]
  44. TibodeauJ.D. BensonL.M. IshamC.R. OwenW.G. BibleK.C. The anticancer agent chaetocin is a competitive substrate and inhibitor of thioredoxin reductase.Antioxid. Redox Signal.20091151097110610.1089/ars.2008.231818999987
    [Google Scholar]
  45. IshamC.R. TibodeauJ.D. JinW. XuR. TimmM.M. BibleK.C. Chaetocin: A promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress.Blood200710962579258810.1182/blood‑2006‑07‑02732617090648
    [Google Scholar]
  46. LaiY-S. ChenJ-Y. TsaiH-J. ChenT-Y. HungW-C. The SUV39H1 inhibitor chaetocin induces differentiation and shows synergistic cytotoxicity with other epigenetic drugs in acute myeloid leukemia cells.Blood Cancer J.201555e31310.1038/bcj.2015.3725978433
    [Google Scholar]
  47. SongX. ZhaoZ. QiX. Identification of epipolythiodioxopiperazines HDN-1 and chaetocin as novel inhibitor of heat shock protein 90.Oncotarget2015675263527410.18632/oncotarget.302925742791
    [Google Scholar]
  48. LeeM.C. KuoY.Y. ChouW.C. HouH.A. HsiaoM. TienH.F. Gfi-1 is the transcriptional repressor of SOCS1 in acute myeloid leukemia cells.J. Leukoc. Biol.201395110511510.1189/jlb.091247524018353
    [Google Scholar]
  49. TranH.T.T. KimH.N. LeeI.K. Improved therapeutic effect against leukemia by a combination of the histone methyltransferase inhibitor chaetocin and the histone deacetylase inhibitor trichostatin A.J. Korean Med. Sci.201328223724610.3346/jkms.2013.28.2.23723400519
    [Google Scholar]
  50. JungH-J. SeoI. CascielloF. The anticancer effect of chaetocin is enhanced by inhibition of autophagy.Cell Death Dis.201672e2098e810.1038/cddis.2016.1526890137
    [Google Scholar]
  51. HanX. HanY. ZhengY. Chaetocin induces apoptosis in human melanoma cells through the generation of reactive oxygen species and the intrinsic mitochondrial pathway, and exerts its anti-tumor activity in vivo.PLoS One2017124e017595010.1371/journal.pone.017595028419143
    [Google Scholar]
  52. TengY. IuchiK. IwasaE. Unnatural enantiomer of chaetocin shows strong apoptosis-inducing activity through caspase-8/caspase-3 activation.Bioorg. Med. Chem. Lett.201020175085508810.1016/j.bmcl.2010.07.03220675131
    [Google Scholar]
  53. IshamC.R. TibodeauJ.D. BossouA.R. MerchanJ.R. BibleK.C. The anticancer effects of chaetocin are independent of programmed cell death and hypoxia, and are associated with inhibition of endothelial cell proliferation.Br. J. Cancer2012106231432310.1038/bjc.2011.52222187030
    [Google Scholar]
  54. FujishiroS. DodoK. IwasaE. Epidithiodiketopiperazine as a pharmacophore for protein lysine methyltransferase G9a inhibitors: Reducing cytotoxicity by structural simplification.Bioorg. Med. Chem. Lett.201323373373610.1016/j.bmcl.2012.11.08723266120
    [Google Scholar]
  55. DuL. RoblesA.J. KingJ.B. MooberryS.L. CichewiczR.H. Cytotoxic dimeric epipolythiodiketopiperazines from the ascomycetous fungus Preussia typharum.J. Nat. Prod.20147761459146610.1021/np500225324893224
    [Google Scholar]
  56. TakahashiC. MinouraK. YamadaT. Potent cytotoxic metabolites from a Leptosphaeria species. Structure determination and conformational analysis.Tetrahedron199551123483349810.1016/0040‑4020(95)00102‑E
    [Google Scholar]
  57. YanagiharaM. Sasaki-TakahashiN. SugaharaT. Leptosins isolated from marine fungus Leptoshaeria species inhibit DNA topoisomerases I and/or II and induce apoptosis by inactivation of Akt/protein kinase B.Cancer Sci.2005961181682410.1111/j.1349‑7006.2005.00117.x16271076
    [Google Scholar]
  58. MinatoH. MatsumotoM. KatayamaT. VerticillinA. Verticillin A, a new antibiotic from Verticillium sp.J. Chem. Soc. D197144-4514410.1039/c29710000044
    [Google Scholar]
  59. MinatoH. MatsumotoM. KatayamaT. Studies on the metabolites of Verticillium sp. structures of verticillins A, B, and C.J. Chem. Soc., Perkin Trans. 11973171819182510.1039/p197300018194796650
    [Google Scholar]
  60. KatagiriK. SatoK. HayakawaS. MatsushimaT. MinatoH. Verticillin A, a new antibiotic from Verticillium sp.J. Antibiot.197023842042210.7164/antibiotics.23.4205465723
    [Google Scholar]
  61. PaschallA.V. LiuK. Epigenetic regulation of apoptosis and cell cycle regulatory genes in human colon carcinoma cells.Genom. Data2015518919110.1016/j.gdata.2015.05.04326309812
    [Google Scholar]
  62. ChuM. TruumeesI. RothofskyM.L. Inhibition of c-fos proto-oncogene induction by Sch 52900 and Sch 52901, novel diketopiperazine produced by Gliocladium sp.J. Antibiot.199548121440144510.7164/antibiotics.48.14408557601
    [Google Scholar]
  63. JoshiB.K. GloerJ.B. WicklowD.T. New verticillin and glisoprenin analogues from Gliocladium catenulatum, a mycoparasite of Aspergillus flavus sclerotia.J. Nat. Prod.199962573073310.1021/np980530x10346956
    [Google Scholar]
  64. DongJ.Y. HeH.P. ShenY.M. ZhangK.Q. Nematicidal epipolysulfanyldioxopiperazines from Gliocladium roseum.J. Nat. Prod.200568101510151310.1021/np050224116252916
    [Google Scholar]
  65. SonB.W. JensenP.R. KauffmanC.A. FenicalW. New cytotoxic epidithiodioxopiperazines related to verticillin A from a marine isolate of the fungus Penicillium.Nat. Prod. Lett.199913321322210.1080/10575639908048788
    [Google Scholar]
  66. FigueroaM. GrafT.N. AyersS. Cytotoxic epipolythiodioxopiperazine alkaloids from filamentous fungi of the Bionectriaceae.J. Antibiot.2012651155956410.1038/ja.2012.6922968289
    [Google Scholar]
  67. AmrineC.S.M. RajaH.A. DarveauxB.A. PearceC.J. OberliesN.H. Media studies to enhance the production of verticillins facilitated by in situ chemical analysis.J. Ind. Microbiol. Biotechnol.201845121053106510.1007/s10295‑018‑2083‑830259213
    [Google Scholar]
  68. BaumannM. DieskauA.P. LoertscherB.M. Tricyclic analogues of epidithiodioxopiperazine alkaloids with promising in vitro and in vivo antitumor activity.Chem. Sci.2015684451445710.1039/C5SC01536G26301062
    [Google Scholar]
  69. LiuF. LiuQ. YangD. Verticillin A overcomes apoptosis resistance in human colon carcinoma through DNA methylation-dependent upregulation of BNIP3.Cancer Res.201171216807681610.1158/0008‑5472.CAN‑11‑157521911457
    [Google Scholar]
  70. FeiyanL. PingW. KebinL. Verticillin a inhibition of histone methyltransferases.US Patent 20140161785A12014
  71. ChenY. ZhangY.X. LiM.H. Antiangiogenic activity of 11,11′-dideoxyverticillin, a natural product isolated from the fungus Shiraia bambusicola.Biochem. Biophys. Res. Commun.200532941334134210.1016/j.bbrc.2005.02.11515766573
    [Google Scholar]
  72. HeP. CheY. HeQ. ChenY. DingJ. G226, a novel epipolythiodioxopiperazine derivative, induces autophagy and caspase-dependent apoptosis in human breast cancer cells in vitro.Acta Pharmacol. Sin.20143581055106410.1038/aps.2014.4725066322
    [Google Scholar]
  73. NiuS. YuanD. JiangX. CheY. 11′-Deoxyverticillin A (C42) promotes autophagy through K-Ras/GSK3 signaling pathway in HCT116 cells.Protein Cell201451294594910.1007/s13238‑014‑0099‑z25261996
    [Google Scholar]
  74. ZhangY.X. ChenY. GuoX.N. 11,11′-Dideoxy-verticillin: A natural compound possessing growth factor receptor tyrosine kinase-inhibitory effect with anti-tumor activity.Anticancer Drugs200516551552410.1097/00001813‑200506000‑0000715846117
    [Google Scholar]
  75. ZhangN. ChenY. JiangR. PARP and RIP 1 are required for autophagy induced by 11′-deoxyverticillin A, which precedes caspase-dependent apoptosis.Autophagy20117659861210.4161/auto.7.6.1510321460625
    [Google Scholar]
  76. HeP. ZhangJ. CheY. HeQ. ChenY. DingJ. G226, a new epipolythiodioxopiperazine derivative, triggers DNA damage and apoptosis in human cancer cells in vitro via ROS generation.Acta Pharmacol. Sin.201435121546155510.1038/aps.2014.10525468822
    [Google Scholar]
  77. AmrineC.S.M. HuntsmanA.C. DoyleM.G. Semisynthetic derivatives of the verticillin class of natural products through acylation of the c11 hydroxy group.ACS Med. Chem. Lett.202112462563010.1021/acsmedchemlett.1c0002433859802
    [Google Scholar]
  78. GlisterG.A. WilliamsT.I. Production of gliotoxin by Aspergillus fumigatus mut. helvola yuill.Nature19441533891651110.1038/153651a0
    [Google Scholar]
  79. NguyenV.T. LeeJ. QianZ.J. Gliotoxin isolated from marine fungus Aspergillus sp. induces apoptosis of human cervical cancer and chondrosarcoma cells.Mar. Drugs2013121698710.3390/md1201006924368570
    [Google Scholar]
  80. WilkinsonS. SpilsburyJ.F. Gliotoxin from Aspergillus chevalieri (Mangin) thom et church.Nature19652064984619910.1038/206619a05832836
    [Google Scholar]
  81. BeechamA.F. FridrichsonsJ. MathiesonA.M. The structure and absolute configuration of gliotoxin and the absolute configuration of sporidesmin.Tetrahedron Lett.19667273131313810.1016/S0040‑4039(01)99927‑75955875
    [Google Scholar]
  82. JohnsonJ.R. BruceW.F. DutcherJ.D. Gliotoxin, the antibiotic principle of Gliocladium fimbriatum. i. production, physical and biological properties.J. Am. Chem. Soc.194365102005200910.1021/ja01250a051
    [Google Scholar]
  83. ParkY.H. StackJ.P. KenerleyC.M. Production of gliotoxin by Gliocladium virens as a function of source and concentration of carbon and nitrogen.Mycol. Res.199195101242124810.1016/S0953‑7562(09)80018‑X
    [Google Scholar]
  84. ParkY.H. ParkC.M. Selective isolation and enumeration of Gliocladium virens and G. roseum from soil.Plant Dis.199276323023510.1094/PD‑76‑0230
    [Google Scholar]
  85. AnithaR. MurugesanK. Production of gliotoxin on natural substrates Bytrichoderma virens.J. Basic Microbiol.2005451121910.1002/jobm.20041045115678558
    [Google Scholar]
  86. W. R. E. O.H, The isolation of a toxic substance from the culture fiItrate of Trichoderma.Phytopathology19362610681070
    [Google Scholar]
  87. WrightJ.M. J.M. wright, the production of antibiotics in soil.Ann. Appl. Biol.195441228028910.1111/j.1744‑7348.1954.tb01121.x
    [Google Scholar]
  88. Suhadolnik RJ. Gliotoxin. In: Gottlieb D, Shaw PD, Eds. Biosynthesis, Springer Berlin Heidelberg, Berlin. Heidelberg1967293110.1007/978‑3‑662‑38441‑1_4
    [Google Scholar]
  89. MullR.P. TownleyR.W. ScholzC.R. Production of gliotoxin and a second active isolate by Penicillium obscurum biourge.J. Am. Chem. Soc.19456791626162710.1021/ja01225a518
    [Google Scholar]
  90. LiangW.L. LeX. LiH.J. Exploring the chemodiversity and biological activities of the secondary metabolites from the marine fungus Neosartorya pseudofischeri.Mar. Drugs201412115657567610.3390/md1211565725421322
    [Google Scholar]
  91. KaouadjiM. SteimanR. Seigle-MurandiF. KrivobokS. SageL. Gliotoxin: Uncommon 1H couplings and revised 1H- and 13C-NMR assignments.J. Nat. Prod.199053371771910.1021/np50069a032
    [Google Scholar]
  92. BrackenA. RaistrickH. Studies in the biochemistry of micro-organisms.Biochem. J.194741456957510.1042/bj0410569
    [Google Scholar]
  93. JohnsonJ.R. KidwaiA.R. WarnerJ.S. Gliotoxin. XI. A related antibiotic from Penicillium terlikowski: Gliotoxin monoacetate.J. Am. Chem. Soc.19537592110211210.1021/ja01105a026
    [Google Scholar]
  94. SunY. TakadaK. TakemotoY. Gliotoxin analogues from a marine-derived fungus, Penicillium sp., and their cytotoxic and histone methyltransferase inhibitory activities.J. Nat. Prod.201275111111410.1021/np200740e22148349
    [Google Scholar]
  95. PahlH.L. KraussB. Schulze-OsthoffK. The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB.J. Exp. Med.199618341829184010.1084/jem.183.4.18298666939
    [Google Scholar]
  96. ColemanJ.J. GhoshS. OkoliI. MylonakisE. Antifungal activity of microbial secondary metabolites.PLoS One201169e2532110.1371/journal.pone.002532121966496
    [Google Scholar]
  97. HubmannW. SieghartR. Tumor treatment with gliotoxin derivatives2011Available from: https://patents.google.com/patent/ US7981878B2/en (Accessed August 4, 2023).
  98. VigushinD.M. MirsaidiN. BrookeG. Gliotoxin is a dual inhibitor of farnesyltransferase and geranylgeranyltransferase I with antitumor activity against breast cancer in vivo.Med. Oncol.2004211213010.1385/MO:21:1:2115034210
    [Google Scholar]
  99. BaustH. SchokeA. BreyA. Evidence for radiosensitizing by gliotoxin in HL-60 cells: Implications for a role of NF-κB independent mechanisms.Oncogene200322548786879610.1038/sj.onc.120696914647473
    [Google Scholar]
  100. NieminenS.M. Mäki-PaakkanenJ. HirvonenM.R. RoponenM. von WrightA. Genotoxicity of gliotoxin, a secondary metabolite of Aspergillus fumigatus, in a battery of short-term test systems.Mutat. Res. Genet. Toxicol. Environ. Mutagen.20025201-216117010.1016/S1383‑5718(02)00202‑412297156
    [Google Scholar]
  101. SvahnK.S. GöranssonU. El-SeediH. Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment.Infect. Ecol. Epidemiol.2012211159110.3402/iee.v2i0.1159122957125
    [Google Scholar]
  102. LarinN.M. CoppingM.P. Herbst-LaierR.H. RobertsB. WenhamR.B.M. Antiviral activity of gliotoxin.Chemotherapy1965101122310.1159/0002203894285752
    [Google Scholar]
  103. RightselW.A. SchneiderH.G. SloanB.J. Antiviral activity of gliotoxin and gliotoxin acetate.Nature196420449651333133410.1038/2041333b014254440
    [Google Scholar]
  104. YeW. LiuT. ZhangW. ZhangW. The toxic mechanism of gliotoxins and biosynthetic strategies for toxicity prevention.Int. J. Mol. Sci.2021221351010.3390/ijms22241351034948306
    [Google Scholar]
  105. ScharfD.H. HeinekampT. RemmeN. HortschanskyP. BrakhageA.A. HertweckC. Biosynthesis and function of gliotoxin in Aspergillus fumigatus.Appl. Microbiol. Biotechnol.201293246747210.1007/s00253‑011‑3689‑122094977
    [Google Scholar]
  106. ChenJ. WangC. LanW. Gliotoxin inhibits proliferation and induces apoptosis in colorectal cancer cells.Mar. Drugs201513106259627310.3390/md1310625926445050
    [Google Scholar]
  107. WangY. LiZ.L. BaiJ. 2,5-diketopiperazines from the marine-derived fungus Aspergillus fumigatus YK-7.Chem. Biodivers.20129238539310.1002/cbdv.20110006122344914
    [Google Scholar]
  108. ParkH.B. KimY.J. ParkJ.S. Glionitrin B, a cancer invasion inhibitory diketopiperazine produced by microbial coculture.J. Nat. Prod.201174102309231210.1021/np200563x21954885
    [Google Scholar]
  109. OrfaliR.S. AlyA.H. EbrahimW. Pretrichodermamide C and N-methylpretrichodermamide B, two new cytotoxic epidithiodiketopiperazines from hyper saline lake derived Penicillium sp.Phytochem. Lett.20151116817210.1016/j.phytol.2014.12.010
    [Google Scholar]
  110. ZhouY. DebbabA. MándiA. Alkaloids from the sponge‐associated fungus Aspergillus sp.Eur. J. Org. Chem.20132013589490610.1002/ejoc.201201220
    [Google Scholar]
  111. WangF.Z. HuangZ. ShiX.F. Cytotoxic indole diketopiperazines from the deep sea-derived fungus Acrostalagmus luteoalbus SCSIO F457.Bioorg. Med. Chem. Lett.201222237265726710.1016/j.bmcl.2012.08.11523079524
    [Google Scholar]
  112. AdamsT.C. PayetteJ.N. CheahJ.H. MovassaghiM. Concise total synthesis of (+)-luteoalbusins A and B.Org. Lett.201517174268427110.1021/acs.orglett.5b0205926336940
    [Google Scholar]
  113. SeyaH. NakajimaS. KawaiK. UdagawaS. Structure and absolute configuration of emestrin, a new macrocyclic epidithiodioxopiperazine from Emericell striata.J. Chem. Soc. Chem. Commun.19851065765810.1039/c39850000657
    [Google Scholar]
  114. OnoderaH. HasegawaA. TsumagariN. NakaiR. OgawaT. KandaY. MPC1001 and its analogues: New antitumor agents from the fungus Cladorrhinum species.Org. Lett.20046224101410410.1021/ol048202d15496109
    [Google Scholar]
  115. NursidM. NamirahI. CahyanaA.H. FajarningsihN.D. ChasanahE. EmestrinB. Epipolythiodioxypiperazine from marine derived fungus Emericella nidulans.J. Med. Bioeng.20154644144510.12720/jomb.4.6.441‑445
    [Google Scholar]
  116. SeyaH. NozawaK. NakajimaS. KawaiK. UdagawaS. Studies on fungal products. Part 8. Isolation and structure of emestrin, a novel antifungal macrocyclic epidithiodioxopiperazine from Emericella striata. X-Ray molecular structure of emestrin.J. Chem. Soc., Perkin Trans. 1198610911610.1039/p19860000109
    [Google Scholar]
  117. LipsonE.J. VincentJ.G. LoyoM. A cytotoxic epitetrathiodioxopiperizine and emericellenes A-E, five sesterterpenoids from Emericella sp. AST0036, a fungal endophyte of Astragalus lentiginosus.J. Nat. Prod.20147612010.1158/2326‑6066.CIR‑13‑0034.PD‑L1
    [Google Scholar]
  118. XuY. Espinosa-ArtilesP. LiuM.X. ArnoldA.E. GunatilakaA.A.L. SecoemestrinD. Secoemestrin D, a cytotoxic epitetrathiodioxopiperizine, and emericellenes A-E, five sesterterpenoids from Emericella sp. AST0036, a fungal endophyte of Astragalus lentiginosus1.J. Nat. Prod.201376122330233610.1021/np400762k24251417
    [Google Scholar]
  119. DongS. IndukuriK. CliveD.L.J. GaoJ.M. Synthesis of models of the BC ring systems of MPC1001 and MPC1001F.Chem. Commun.201652538271827410.1039/C6CC04169H27284641
    [Google Scholar]
  120. KongF. WangY. LiuP. DongT. ZhuW. Thiodiketopiperazines from the marine-derived fungus Phoma sp. OUCMDZ-1847.J. Nat. Prod.201477113213710.1021/np400802d24370114
    [Google Scholar]
  121. CaiJ. WangX. YangZ. Thiodiketopiperazines and alkane derivatives produced by the mangrove sediment-derived fungus Penicillium ludwigii SCSIO 41408.Front. Microbiol.20221385704110.3389/fmicb.2022.85704135418953
    [Google Scholar]
  122. HegdeV.R. DaiP. PatelM. DasP.R. PuarM.S. Novel thiodiketopiperazine fungal metabolites as epidermal growth factor receptor antagonists.Tetrahedron Lett.199738691191410.1016/S0040‑4039(96)02457‑4
    [Google Scholar]
  123. ScharfD.H. RemmeN. HabelA. A dedicated glutathione S-transferase mediates carbon-sulfur bond formation in gliotoxin biosynthesis.J. Am. Chem. Soc.201113332123221232510.1021/ja201311d21749092
    [Google Scholar]
  124. ChiL.P. LiX.M. LiL. LiX. WangB.G. Cytotoxic thiodiketopiperazine derivatives from the deep sea-derived fungus Epicoccum nigrum SD-388.Mar. Drugs202018316010.3390/md1803016032183021
    [Google Scholar]
  125. YamadaT. KogureH. KataokaM. KikuchiT. HiranoT. Halosmysin A, a novel 14-membered macrodiolide isolated from the marine-algae-derived fungus Halosphaeriaceae sp.Mar. Drugs202018632010.3390/md1806032032570727
    [Google Scholar]
  126. YamadaT. YoshidaK. KikuchiT. HiranoT. Isolation and structure elucidation of new cytotoxic macrolides halosmysins b and c from the fungus Halosphaeriaceae sp. associated with a marine alga.Mar. Drugs202220422610.3390/md2004022635447898
    [Google Scholar]
  127. WenH. LiuX. ZhangQ. Three new indole diketopiperazine alkaloids from Aspergillus ochraceus.Chem. Biodivers.2018154e170055010.1002/cbdv.20170055029479805
    [Google Scholar]
  128. PengJ. GaoH. LiJ. Prenylated indole diketopiperazines from the marine-derived fungus Aspergillus versicolor.J. Org. Chem.201479177895790410.1021/jo501017925089636
    [Google Scholar]
  129. GaoH. ZhuT. LiD. GuQ. LiuW. Prenylated indole diketopiperazine alkaloids from a mangrove rhizosphere soil derived fungus Aspergillus effuses H1-1.Arch. Pharm. Res.201336895295610.1007/s12272‑013‑0107‑523539310
    [Google Scholar]
  130. DossenaA. MarchelliR. PochiniA. New metabolites of Aspergillus amstelodami related to the biogenesis of neoechinulin.J. Chem. Soc. Chem. Commun.1974771-7721977110.1039/c39740000771
    [Google Scholar]
  131. LiY. LiX. KangJ.S. ChoiH.D. SonB.W. New radical scavenging and ultraviolet-A protecting prenylated dioxopiperazine alkaloid related to isoechinulin A from a marine isolate of the fungus Aspergillus.J. Antibiot.200457533734010.7164/antibiotics.57.33715303494
    [Google Scholar]
  132. WangX.N. TanR.X. LiuJ.K. Xylactam, a new nitrogen-containing compound from the fruiting bodies of ascomycete Xylaria euglossa.J. Antibiot.200558426827010.1038/ja.2005.3115981413
    [Google Scholar]
  133. WijesekaraI. LiY.X. VoT.S. Van TaQ. NgoD.H. KimS.K. Induction of apoptosis in human cervical carcinoma HeLa cells by neoechinulin A from marine-derived fungus Microsporum sp.Process Biochem.2013481687210.1016/j.procbio.2012.11.012
    [Google Scholar]
  134. KobayashiS. KuramochiK. AokiT. Synthesis of neoechinulin A and derivatives.Synthesis20082008233810381810.1055/s‑0028‑108363419043251
    [Google Scholar]
  135. PettitG.R. HoganF. XuJ.P. Antineoplastic agents. 536. New sources of naturally occurring cancer cell growth inhibitors from marine organisms, terrestrial plants, and microorganisms(1a,).J. Nat. Prod.200871343844410.1021/np700738k18327911
    [Google Scholar]
  136. WangS. LiX.M. TeuscherF. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata.J. Nat. Prod.200669111622162510.1021/np060248n17125234
    [Google Scholar]
  137. YagiR. DoiM. Isolation of an antioxidative substance produced by Aspergillus repens.Biosci. Biotechnol. Biochem.19996393293310.1271/bbb.63.93227385574
    [Google Scholar]
  138. KuramochiK. OhnishiK. FujiedaS. Synthesis and biological activities of neoechinulin A derivatives: New aspects of structure-activity relationships for neoechinulin A.Chem. Pharm. Bull.200856121738174310.1248/cpb.56.173819043251
    [Google Scholar]
  139. KimotoK. AokiT. ShibataY. Structure-activity relationships of neoechinulin A analogues with cytoprotection against peroxynitrite-induced PC12 cell death.J. Antibiot.2007601061462110.1038/ja.2007.7917965477
    [Google Scholar]
  140. LiY. LiX. KimS.K. Golmaenone, a new diketopiperazine alkaloid from the marine-derived fungus Aspergillus sp.Chem. Pharm. Bull.200452337537610.1248/cpb.52.37514993767
    [Google Scholar]
  141. MillerJ.D. SunM. GilyanA. RoyJ. RandT.G. Inflammation-associated gene transcription and expression in mouse lungs induced by low molecular weight compounds from fungi from the built environment.Chem. Biol. Interact.2010183111312410.1016/j.cbi.2009.09.02319818335
    [Google Scholar]
  142. DewapriyaP. LiY.X. HimayaS.W.A. PangestutiR. KimS.K. Neoechinulin A suppresses amyloid-β oligomer-induced microglia activation and thereby protects PC-12 cells from inflammation-mediated toxicity.Neurotoxicology201335304010.1016/j.neuro.2012.12.00423261590
    [Google Scholar]
  143. LiH. SunW. DengM. Asperversiamides, linearly fused prenylated indole alkaloids from the marine-derived fungus Aspergillus versicolor.J. Org. Chem.201883158483849210.1021/acs.joc.8b0108730016097
    [Google Scholar]
  144. MaruyamaK. OhuchiT. YoshidaK. ShibataY. SugawaraF. AraiT. Protective properties of neoechinulin A against SIN-1-induced neuronal cell death.J. Biochem.20041361818710.1093/jb/mvh10315269243
    [Google Scholar]
  145. KajimuraY. AokiT. KuramochiK. Neoechinulin A protects PC12 cells against MPP+-induced cytotoxicity.J. Antibiot.200861533033310.1038/ja.2008.4818654001
    [Google Scholar]
  146. ZhengZ.Z. ShanW.G. WangS.L. YingY.M. MaL.F. ZhanZ.J. Three new prenylated diketopiperazines from Neosartorya fischeri.Helv. Chim. Acta20149771020102610.1002/hlca.201300416
    [Google Scholar]
  147. SaraivaN.N. RodriguesB.S.F. JimenezP.C. Cytotoxic compounds from the marine-derived fungus Aspergillus sp. recovered from the sediments of the Brazilian coast.Nat. Prod. Res.201529161545155010.1080/14786419.2014.98777225532964
    [Google Scholar]
  148. GattiG. CardilloR. FugantiC. GhiringhelliD. Structure determination of two extractives from Aspergillus amstelodami by nuclear magnetic resonance spectroscopy.J. Chem. Soc. Chem. Commun.1976435-4361243510.1039/c39760000435
    [Google Scholar]
  149. ZhuJ.Q. FanS.R. WeiX. Synthesis and biological evaluation of marine natural product, Cryptoechinuline D derivatives as novel antiangiogenic agents.Bioorg. Med. Chem. Lett.20226512871710.1016/j.bmcl.2022.12871735390450
    [Google Scholar]
  150. LvD. XiaJ. GuanX. Indole diketopiperazine alkaloids isolated from the marine-derived fungus Aspergillus chevalieri MCCC M23426.Front. Microbiol.20221395085710.3389/fmicb.2022.95085735875553
    [Google Scholar]
  151. GongG. QiJ. LvY. Discovery of 1,3-Disubstituted 2,5-diketopiperazine derivatives as potent class I HDACs inhibitors.Chem. Pharm. Bull.202068546647210.1248/cpb.c20‑0005632378544
    [Google Scholar]
  152. WangF. SarottiA.M. JiangG. Waikikiamides A-C: Complex diketopiperazine dimer and diketopiperazine-polyketide hybrids from a hawaiian marine fungal strain Aspergillus sp. FM242.Org. Lett.202022114408441210.1021/acs.orglett.0c0141132433885
    [Google Scholar]
  153. WangN. DongY. YangY. Penicimutanin C, a new alkaloidal compound, isolated from a neomycin‐resistant mutant 3‐f‐31of Penicillium purpurogenum G59.Chem. Biodivers.2020177e200024110.1002/cbdv.20200024132385896
    [Google Scholar]
  154. MarchiniM. MingozziM. ColomboR. Cyclic RGD peptidomimetics containing bifunctional diketopiperazine scaffolds as new potent integrin ligands.Chemistry201218206195620710.1002/chem.20120045722517378
    [Google Scholar]
  155. FanelliR. SchembriL. PiarulliU. Effects of a novel cyclic RGD peptidomimetic on cell proliferation, migration and angiogenic activity in human endothelial cells.Vasc. Cell2014611110.1186/2045‑824X‑6‑1125053992
    [Google Scholar]
  156. HoodJ.D. ChereshD.A. Role of integrins in cell invasion and migration.Nat. Rev. Cancer2002229110010.1038/nrc72712635172
    [Google Scholar]
  157. PanzeriS. ZanellaS. ArosioD. Cyclic isoDGR and RGD peptidomimetics containing bifunctional diketopiperazine scaffolds are integrin antagonists.Chemistry201521166265627110.1002/chem.20140656725761230
    [Google Scholar]
  158. AvraamidesC.J. Garmy-SusiniB. VarnerJ.A. Integrins in angiogenesis and lymphangiogenesis.Nat. Rev. Cancer20088860461710.1038/nrc235318497750
    [Google Scholar]
  159. AuzzasL. ZanardiF. BattistiniL. Targeting alphavbeta3 integrin: Design and applications of mono- and multifunctional RGD-based peptides and semipeptides.Curr. Med. Chem.201017131255129910.2174/09298671079093630120166941
    [Google Scholar]
  160. MingozziM. ManzoniL. ArosioD. Synthesis and biological evaluation of dual action cyclo-RGD/SMAC mimetic conjugates targeting αvβ3/αvβ5 integrins and IAP proteins.Org. Biomol. Chem.201412203288330210.1039/C4OB00207E24737345
    [Google Scholar]
  161. ZanellaS. AngeraniS. PinaA. Tumor targeting with an iso DGR-drug conjugate.Chemistry201723337910791410.1002/chem.20170184428449309
    [Google Scholar]
  162. Dal CorsoA. CarusoM. BelvisiL. Synthesis and biological evaluation of RGD peptidomimetic-paclitaxel conjugates bearing lysosomally cleavable linkers.Chemistry201521186921692910.1002/chem.20150015825784522
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128291798240201112916
Loading
/content/journals/cpd/10.2174/0113816128291798240201112916
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test