- Home
- A-Z Publications
- Current Pharmaceutical Biotechnology
- Previous Issues
- Volume 24, Issue 7, 2023
Current Pharmaceutical Biotechnology - Volume 24, Issue 7, 2023
Volume 24, Issue 7, 2023
-
-
Noncoding RNA Databases
By Jens AllmerDiseases such as cancer are often defined by dysregulation of gene expression. Noncoding RNAs (ncRNA) such as microRNAs are involved in gene expression and cell-cell communication. Many other ncRNAs exist, such as circular RNAs and small nucleolar RNAs. A wealth of knowledge is available for many ncRNAs, but the information is federated in many databases. A small number of highly complementary ncRNA databases are discussed in this work. Their relevance for cancer research is highlighted, and some of the current problems and limitations are revealed. A central or shared database enforcing community reporting and quality standards is needed in the future. • RNA-seq • Noncoding RNAs • Databases • Data repositories
-
-
-
New Era on Combining Both Imaging and Drug Delivery to Treat Cancer
More LessIt is well documented that cancer is one of the leading causes of death worldwide. During the pandemic, cancer screening was suspended, and only symptomatic patients were referred for screening. It is believed that deaths related to various cancer types have increased by around 10%, and the screening suspension was assumed as the main reason. It is well documented that the early diagnosis of cancer is important for the outcome; last decades, the introduction of nanotechnology-based carriers, which can serve as both imaging and therapeutic modalities, has risen. Although the combination of imaging and drug delivery for targeting cancer is a hopeful field, it is still under investigation and has not met clinical standards. Nanotheranostics, as they are also referred to, can combine both imaging and delivery and improve the survival rates and overall quality of life of patients. Would cancer patients have a chance to live a normal life if nano theranostics were incorporated into the daily clinical oncology practice? This review tries to answer this question by providing the most current applications of nanotheranostics targeting different types of cancer and summarizing their most significant characteristics.
-
-
-
Noncoding RNAs: A New Layer of Functional RNAs
Authors: Dilek C. Gurer and Bünyamin AkgülThe conventional central dogma of molecular biology dictates that the genetic information contained within deoxyribonucleic acid (DNA) is passed onto messenger ribonucleic acids (mRNAs), which are then used as templates to synthesize proteins. Although these types of proteincoding genes have been historically prioritized in typical phenotype-genotype studies with a parallel disregard to the rest of the genome, the completion of genome projects has unveiled a surprising layer of genetic information that can play critical roles in cellular processes without coding for proteins. These types of genes are called noncoding genes as they do not code for proteins. Noncoding genes come in different sizes and shapes, and they are just as versatile in carrying out cellular biochemical processes as proteins. In this review, we cover a comprehensive review of housekeeping and regulatory noncoding genes and their mode of action.
-
-
-
Long Noncoding RNAs in Human Cancer and Apoptosis
Authors: İpek Erdoğan, Osama Sweef and Bünyamin AkgülGenome annotations have uncovered the production of at least one transcript from nearly all loci in the genome at some given time throughout the development. Surprisingly, many of these transcripts do not code for proteins and are relatively long in size, thus called long noncoding RNAs (lncRNAs). Next- and third-generation sequencing technologies have amassed numerous lncRNAs expressed under different phenotypic conditions, yet many remain to be functionally characterized. LncRNAs regulate gene expression by functioning as scaffold, decoy, signaling, and guide molecules both at the transcriptional and post-transcriptional levels, interacting with different types of macromolecules, such as proteins, DNA, and RNA. Here, we review the potential regulatory role of lncRNAs in apoptosis and cancer as some of these lncRNAs may have the diagnostic and therapeutic potential in cancer.
-
-
-
Involvement of Metabolites and Non-coding RNAs in Diseases
Authors: Kubra A. Coskun, Bercem Y. Kıyak, Kezban Ucar Cifci, Elif Kadioglu, Nazlican Yurekli and Yusuf TutarNon-coding RNAs have a role in gene regulation and cellular metabolism control. Metabolism produces metabolites which are small molecules formed during the metabolic process. So far, a direct relationship between metabolites and genes is not fully established; however, pseudogenes and their progenitor genes regulate health and disease states. Other non-coding RNAs also contribute to this regulation at different cellular processes. Accumulation and depletion of metabolites accompany the dynamic equilibrium of health and disease state. In this study, metabolites, their roles in the cell, and the link between metabolites and non-coding RNAs are discussed.
-
-
-
MicroRNAs and Long Non-coding RNAs as Novel Targets in Anti-cancer Drug Development
Authors: Melisa tinkaya and Yusuf BaranNon-coding RNAs comprise the majority of RNAs that have been transcribed from the human genome, and these non-coding RNAs have essential regulatory roles in the cellular processes. They have been discovered to influence the expression of the genes, including tumorsuppressive and oncogenes, that establish the non-coding RNAs as novel targets for anti-cancer drug development. Among non-coding RNAs, microRNAs have been extensively studied in terms of cancer biology, and some microRNA-based therapeutics have been reached in clinical studies. Even though most of the research regarding targeting non-coding RNAs for anti-cancer drug development focused on microRNAs, long non-coding RNAs have also started to gain importance as potential therapeutic targets for cancer therapy. In this chapter, the strategies and importance of targeting microRNAs and long non-coding RNAs will be described, along with the clinical studies that involve microRNA-based cancer therapeutics and preclinical studies that involve long noncoding RNA-based therapeutics. Finally, the delivery strategies that have great importance in the effective delivery of the non-coding RNA-based cancer therapeutics, hence the therapy's effectiveness, will be described.
-
Volumes & issues
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)