- Home
- A-Z Publications
- Current Pharmaceutical Biotechnology
- Previous Issues
- Volume 24, Issue 3, 2023
Current Pharmaceutical Biotechnology - Volume 24, Issue 3, 2023
Volume 24, Issue 3, 2023
-
-
Methods Applied to the Diagnosis of Cattle Trypanosoma vivax Infection: An Overview of the Current State of the Art
Bovine trypanosomiasis caused by Trypanosoma vivax is a relevant disease in domestic ungulates in Latin America, causing different types of livestock losses, particularly in African and South American countries, leading to loss of millions of dollars/year related to dairy and meat production. In addition, T. vivax trypanosomiasis requires intensive veterinary care. While vector control is a feasible measure to manage disease spreading, the search for accurate diagnostic tools still represents a gap in routine veterinary practices and a challenge for the scientific community. The parasite is mechanically transmitted by fomites or by the saliva of haematophagous flies, such as Stomoxys sp. and Tabanus sp., infecting cattle as well as a number of animal hosts. The main symptoms of T. vivax bovine trypanosomiasis are apathy, fever, restricted growth, miscarriage, progressive weakness, neurological signs, pale mucous, loss of appetite, lethargy, and substantial weight loss. In most cases, the presence of animals with subclinical infections, nonspecific symptoms and without apparent parasitaemia presents a challenge when making a diagnosis, which requires accurate methods. Herein, we review state of the art concerning current methods available for the diagnosis of T. vivax bovine trypanosomiasis, focusing on clinical, parasitological, immunological and molecular approaches, highlighting the main features of each method, including “pros and cons”. Overall, combining several diagnostic techniques is a better choice since it leads to fewer false negative results and contributes to better disease control.
-
-
-
Immunoliposomes: A Targeted Drug Delivery System for Cancer Therapeutics and Vaccination
Authors: Reena Gupta, Jitendra Gupta and Abhishek PathakCancer has become one of the world's most lethal and life-threatening disorders, resulting in many deaths. Drug targeting and managing drug delivery are concepts that are implemented to increase a drug's therapeutic index by enhancing its specificity to particular cells, tissues, or organs and reducing its action and harmful side effects. Liposomes have proven to be one of the most innovative drug delivery systems in medicine. Immunoliposomes, also known as antibody-coupled liposomes, have gained a lot of attention as a homing device for targeted therapies. Monoclonal antibodies or antibody fragments that combine with liposomes to create immunoliposomes have been considered a leading technique for targeted delivery. Various functionalization strategies are adopted for the non-covalent and covalent binding of monoclonal antibodies and their components to liposomal surfaces, such as thiolation, amide bonds, hydrazone bonds, and electrostatic interactions, hydrophobic interactions, hydrogen bonding, etc. for cancer-specific targeting. This provides an overview of various stimulus-responsive immunoliposomes capable of regulating drug release in response to an exogenous magnetic field, changes in temperature or pH, enzyme concentration, endogenous stimuli, and applications of immunoliposomes in vaccination and cancer therapeutics and endogenous immune response stimulation.
-
-
-
Factors and Mechanisms Affecting the Secretion of Recombinant Protein in CHO Cells
Authors: Yong-Xiao Yang, Qin Li, Wei-Dong Li, Tian-Yun Wang and Hui-Gen FengThe market demand for recombinant therapeutic proteins (RTPs) has promoted the development of various protein expression host and bioprocessing technologies. Since mammalian cells have the unique advantage of being able to direct the correct folding of proteins and provide post-translational processing such as complex glycosylation, the RTPs produced by them currently account for approximately 80% of the approved marketed RTPs. Among them, Chinese hamster ovary (CHO) cells are currently the preferred host cells for the production of RTPs. Production of RTPs in CHO cells involves the synthesis, processing, transport, and secretion of proteins. The secretion process of proteins is one of the key steps, which greatly limits the yield and quality of RTPs. Here, we review the recombinant protein secretion process of CHO cells and its influencing factors, and further discuss the optimization strategy for recombinant protein secretion and expression in CHO cells.
-
-
-
COVID-19-associated Coagulopathy: Role of Vitamins D and K
Authors: Bruk Getachew, Harold E. Landis, Kebreten F. Manaye and Yousef TizabiRecent reports show coagulopathy as a potential complication and poorer outcome of coronavirus disease 2019 (COVID-19), especially in those with comorbid conditions such as diabetes and hypertension as thrombosis could result in stroke and heart attacks. Indeed, cardiovascular complications in COVID-19 account for 40% of mortality. Although there is no standard treatment protocol or guidelines for COVID-19, it is a common practice to use anti-inflammatory corticosteroids and anti-coagulants, especially for severe COVID-19 patients. It has also been confirmed that deficiencies of vitamin D and/or vitamin K can exacerbate premorbid cardiovascular and diabetes conditions associated with COVID-19, at least partially due to a higher incidence of coagulopathy. Here, we discuss the roles of vitamins D and K in general and in COVID-19-related coagulopathy. Moreover, the suggestion for proper supplementations of these vitamins in countering COVID-19 is provided.
-
-
-
Overview of Advancement in Biosensing Technology, Including its Applications in Healthcare
Authors: Sakshi Mishra and Rohitas DeshmukhClinical analysis necessitates using rapid and dependable diagnostic methodologies and approaches. Biomarkers may be an appropriate choice to fulfill this objective, as they are designed uncomplicated in use, specialized for the desired metabolite, susceptible to ongoing analysis and providing excellent outcomes, relatively affordable in the budget, and easily accessible. Biosensing devices are increasingly extensively utilized for treatment, and therefore a variety of applications such as prudence treatment and illness advancement surveillance, environment sensing, product standard, medicine development, toxicology, and scientific engineering. Biosensors can be developed using a wide variety of ways. Its combination with high-affinity macromolecules enables them to monitor a diverse variety of solutes in a specific as well as responsive manner. Enhanced sensing innovation leads to the detection of infection as well as the monitoring of people's reactions after treatment. Sensing tools are essential for a range of low and better implantable implants. Nanosensors offer a lot of prospects because they are simple, flexible, yet economical to develop. This article presents a detailed overview of breakthroughs in the subject and demonstrations of the variety of biosensors and the extension of nanoscience and nanotechnology methodologies that are applicable today.
-
-
-
Research Progress in Elucidating the Mechanisms Underlying Resveratrol Action on Lung Cancer
Authors: Rui Xin, Biao Shen, Zhong-Yan Huang, Ji-Bin Liu, Sha Li, Geng-Xi Jiang, Jie Zhang, Ya-Hong Cao, Da-Zhi Zou, Wen Li, Chun-Guang Li, Yu-Shui Ma and Da FuResveratrol has several functions, including protection of the heart and nervous system and exerts antidiabetic, anti-inflammatory, anti-aging, and antitumor effects. It is reported to impede the occurrence and development of tumors in cancer cell lines, animal models, and clinical studies. In vitro and in vivo experiments show that it exerts preventive or adjuvant therapeutic effects in pancreatic, colorectal, prostate, liver, and lung cancers. Mechanistic research reports show that resveratrol can induce tumor cell apoptosis and autophagy, inhibit cell cycle and angiogenesis, regulate nuclear factors and cyclooxygenase signal transduction pathways, and inhibit carcinogens' metabolic activation and alter tumor-related expression patterns; anti-oxidation affects tumor cell proliferation, metastasis, and apoptosis. However, the exact mechanism underlying its action remains unclear. This review highlights multiple aspects of the biological impacts and mechanisms underlying resveratrol action on the occurrence and development of lung cancer.
-
-
-
Evaluation of the Efficacy of Lactobacillus acidophilus in the Treatment of Cyclophosphamide-induced Hemorrhagic Cystitis in Wistar Rats
Background: Hemorrhagic cystitis is an inflammatory complication that can be caused by the administration of cyclophosphamide, which is widely used as an antineoplastic agent. In the search for new therapeutic alternatives, probiotics can suppress the inflammatory process and, therefore, can be used to prevent this disease. Objective: Thus, this study aimed to evaluate the effects of using Lactobacillus acidophilus NCFM in the treatment of cyclophosphamide-induced hemorrhagic cystitis in Wistar rats. Methods: Lactobacillus acidophilus NCFM (2x108CFU) was used in the treatment of cyclophosphamide- induced hemorrhagic cystitis (200 mg/kg, intraperitoneal) in 77 female Wistar rats. Rats were distributed into experimental groups (n = 9): control group (GC), zero control group (GCZ), inflammation group (GI), 24-hour acute treatment groups: 24-hour lactobacilli treatment group (GL24H) and mesna group (GM), and 30-day chronic treatment groups: lactobacilli treatment group (GTL) and mesna+lactobacilli group (GM+L). After treatment, animals were euthanized and biological materials were collected for blood count, biochemical analyses, examination of abnormal sediment elements (EAS), and histopathological analysis. Results: GI results showed development of edema, macroscopic alterations, and signs of bleeding in the bladder; in addition, lesions in the urothelium and hemorrhage were also found. GL24H and GM presented intact urothelium, without inflammatory reaction and hematological or biochemical urine alterations. Conclusion: Therefore, this study demonstrated that L. acidophilus presented uroprotective effect against the action of cyclophosphamide in both the short and long term.
-
-
-
N-acetyl Cysteine Inhibits Cell Proliferation and Differentiation of LPSInduced MC3T3-E1 Cells Via Regulating Inflammatory Cytokines
Authors: Wangyang Li, Hui Zhang, Junchi Chen, Yujie Tan, Ailing Li and Ling GuoBackground: Peri-implantitis is one of the most common complications in oral implantation and could lead to the loss of the function of bone tissues around implants. Methods: This study used lipopolysaccharide (LPS) as a stimulant for MC3T3-E1 cells and N-acetyl cysteine (NAC) as an inhibitor to inhibit the effect of LPS to investigate the effect of NAC on the expression of bone formation related factors and inflammatory-related factors of osteoblasts under the action of LPS. Results: In this study, we found that the cell proliferation and cell differentiation were significantly promoted when NAC concentrations were between 0 ~ 0.5 mM, but were inhibited when the concentration exceeded 0.5 mM. LPS had a slightly promoting effect on the cell proliferation before 20 μg/mL but inhibited the cell proliferation after 20 μg/mL. LPS reduced protein and gene expressions of Runx2, ALP and BGP and increased protein and gene expressions of NF-ΚB and TNF-α. NAC reversibly regulated the LPS’s regulation on the expression of MC3T3-E1 cell cytokine gene and protein. Conclusion: The optimal NAC concentration for treating MC3T3-E1 cells is 0.5 mM, and the optimal LPS concentration for stimulating MC3T3-E1 cells is 20 μg/mL. NAC plays an active role in regulating the differentiation of MC3T3-E1 cells, and can inhibit LPS to regulate the differentiation of MC3T3-E1 cells. NAC promotes the expression of an osteogenic factor of MC3T3-E1cells and inhibits the expression of inflammatory cytokines.
-
-
-
In vitro Evaluation of Antioxidant and Antibacterial Activities of Eco-friendly Synthesized Silver Nanoparticles using Quercus robur Bark Extract
Aims: This study reports a simple, cost-effective, and environmentally friendly method to obtain silver nanoparticles (AgNPs) using an aqueous extract of Quercus robur bark. Methods: AgNPs synthesis conditions such as silver nitrate concentration, extract:AgNO3 volume ratio, pH, temperature, and reaction time have been examined. After optimizing the synthesis, the obtained AgNPs were characterized by different methods such as UV-Vis, TEM, EDX, and FTIR. The antioxidant activity was evaluated using lipoxygenase inhibition capacity and inhibition of erythrocyte hemolysis mediated by peroxyl free radicals tests. The antimicrobial potential of the samples was tested against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Results: The AgNPs synthesis process is influenced by reaction conditions, the optimum established values being, in this case: concentration of 3 mM AgNO3, 1:9 extract: AgNO3 volume ratio, pH value of 6, 60 ºC temperature, and 90 minutes stirring time. The shape of the synthesized AgNPs was predominantly spherical, with an average size of 50 nm. The SPR band at 432 nm, the strong EDX signal at ~ 3 keV and the zeta potential of -13.88 mV revealed the formation of AgNPs and electrostatic stabilization of the colloidal solution. FTIR analysis confirmed the participation of molecules from the extract in the synthesis and stabilization of AgNPs. The obtained nanoparticles showed improved antioxidant, antifungal and antibacterial activities compared to the extract. Conclusion: The results open the possibility of exploring new applications of nanoparticles obtained via green synthesis.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)