Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Background

Alzheimer's disease (AD) impacts a total of 30 million individuals worldwide, resulting in the impairment of brain cells. Despite the approval of medications, there are still poor results and adverse effects that continue to exist, which has led to continued research for more effective treatments.

Objectives

In this study prioritize the medicinal plants and their bioactive chemicals to attract researchers and pharmaceutical companies interested in producing powerful herbal medicines and semi-synthetic drugs for the treatment of Alzheimer's disease, although minimizing any potential adverse effects.

Methods

This review investigate the effective use of medicinal plants and their phytochemicals in the treatment of AD to manage its growth and relieve symptoms improving cognitive deficits.

Results

These medicinal plants and their phytochemicals contribute to the treatment of AD by protecting against cell damage induced by beta amyloid, improving memory and learning abilities, functioning as nerve tonics, and exhibiting strong antioxidant and anti-inflammatory activities. Furthermore, they have demonstrated therapeutic benefits in the management of AD. The finding suggests that several phytoconstituents/ plant metabolites are present in numerous anti-Alzheimer's plants known for their anti-Alzheimer's properties such as rosmarinic acid, quercetin, kaempferol, gallic acid, β-sitosterol, oleic acid and linalool. In addition, this article emphasizes the anti-Alzheimer's disease significance of various important phytochemicals.

Conclusion

The review proposes that medicinal plants and their bioactive phytochemicals hold potential as a viable alternative treatment for AD. The utilization of these medicinal plants can improve memory and decrease the likelihood of developing Alzheimer's disease in the future.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129331572240910084315
2024-09-13
2025-05-31
Loading full text...

Full text loading...

References

  1. Sosa-OrtizA.L. Acosta-CastilloI. PrinceM.J. Epidemiology of dementias and Alzheimer’s disease.Arch. Med. Res.201243860060810.1016/j.arcmed.2012.11.00323159715
    [Google Scholar]
  2. DeardorffW.J. FeenE. GrossbergG.T. The use of cholinesterase inhibitors across all stages of AD.Drugs Aging201532753754710.1007/s40266‑015‑0273‑x26033268
    [Google Scholar]
  3. AkramM. NawazA. Effects of medicinal plants on Alzheimer’s disease and memory deficits.Neural Regen. Res.201712466067010.4103/1673‑5374.20510828553349
    [Google Scholar]
  4. RoyA. Role of medicinal plants against Alzheimer’s disease.Int. J. Complement. Altern. Med.201811420520810.15406/ijcam.2018.11.00398
    [Google Scholar]
  5. TiwariS. AtluriV. KaushikA. YndartA. NairM. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics.Int. J. Nanomedicine2019145541555410.2147/IJN.S20049031410002
    [Google Scholar]
  6. LiuY.S. ZhaoH.F. LiQ. CuiH.W. HuangG.D. Research Progress on the Etiology and Pathogenesis of Alzheimer's Disease from the Perspective of Chronic Stress.Aging Dis.20231441292131010.14336/AD.2022.1211
    [Google Scholar]
  7. AbubakarM.B. SanusiK.O. UgusmanA. Alzheimer's Disease: An Update and Insights Into Pathophysiology.Front Aging Neurosci.20221474240810.3389/fnagi.2022.742408
    [Google Scholar]
  8. García-MoralesV. González-AcedoA. Melguizo-RodríguezL. Pardo-MorenoT. Costela-RuizV.J. Montiel-TroyaM. Ramos-RodríguezJ.J. Current Understanding of the Physiopathology, Diagnosis and Therapeutic Approach to Alzheimer’s Disease.Biomedicines2021912191010.3390/biomedicines912191034944723
    [Google Scholar]
  9. PetersenR.C. GrafA. CarrilloM.C. WeberC.J. Current understanding of AD pathophysiology and impact of amyloid-beta targeted treatments on biomarkers and clinical endpoints.Alzheimers Dement (N Y)202281e1236110.1002/trc2.12361
    [Google Scholar]
  10. BotchwayB.O.A. LiuX. ZhouY. FangM. Biometals in Alzheimer disease: Emerging therapeutic and diagnostic potential of molybdenum and iodine.J. Transl. Med.202321135110.1186/s12967‑023‑04220‑537244993
    [Google Scholar]
  11. LavadoL.K. ZhangM.H. PatelK. KhanS. PatelU.K. Biometals as Potential Predictors of the Neurodegenerative Decline in Alzheimer’s Disease.Cureus.2019119e557310.7759/cureus.5573
    [Google Scholar]
  12. BezprozvannyI. MattsonM.P. Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease.Trends Neurosci.200831945446310.1016/j.tins.2008.06.00518675468
    [Google Scholar]
  13. KumarS. PaulS. WaliaY.K. KumarA. SinghalP. Therapeutic potential of medicinal plants: A review.J. Biol. Chem. Chron.201514654
    [Google Scholar]
  14. UmadeviM. RajeswariR. RahaleC.S. SelvavenkadeshS. PushpaR. KumarK.S. BhowmikD. Traditional and medicinal uses of Withaniasomnifera.Pharma Innov.20121102110
    [Google Scholar]
  15. FirdausZ. SinghT.D. An insight into the pathophysiological mechanism of AD and its management using plant natural products.Mini Rev. Med. Chem.2021211355710.2174/18755607MTA4bNzEgz32744972
    [Google Scholar]
  16. PaulS. ChakrabortyS. AnandU. DeyS. NandyS. GhoraiM. SahaS.C. PatilM.T. KandimallaR. ProćkówJ. DeyA. Withania somnifera (L.) Dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects.Biomed. Pharmacother.202114311217510.1016/j.biopha.2021.11217534649336
    [Google Scholar]
  17. VermaR.K. KumariP. MauryaR.K. KumarV. VermaR.B. SinghR.K. Medicinal properties of turmeric (Curcuma longa L.): A review.Int. J. Chem. Stud.2018613541357
    [Google Scholar]
  18. GiriR.K. RajagopalV. KalraV.K. Curcumin, the active constituent of turmeric, inhibits amyloid peptide‐induced cytochemokine gene expression and CCR5‐mediated chemotaxis of THP‐1 monocytes by modulating early growth response‐1 transcription factor.J. Neurochem.20049151199121010.1111/j.1471‑4159.2004.02800.x15569263
    [Google Scholar]
  19. LimG.P. ChuT. YangF. BeechW. FrautschyS.A. ColeG.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse.J. Neurosci.200121218370837710.1523/JNEUROSCI.21‑21‑08370.200111606625
    [Google Scholar]
  20. FuloriaS. MehtaJ. ChandelA. SekarM. RaniN.N.I.M. BegumM.Y. SubramaniyanV. ChidambaramK. ThangaveluL. NordinR. WuY.S. SathasivamK.V. LumP.T. MeenakshiD.U. KumarasamyV. AzadA.K. FuloriaN.K. A Comprehensive Review on the Therapeutic Potential of Curcuma longa Linn. in Relation to its Major Active Constituent Curcumin.Front. Pharmacol.20221382080610.3389/fphar.2022.82080635401176
    [Google Scholar]
  21. RaoR.V. DescampsO. JohnV. BredesenD.E. Ayurvedic medicinal plants for Alzheimer’s disease: A review.Alzheimers Res. Ther.2012432210.1186/alzrt12522747839
    [Google Scholar]
  22. ChatterjiN. RastogiR. DharM. Chemical examination of Bacopa monniera Wettst: Part I-Isolation of chemical constituents.Indian J. Chem.19631212215
    [Google Scholar]
  23. ShinomolG.K. Muralidhara Bacopa monnieri modulates endogenous cytoplasmic and mitochondrial oxidative markers in prepubertal mice brain.Phytomedicine201118431732610.1016/j.phymed.2010.08.00520850955
    [Google Scholar]
  24. DharishiniM.P. BalasubramanianK. RadhaA. In Vitro Micropropagation of Bacopa monnieri and Detection of Bacosides from Secondary Callus.JAIR20143233236
    [Google Scholar]
  25. PokaL.P. GK.M. KV.R. KS. Neuroprotective effect of green synthesized iron oxide nanoparticles using aqueous extract of Convolvulus pluricaulis plant in the management of AD.Int. J. Pharmacogn. Phytochem. Res.20179570370910.25258/phyto.v9i5.8152
    [Google Scholar]
  26. SethiyaN.K. NahataA. SinghP.K. MishraS.H. Neuropharmacological evaluation on four traditional herbs used as nervine tonic and commonly available as Shankhpushpi in India.J. Ayurveda Integr. Med.2019101253110.1016/j.jaim.2017.08.01229530454
    [Google Scholar]
  27. DeviP. An updated review on Shankhpushpi-As MedhyaRasayana.J. Ayurvedic Herb. Med.20217119123
    [Google Scholar]
  28. BhatB.A. AlmilaibaryA. MirR.A. AljarallahB.M. MirW.R. AhmadF. MirM.A. Natural Therapeutics in Aid of Treating Alzheimer’s Disease: A Green Gateway Toward Ending Quest for Treating Neurological Disorders.Front. Neurosci.20221688434510.3389/fnins.2022.88434535651632
    [Google Scholar]
  29. GanieS.H. AliZ. DasS. SrivastavaP.S. SharmaM.P. Genetic diversity and chemical profiling of different populations of Convolvulus pluricaulis (convolvulaceae): An important herb of ayurvedic medicine.3 Biotech20155295302
    [Google Scholar]
  30. KunnumakkaraA.B. BanikK. BordoloiD. HarshaC. SailoB.L. PadmavathiG. RoyN.K. GuptaS.C. AggarwalB.B. Googling the Guggul (Commiphora and Boswellia) for Prevention of Chronic Diseases.Front. Pharmacol.2018968610.3389/fphar.2018.0068630127736
    [Google Scholar]
  31. UpadhyayJ. DurgapalS. JantwalA. KumarA. RanaM. TiwariN. Naturally Occurring Chemicals Against Alzheimer's Disease.Amsterdam, The NetherlandsElsevier2021317328
    [Google Scholar]
  32. KaurR.P. BansalP. KaurR. GuptaV. KumarS. Is There Any Scientific Basis of Hawan to be Used in the Alzheimer’s Disease Prevention/Cure?Curr. Tradit. Med.201621223310.2174/2215083802666160722160733
    [Google Scholar]
  33. BevegeL. Centella asiatica: A review.Aust. J. Med. Herb.2004161527
    [Google Scholar]
  34. AdamsM. GmünderF. HamburgerM. Plants traditionally used in age related brain disorders—A survey of ethnobotanical literature.J. Ethnopharmacol.2007113336338110.1016/j.jep.2007.07.01617720341
    [Google Scholar]
  35. GohilK. PatelJ. GajjarA. Pharmacological review on Centella asiatica: A potential herbal cure-all.Indian J. Pharm. Sci.201072554655610.4103/0250‑474X.7851921694984
    [Google Scholar]
  36. MishraB. JohnE. A Systematic Review on Neuro-Psychopharmacological effects of Celastrus paniculatus (Malkangani) Oil.Res. J. Pharm. Technol.2020135245210.5958/0974‑360X.2020.00439.4
    [Google Scholar]
  37. MohanK. LekhaG. SamyI. Effect of Celastrus paniculatus seed oil (Jyothismati oil) on acute and chronic immobilization stress induced in swiss albino mice.Pharmacognosy Res.20102316917410.4103/0974‑8490.6551221808561
    [Google Scholar]
  38. DeodharK.A. ShindeN.W. Celastrus paniculatus: Traditional uses and ethnobotanical study.IJAPR201521821
    [Google Scholar]
  39. RaoV.S. RaoA. KaranthK.S. Anticonvulsant and neurotoxicity profile of Nardostachys jatamansi in rats.J. Ethnopharmacol.2005102335135610.1016/j.jep.2005.06.03116095854
    [Google Scholar]
  40. SahuR. DhongadeH.J. PandeyA. SahuP. SahuV. PatelD. KashyapP. Medicinal properties of Nardostachysjatamansi (a review).Orient. J. Chem.201632285986610.13005/ojc/320211
    [Google Scholar]
  41. El-Saber BatihaG. Magdy BeshbishyA. El-MleehA. Abdel-DaimM.M. Prasad DevkotaH. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L.(Fabaceae).Biomolecules202010335210.3390/biom1003035232106571
    [Google Scholar]
  42. SinghalA. BangarO.P. NaithaniV. Medicinal plants with a potential to treat Alzheimer and associated symptoms.Int. J. Nutr. Pharmacol. Neurol. Dis.201222849110.4103/2231‑0738.95927
    [Google Scholar]
  43. ZhuZ. 2, 2′, 4′-Trihydroxychalcone from Glycyrrhizaglabra as a new specific BACE1 inhibitor efficiently ameliorates memory impairment in mice.J. Neurochem.201011437438510.1111/j.1471‑4159.2010.06751.x20412384
    [Google Scholar]
  44. RoshanA. VermaN.K. KumarC.S. ChandraV. SinghD.P. PandayM.K. Phytochemical constituent, pharmacological activities and medicinal uses through the millenia of Glycyrrhiza glabra Linn: A review.Int. Res. J. Pharm.201234555
    [Google Scholar]
  45. LiaoZ. ChengL. LiX. ZhangM. WangS. HuoR. Meta analysis of ginkgo biloba preparation for the treatment of AD.Clin. Neuropharmacol.2020434939910.1097/WNF.000000000000039432658034
    [Google Scholar]
  46. JadhavR.P. KengarM.D. NaruleO.V. KoliV.W. KumbharS.B. A review on AD and its herbal treatment of AD.AJPSci2019911212210.5958/2231‑5659.2019.00017.1
    [Google Scholar]
  47. ButterfieldD.A. CastegnaA. PocernichC.B. DrakeJ. ScapagniniG. CalabreseV. Nutritional approaches to combat oxidative stress in Alzheimer’s disease.J. Nutr. Biochem.200213844446110.1016/S0955‑2863(02)00205‑X12165357
    [Google Scholar]
  48. CaruanaM. CauchiR. VassalloN. Putative role of red wine polyphenols against brain pathology in Alzheimer’s and Parkinson’s disease.Front. Nutr.201633110.3389/fnut.2016.0003127570766
    [Google Scholar]
  49. MullaicharamA.R. A Review on Evidence Based Practice of Ginkgo biloba in Brain Health.IJCPA201312430
    [Google Scholar]
  50. Ghasemzadeh RahbardarM. HosseinzadehH. Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders.Iran. J. Basic Med. Sci.20202391100111232963731
    [Google Scholar]
  51. BennyA. ThomasJ. Essential oils as treatment strategy for Alzheimerʼs disease: Current and future perspectives.Planta Med.201985323924810.1055/a‑0758‑018830360002
    [Google Scholar]
  52. YamamotoS. KayamaT. Noguchi-ShinoharaM. HamaguchiT. YamadaM. AbeK. KobayashiS. Rosmarinic acid suppresses tau phosphorylation and cognitive decline by downregulating the JNK signaling pathway.NPJ Sci. Food202151110.1038/s41538‑021‑00084‑533514742
    [Google Scholar]
  53. AlsadatA.M. NikbakhtF. Hossein NiaH. GolabF. KhademY. BaratiM. VazifekhahS. GSK-3β as a target for apigenin induced neuroprotection against Aβ 25–35 in a rat model of Alzheimer’s disease.Neuropeptides20219010220010.1016/j.npep.2021.10220034597878
    [Google Scholar]
  54. KompellyA. KompellyS. VasudhaB. NarenderB. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity.J. Drug Deliv. Ther.20199132333010.22270/jddt.v9i1.2218
    [Google Scholar]
  55. BarbaraL.F. NajehM.K. JulianaS.B. RomaianaP.P. JoaoB.T.R. WeberC.F.N.S. Anxiolytic properties of Melissa officinalis and associated mechanisms of action: A review of the literature.Afr. J. Pharm. Pharmacol.201593535910.5897/AJPP2014.4180
    [Google Scholar]
  56. PereiraR.P. BoligonA.A. AppelA.S. FachinettoR. CeronC.S. Tanus-SantosJ.E. AthaydeM.L. RochaJ.B.T. Chemical composition, antioxidant and anticholinesterase activity of Melissa officinalis.Ind. Crops Prod.201453344510.1016/j.indcrop.2013.12.007
    [Google Scholar]
  57. ZareiA. Changizi AshtiyaniS. TaheriS. RasekhF. Comparison between effects of different doses of Melissa officinalis and atorvastatin on the activity of liver enzymes in hypercholesterolemia rats.Avicenna J. Phytomed.201441152325050297
    [Google Scholar]
  58. HerrmannN. RabheruK. WangJ. BinderC. Galantamine treatment of problematic behavior in Alzheimer disease: Post-hoc analysis of pooled data from three large trials.Am. J. Geriatr. Psychiatry200513652753410.1097/00019442‑200506000‑0001215956273
    [Google Scholar]
  59. KongC.K. LowL.E. SiewW.S. YapW.H. KhawK.Y. MingL.C. MocanA. GohB.H. GohP.H. Biological Activities of Snowdrop (Galanthus spp., Family Amaryllidaceae).Front. Pharmacol.20211155245310.3389/fphar.2020.55245333679383
    [Google Scholar]
  60. MaX. TanC. ZhuD. GangD.R. XiaoP. Huperzine A from Huperzia species—An ethnopharmacolgical review.J. Ethnopharmacol.20071131153410.1016/j.jep.2007.05.03017644292
    [Google Scholar]
  61. RanjanN. KumariM. Acetylcholinesterase inhibition by medicinal plants: A Review.Annals Plant Sci.2017661640164410.21746/aps.2017.06.003
    [Google Scholar]
  62. ReesT.M. BrimijoinS. The role of acetylcholinesterase in the pathogenesis of Alzheimer’s disease.Drugs Today (Barc)2003391758310.1358/dot.2003.39.1.74020612669110
    [Google Scholar]
  63. GaoX. ZhengC.Y. YangL. TangX.C. ZhangH.Y. Huperzine A protects isolated rat brain mitochondria against β-amyloid peptide.Free Radic. Biol. Med.200946111454146210.1016/j.freeradbiomed.2009.02.02819272446
    [Google Scholar]
  64. YangM. YouW. WuS. FanZ. XuB. ZhuM. LiX. XiaoY. Global transcriptome analysis of Huperzia serrata and identification of critical genes involved in the biosynthesis of huperzine A.BMC Genomics201718124510.1186/s12864‑017‑3615‑828330463
    [Google Scholar]
  65. ShahrajabianM.H. KhoshkharamM. ZandiP. SunW. ChengQ. Jujube, a super-fruit in traditional Chinese medicine, heading for modern pharmacological science. J. Med. Plants. Stud20197173178
    [Google Scholar]
  66. HeoH.J. ParkY.J. SuhY.M. ChoiS.J. KimM.J. ChoH.Y. ChangY.J. HongB. KimH.K. KimE. KimC.J. KimB.G. ShinD.H. Effects of oleamide on choline acetyltransferase and cognitive activities.Biosci. Biotechnol. Biochem.20036761284129110.1271/bbb.67.128412843655
    [Google Scholar]
  67. RabieiZ. Rafieian-kopaeiM. HeidarianE. SaghaeiE. MokhtariS. Effects of Zizyphus jujube extract on memory and learning impairment induced by bilateral electric lesions of the nucleus Basalis of Meynert in rat.Neurochem. Res.201439235336010.1007/s11064‑013‑1232‑824379110
    [Google Scholar]
  68. OdaY. Choline acetyltransferase: The structure, distribution and pathologic changes in the central nervous system.Pathol. Int.1999491192193710.1046/j.1440‑1827.1999.00977.x10594838
    [Google Scholar]
  69. GaoQ.H. WuC.S. WangM. The jujube (Ziziphus jujuba Mill.) fruit: A review of current knowledge of fruit composition and health benefits.J. Agric. Food Chem.201361143351336310.1021/jf400703223480594
    [Google Scholar]
  70. KimH.J. JungS.W. KimS.Y. ChoI.H. KimH.C. RhimH. KimM. NahS.Y. Panax ginseng as an adjuvant treatment for Alzheimer’s disease.J. Ginseng Res.201842440141110.1016/j.jgr.2017.12.00830337800
    [Google Scholar]
  71. TalebiM. KakouriE. TalebiM. TarantilisP.A. FarkhondehT. İlgünS. Pourbagher-ShahriA.M. SamarghandianS. Nutraceuticals-based therapeutic approach: Recent advances to combat pathogenesis of Alzheimer’s disease.Expert Rev. Neurother.202121662564210.1080/14737175.2021.192347933910446
    [Google Scholar]
  72. KimH.J. ShinE.J. LeeB.H. ChoiS.H. JungS.W. ChoI.H. HwangS.H. KimJ.Y. HanJ.S. ChungC. JangC.G. RhimH. KimH.C. NahS.Y. Oral administration of gintonin attenuates cholinergic impairments by scopolamine, amyloid-β protein, and mouse model of AD.Mol. Cells201538979680510.14348/molcells.2015.011626255830
    [Google Scholar]
  73. Ogawa-OchiaiK. KawasakiK. Panax ginseng for Frailty-Related Disorders: A Review.Front. Nutr.2019514010.3389/fnut.2018.0014030705884
    [Google Scholar]
  74. SutalangkaC. WattanathornJ. MuchimapuraS. Thukham-meeW. Moringa oleifera mitigates memory impairment and neurodegeneration in animal model of age-related dementia.Oxid. Med. Cell. Longev.201320131910.1155/2013/69593624454988
    [Google Scholar]
  75. PadayacheeB. BaijnathH. An updated comprehensive review of the medicinal, phytochemical and pharmacological properties of Moringa oleifera.S. Afr. J. Bot.202012930431610.1016/j.sajb.2019.08.021
    [Google Scholar]
  76. EkongM.B. EkpoM.M. AkpanyungE.O. NwaokonkoD.U. Neuroprotective effect of Moringa oleifera leaf extract on aluminium-induced temporal cortical degeneration.Metab. Brain Dis.20173251437144710.1007/s11011‑017‑0011‑728397152
    [Google Scholar]
  77. HeoJ.H. Hyon-Lee LeeK.M. The possible role of antioxidant vitamin C in Alzheimer’s disease treatment and prevention.Am. J. Alzheimers Dis. Other Demen.201328212012510.1177/153331751247319323307795
    [Google Scholar]
  78. TorondelB. OpareD. BrandbergB. CobbE. CairncrossS. Efficacy of Moringa oleifera leaf powder as a hand- washing product: A crossover controlled study among healthy volunteers.BMC Complement. Altern. Med.20141415710.1186/1472‑6882‑14‑5724528477
    [Google Scholar]
  79. KhazaeiH. PesceM. PatrunoA. AnevaI.Y. FarzaeiM.H. Medicinal plants for diabetes associated neurodegenerative diseases: A systematic review of preclinical studies.Phytother. Res.20213541697171810.1002/ptr.690333079410
    [Google Scholar]
  80. GhorbaniA. EsmaeilizadehM. Pharmacological properties of Salvia officinalis and its components.J. Tradit. Complement. Med.20177443344010.1016/j.jtcme.2016.12.01429034191
    [Google Scholar]
  81. AkhondzadehS. NoroozianM. MohammadiM. OhadiniaS. JamshidiA.H. KhaniM. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: A double blind, randomized and placebo-controlled trial.J. Clin. Pharm. Ther.2003281535910.1046/j.1365‑2710.2003.00463.x12605619
    [Google Scholar]
  82. ThangaveluL. NarayananN. Salvia officinalis in dentistry.Dent. Hypotheses201561273010.4103/2155‑8213.150870
    [Google Scholar]
  83. GonzalesG.F. GonzalesC. Gonzales-CastañedaC. Lepidium meyenii (Maca): A plant from the highlands of Peru--from tradition to science.Forsch. Komplement. Med.200916637338010.1159/00026461820090350
    [Google Scholar]
  84. EsparzaE. HadzichA. KoferW. MithöferA. CosioE.G. Bioactive maca ( Lepidium meyenii ) alkamides are a result of traditional Andean postharvest drying practices.Phytochemistry201511613814810.1016/j.phytochem.2015.02.03025817836
    [Google Scholar]
  85. YatesC.R. BrunoE.J. YatesM.E.D. Tinospora Cordifolia : A review of its immunomodulatory properties.J. Diet. Suppl.202219227128510.1080/19390211.2021.187321433480818
    [Google Scholar]
  86. MutalikM. MutalikM. Tinosporacordifolia: Role in depression, cognition and memory.Aust. J. Herb. Med.201123168173
    [Google Scholar]
  87. HandiqueP.J. In Vitro Propagation and Medicinal Attributes of Tinospora Cordifolia: A Review.Austin J Biotechnol Bioeng201415
    [Google Scholar]
  88. BaeH.J. SowndhararajanK. ParkH.B. KimS.Y. KimS. KimD.H. ChoiJ.W. JangD.S. RyuJ.H. ParkS.J. Danshensu attenuates scopolamine and amyloid-β-induced cognitive impairments through the activation of PKA-CREB signaling in mice.Neurochem. Int.201913110453710.1016/j.neuint.2019.10453731425745
    [Google Scholar]
  89. JivadN. RabieiZ. A review study on medicinal plants used in the treatment of learning and memory impairments.Asian Pac. J. Trop. Biomed.201441078078910.12980/APJTB.4.2014APJTB‑2014‑0412
    [Google Scholar]
  90. PanJ. WangH. ChenY. Prunella vulgaris L. – A Review of its Ethnopharmacology, Phytochemistry, Quality Control and Pharmacological Effects.Front. Pharmacol.20221390317110.3389/fphar.2022.90317135814234
    [Google Scholar]
  91. VasudevanM. MilindP. Memory enhancing activity of Coriandrum sativum in rats.J. Pharmacol.20092827839
    [Google Scholar]
  92. ÖnderA. Coriander and Its Phytoconstituents for the Beneficial Effects.Potential of Essential Oils.LondonIntechopen2018165185
    [Google Scholar]
  93. PahariN. MajumdarS. KaratiD. MazumderR. Exploring the pharmacognostic properties and pharmacological activities of phytocompounds present in Ficus racemosa linn.: A concise review.Pharmacol. Res. Mod. Chin. Med.2022410013710.1016/j.prmcm.2022.100137
    [Google Scholar]
  94. MaedaA. TanimotoS. AbeT. KazamaS. TanizawaH. NomuraM. [Chemical constituents of Myristica fragrans Houttuyn seed and their physiological activities].Yakugaku Zasshi2008128112913310.1248/yakushi.128.12918176064
    [Google Scholar]
  95. PredigerR.D.S. FernandesM.S. RialD. WopereisS. PereiraV.S. BosseT.S. Da SilvaC.B. CarradoreR.S. MachadoM.S. Cechinel-FilhoV. Costa-CamposL. Effects of acute administration of the hydroalcoholic extract of mate tea leaves (Ilex paraguariensis) in animal models of learning and memory.J. Ethnopharmacol.2008120346547310.1016/j.jep.2008.09.01818948179
    [Google Scholar]
  96. BastosD. OliveiraD. MatsumotoR. CarvaloP. RibeiroM. Yerba mate (Ilex paraguariensis): Pharmacological properties, Research and Biotechnology.Med Plant Aromat Plant Sci Biotechnol200713746
    [Google Scholar]
  97. PimentelN. LencinaK.H. KielseP. RodriguesM.B. SomavillaT.M. BisogninD.A. Produtividade de minicepas e enraizamento de miniestacas de clones de erva-mate (<i>Ilex paraguariensis</i> A. St.-Hil.).Cienc. Florest.201929255957010.5902/1980509827009
    [Google Scholar]
  98. KumariS. Anmol BhattV. SureshP.S. SharmaU. Cissampelos pareira L.: A review of its traditional uses, phytochemistry, and pharmacology.J. Ethnopharmacol.202127411385010.1016/j.jep.2021.11385033485976
    [Google Scholar]
  99. SrivastavaR. AhmedH. DixitR.K. Dharamveer SarafS.A. Crocus sativus L.: A comprehensive review.Pharmacogn. Rev.20104820020810.4103/0973‑7847.7091922228962
    [Google Scholar]
  100. MzabriI. AddiM. BerrichiA. Traditional and modern uses of saffron (Crocus sativus).Cosmetics2019646310.3390/cosmetics6040063
    [Google Scholar]
  101. LeeY.K. YukD.Y. KimT.I. KimY.H. KimK.T. KimK.H. LeeB.J. NamS.Y. HongJ.T. Protective effect of the ethanol extract of Magnolia officinalis and 4-O-methylhonokiol on scopolamine-induced memory impairment and the inhibition of acetylcholinesterase activity.J. Nat. Med.200963327428210.1007/s11418‑009‑0330‑z19343477
    [Google Scholar]
  102. LuoH. WuH. YuX. ZhangX. LuY. FanJ. TangL. WangZ. A review of the phytochemistry and pharmacological activities of Magnoliae officinalis cortex.J. Ethnopharmacol.201923641244210.1016/j.jep.2019.02.04130818008
    [Google Scholar]
  103. AllainK.L. ZavadaM.S. MatthewsG.D. The reproductive biology of Magnolia grandiflora.Rhodora1999101143162
    [Google Scholar]
  104. BhowmikD. GopinathH. KumarB.P. DuraivelS. Medicinal Uses of Punica granatum and Its Health Benefits.J. Pharmacogn. Phytochem.201312834
    [Google Scholar]
  105. ChandraD. PrasadK. Phytochemicals of Acorus calamus (Sweet flag).J. Med. Plants. Stud.20175279280
    [Google Scholar]
  106. SaxenaM. SaxenaJ. Phytochemical screening of Acorus calamus and Lantana camara.IRJP20123324326
    [Google Scholar]
  107. ShoemakerJ.V. Collinsonia Canadensis.BMJ18872139671271310.1136/bmj.2.1396.71220752052
    [Google Scholar]
  108. MahomoodallyM.F. Devi DursunP. VenugopalaK.N. Collinsonia canadensis L.Naturally Occurring Chemicals against Alzheimer’s Disease.Amsterdam, The NetherlandsElsevier202137337710.1016/B978‑0‑12‑819212‑2.00031‑1
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129331572240910084315
Loading
/content/journals/cpa/10.2174/0115734129331572240910084315
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test