Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Polyphenols are a diverse group of molecules known for their broad range of biological activities, making them valuable in therapeutic applications, including wound healing. Chronic wounds, which are often complicated by persistent infections and the rise of antibiotic resistance, present a significant challenge in the treatment. Traditional antibiotics are becoming less effective, necessitating the exploration of new antimicrobial agents. Polyphenols like hesperidin, chlorogenic acid, quercetin, and curcumin are promising candidates due to their natural antibacterial properties, offering an effective alternative to conventional antibiotics for treating chronic wounds. However, polyphenols face challenges such as limited stability, which can reduce their effectiveness at the wound site. Furthermore, to overcome these limitations, polymer-based systems have been developed as carriers to stabilize polyphenols and control their release over time, thereby enhancing their therapeutic efficacy. This article explores the potential of polyphenols as natural antibacterial agents and highlights various nanoparticulate systems as effective carriers for treating chronic wounds.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129344438240927100440
2024-10-01
2025-07-15
Loading full text...

Full text loading...

References

  1. WilkinsonH.N. HardmanM.J. Wound healing: Cellular mechanisms and pathological outcomes.Open Biol.202010920022310.1098/rsob.20022332993416
    [Google Scholar]
  2. RodriguesM. KosaricN. BonhamC.A. GurtnerG.C. Wound Healing: A Cellular Perspective.Physiol. Rev.201999166570610.1152/physrev.00067.201730475656
    [Google Scholar]
  3. Cañedo-DorantesL. Cañedo-AyalaM. Skin acute wound healing: A comprehensive review.Int. J. Inflamm.2019201911510.1155/2019/370631531275545
    [Google Scholar]
  4. Demidova-RiceT.N. HamblinM.R. HermanI.M. Acute and impaired wound healing: Pathophysiology and current methods for drug delivery, part 1: Normal and chronic wounds: Biology, causes, and approaches to care.Adv. Skin Wound Care201225730431410.1097/01.ASW.0000416006.55218.d022713781
    [Google Scholar]
  5. SenC. K. Human wound and its burden: Updated 2020 compendium of estimates.Adv Wound Care (New Rochelle)202110528129210.1089/wound.2021.0026
    [Google Scholar]
  6. DarwinE. Tomic-CanicM. Healing chronic wounds: Current challenges and potential solutions.Curr. Dermatol. Rep.20187429630210.1007/s13671‑018‑0239‑431223516
    [Google Scholar]
  7. BianD. WuY. SongG. Basic fibroblast growth factor combined with extracellular matrix-inspired mimetic systems for effective skin regeneration and wound healing.Mater. Today Commun.20233510587610.1016/j.mtcomm.2023.105876
    [Google Scholar]
  8. GardikiotisI. CojocaruF.D. MihaiC.T. BalanV. DodiG. Borrowing the features of biopolymers for emerging wound healing dressings: A review.Int. J. Mol. Sci.20222315877810.3390/ijms2315877835955912
    [Google Scholar]
  9. HarwanshR.K. BhatiH. DeshmukhR. Recent updates on the therapeutics benefits, clinical trials, and novel delivery systems of chlorogenic acid for the management of diseases with a special emphasis on ulcerative colitis.Curr. Pharm. Des.202430642043910.2174/011381612829575324012907403538299405
    [Google Scholar]
  10. MihanfarA. NouriM. RoshangarL. Khadem-AnsariM.H. Polyphenols: Natural compounds with promising potential in treating polycystic ovary syndrome.Reprod. Biol.202121210050010.1016/j.repbio.2021.10050033878526
    [Google Scholar]
  11. HanoC. TungmunnithumD. Plant polyphenols, more than just simple natural antioxidants: Oxidative stress, aging and age-related diseases.Medicines (Basel)2020752610.3390/medicines705002632397520
    [Google Scholar]
  12. MuchaP. SkoczyńskaA. MałeckaM. HikiszP. BudziszE. Overview of the antioxidant and anti-inflammatory activities of selected plant compounds and their metal ions complexes.Molecules20212616488610.3390/molecules2616488634443474
    [Google Scholar]
  13. ChagasM.S.S. BehrensM.D. Moragas-TellisC.J. PenedoG.X.M. SilvaA.R. Gonçalves-de-AlbuquerqueC.F. Flavonols and flavones as potential anti-inflammatory, antioxidant, and antibacterial compounds.Oxid. Med. Cell. Longev.2022202212110.1155/2022/996675036111166
    [Google Scholar]
  14. YoungA. McNaughtC.E. The physiology of wound healing.Surgery2011291047547910.1016/j.mpsur.2011.06.011
    [Google Scholar]
  15. LangX. LiL. LiY. FengX. Effect of diabetes on wound healing: A bibliometrics and visual analysis.J. Multidiscip. Healthc.2024171275128910.2147/JMDH.S45749838524865
    [Google Scholar]
  16. ErikssonE. LiuP.Y. SchultzG.S. Martins-GreenM.M. TanakaR. WeirD. GouldL.J. ArmstrongD.G. GibbonsG.W. WolcottR. OlutoyeO.O. KirsnerR.S. GurtnerG.C. Chronic wounds: Treatment consensus.Wound Repair Regen.202230215617110.1111/wrr.1299435130362
    [Google Scholar]
  17. SorrentiV. BuròI. ConsoliV. VanellaL. Recent advances in health benefits of bioactive compounds from food wastes and by products: Biochemical aspects.Int. J. Mol. Sci.2023243201910.3390/ijms2403201936768340
    [Google Scholar]
  18. SchultzG.S. ChinG.A. MoldawerL. DiegelmannR.F. Principles of Wound Healing.Diabetic Foot ProblemsSingaporeWorld Scientific Publishing201139540210.1142/9789812791535_0028
    [Google Scholar]
  19. GrubbsH. MannaB. Wound Physiology.Treasure Island, FLStatPearls2023
    [Google Scholar]
  20. MartinP. Wound healing--aiming for perfect skin regeneration.Science19972765309758110.1126/science.276.5309.759082989
    [Google Scholar]
  21. AlmadaniY.H. VorstenboschJ. DavisonP.G. MurphyA.M. Wound Healing: A Comprehensive Review.Semin. Plast. Surg.202135314114410.1055/s‑0041‑173179134526860
    [Google Scholar]
  22. EmingS.A. KriegT. DavidsonJ.M. Inflammation in wound repair: Molecular and cellular mechanisms.J. Invest. Dermatol.2007127351452510.1038/sj.jid.570070117299434
    [Google Scholar]
  23. ProfyrisC. TziotziosC. Do ValeI. Cutaneous scarring: Pathophysiology, molecular mechanisms, and scar reduction therapeutics.J. Am. Acad. Dermatol.201266111010.1016/j.jaad.2011.05.05522177631
    [Google Scholar]
  24. KohT.J. DiPietroL.A. Inflammation and wound healing: The role of the macrophage.Expert Rev. Mol. Med.201113e2310.1017/S146239941100194321740602
    [Google Scholar]
  25. LandénN.X. LiD. StåhleM. Transition from inflammation to proliferation: A critical step during wound healing.Cell. Mol. Life Sci.201673203861388510.1007/s00018‑016‑2268‑027180275
    [Google Scholar]
  26. AlhajjM. BansalP. GoyalA. Physiology, Granulation Tissue.Treasure Island, FLStatPearls202232119289
    [Google Scholar]
  27. DesmouliereA. DarbyI.A. LaverdetB. BontéF. Fibroblasts and myofibroblasts in wound healing.Clin. Cosmet. Investig. Dermatol.2014730131110.2147/CCID.S5004625395868
    [Google Scholar]
  28. KrzyszczykP. SchlossR. PalmerA. BerthiaumeF. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes.Front. Physiol.2018941910.3389/fphys.2018.0041929765329
    [Google Scholar]
  29. KularJ.K. BasuS. SharmaR.I. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering.J. Tissue Eng.201455711210.1177/204173141455711225610589
    [Google Scholar]
  30. MiricescuD. BadoiuS.C. Stanescu-SpinuI.I. TotanA.R. StefaniC. GreabuM. Growth factors, reactive oxygen species, and metformin—promoters of the wound healing process in Burns?Int. J. Mol. Sci.20212217951210.3390/ijms2217951234502429
    [Google Scholar]
  31. MorettiL. StalfortJ. BarkerT.H. AbebayehuD. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation.J. Biol. Chem.2022298210153010.1016/j.jbc.2021.10153034953859
    [Google Scholar]
  32. ChenH. LiG. LiuY. JiS. LiY. XiangJ. ZhouL. GaoH. ZhangW. SunX. FuX. LiB. Pleiotropic Roles of CXCR4 in Wound Repair and Regeneration.Front. Immunol.20211266875810.3389/fimmu.2021.66875834122427
    [Google Scholar]
  33. LevinM. UdiY. SolomonovI. SagiI. Next generation matrix metalloproteinase inhibitors — Novel strategies bring new prospects.Biochim. Biophys. Acta Mol. Cell Res.201718641111 Pt A1927193910.1016/j.bbamcr.2017.06.00928636874
    [Google Scholar]
  34. RajkumarV.S. ShiwenX. BostromM. LeoniP. MuddleJ. IvarssonM. GerdinB. DentonC.P. Bou-GhariosG. BlackC.M. AbrahamD.J. Platelet-derived growth factor-β receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing.Am. J. Pathol.200616962254226510.2353/ajpath.2006.06019617148686
    [Google Scholar]
  35. WangC. BrissonB.K. TerajimaM. LiQ. HoxhaK. HanB. GoldbergA.M. Sherry LiuX. MarcolongoM.S. Enomoto-IwamotoM. YamauchiM. VolkS.W. HanL. Type III collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus.Matrix Biol.202085-86476710.1016/j.matbio.2019.10.00131655293
    [Google Scholar]
  36. ZouM.L. TengY.Y. WuJ.J. LiuS.Y. TangX.Y. JiaY. ChenZ.H. ZhangK.W. SunZ.L. LiX. YeJ.X. XuR.S. YuanF.L. Fibroblasts: Heterogeneous cells with potential in regenerative therapy for scarless wound healing.Front. Cell Dev. Biol.2021971360510.3389/fcell.2021.71360534354997
    [Google Scholar]
  37. CzubrytM.P. Common threads in cardiac fibrosis, infarct scar formation, and wound healing.Fibrogenesis Tissue Repair2012511910.1186/1755‑1536‑5‑1923114500
    [Google Scholar]
  38. Apaza TiconaL. Rumbero SánchezÁ. Sánchez Sánchez-CorralJ. Iglesias MorenoP. Ortega DomenechM. Anti-inflammatory, pro-proliferative and antimicrobial potential of the compounds isolated from Daemonorops draco (Willd.) Blume.J. Ethnopharmacol.202126811366810.1016/j.jep.2020.11366833301918
    [Google Scholar]
  39. BansalK. BhatiH. Vanshita BajpaiM. Recent insights into therapeutic potential and nanostructured carrier systems of Centella asiatica: An evidence-based review.Pharmacol. Res. - Modern Chin.Med.20241010040310.1016/j.prmcm.2024.100403
    [Google Scholar]
  40. LiakosI. RizzelloL. HajialiH. BrunettiV. CarzinoR. PompaP.P. AthanassiouA. MeleE. Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents.J. Mater. Chem. B Mater. Biol. Med.2015381583158910.1039/C4TB01974A32262430
    [Google Scholar]
  41. GhumanS. NcubeB. FinnieJ.F. McGawL.J. Mfotie NjoyaE. CoopoosamyR.M. Van StadenJ. Antioxidant, anti-inflammatory and wound healing properties of medicinal plant extracts used to treat wounds and dermatological disorders.S. Afr. J. Bot.201912623224010.1016/j.sajb.2019.07.013
    [Google Scholar]
  42. LiW. KandhareA.D. MukherjeeA.A. BodhankarS.L. Hesperidin, a plant flavonoid accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats: Role of TGF-B/SMADS and ANG-1/TIE-2 signaling pathways.EXCLI. J.20181739941910.17179/excli2018‑1036
    [Google Scholar]
  43. BansalK. BhatiH. Vanshita BajpaiM. New insights into therapeutic applications and nanoformulation approaches of hesperidin: An updated review.Pharmacolog. Res. - Modern Chin.Med.202410January10036310.1016/j.prmcm.2024.100363
    [Google Scholar]
  44. MusaA.E. OmyanG. EsmaelyF. ShabeebD. Radioprotective effect of hesperidin: A systematic review.Medicina (Kaunas)201955737010.3390/medicina5507037031336963
    [Google Scholar]
  45. YamadaM. TanabeF. AraiN. MitsuzumiH. MiwaY. KubotaM. ChaenH. KibataM. Bioavailability of glucosyl hesperidin in rats.Biosci. Biotechnol. Biochem.20067061386139410.1271/bbb.5065716794318
    [Google Scholar]
  46. YuL. ZhangQ. ZhouL. WeiY. LiM. WuX. XinM. Ocular topical application of alpha-glucosyl hesperidin as an active pharmaceutical excipient: In vitro and in vivo experimental evaluation.Drug Deliv. Transl. Res.202414237338510.1007/s13346‑023‑01403‑x37531034
    [Google Scholar]
  47. LiW. KandhareA.D. MukherjeeA.A. BodhankarS.L. Hesperidin, a plant flavonoid accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats: Role of TGF-ß/Smads and Ang-1/Tie-2 signaling pathways.EXCLI J.20181739941910.17179/excli2018‑103629805347
    [Google Scholar]
  48. DurgunC. KirmanG. DeveciE. Investigation of the histopathological level of Ki-67, caspase-3 expressions of the effects of hesperidin on wound healing in the rat esophagus.Acta Cir. Bras.202338e38172310.1590/acb38172337098927
    [Google Scholar]
  49. BobkováA. JakabováS. BelejĽ. JurčagaL. ČaplaJ. BobkoM. DemianováA. Analysis of caffeine and chlorogenic acids content regarding the preparation method of coffee beverage.Int. J. Food Eng.2021175014310.1515/ijfe‑2020‑0143
    [Google Scholar]
  50. ChenW.C. LiouS.S. TzengT.F. LeeS.L. LiuI.M. Effect of topical application of chlorogenic acid on excision wound healing in rats.Planta Med.201379861662110.1055/s‑0032‑132836423568627
    [Google Scholar]
  51. CaoY. ShenC. YangZ. CaiZ. DengZ. WuD. Polycaprolactone/polyvinyl pyrrolidone nanofibers developed by solution blow spinning for encapsulation of chlorogenic acid.Food Qual. Safety20226fyac01410.1093/fqsafe/fyac014
    [Google Scholar]
  52. MoghadamS. EbrahimiS. SalehiP. Moridi FarimaniM. HamburgerM. JabbarzadehE. Wound healing potential of chlorogenic acid and myricetin-3-O-β-rhamnoside isolated from Parrotia persica.Molecules2017229150110.3390/molecules2209150128885580
    [Google Scholar]
  53. BagdasD. GulN.Y. TopalA. TasS. OzyigitM.O. CinkilicN. GulZ. EtozB.C. ZiyanokS. InanS. TuracozenO. GurunM.S. Pharmacologic overview of systemic chlorogenic acid therapy on experimental wound healing.Naunyn Schmiedebergs Arch. Pharmacol.2014387111101111610.1007/s00210‑014‑1034‑925129377
    [Google Scholar]
  54. WadhwaK. KadianV. PuriV. BhardwajB.Y. SharmaA. PahwaR. RaoR. GuptaM. SinghI. New insights into quercetin nanoformulations for topical delivery.Phytomedicine Plus20222210025710.1016/j.phyplu.2022.100257
    [Google Scholar]
  55. PanthiV.K. ImranM. ChaudharyA. PaudelK.R. MohammedY. The significance of quercetin-loaded advanced nanoformulations for the management of diabetic wounds.Nanomedicine (Lond.)202318439141110.2217/nnm‑2022‑028137140389
    [Google Scholar]
  56. Aceituno-MedinaM. MendozaS. RodríguezB.A. LagaronJ.M. López-RubioA. Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers.J. Funct. Foods20151233234110.1016/j.jff.2014.11.028
    [Google Scholar]
  57. PoleràN. BadolatoM. PerriF. CarulloG. AielloF. Quercetin and its natural sources in wound healing management.Curr. Med. Chem.201926315825584810.2174/092986732566618071315062630009700
    [Google Scholar]
  58. KantV. JangirB.L. KumarV. NigamA. SharmaV. Quercetin accelerated cutaneous wound healing in rats by modulation of different cytokines and growth factors.Growth Factors202038210511910.1080/08977194.2020.182283032957814
    [Google Scholar]
  59. MiY. ZhongL. LuS. HuP. PanY. MaX. YanB. WeiZ. YangG. Quercetin promotes cutaneous wound healing in mice through Wnt/β-catenin signaling pathway.J. Ethnopharmacol.202229011506610.1016/j.jep.2022.11506635122975
    [Google Scholar]
  60. BainsR. BainsV. The antioxidant master glutathione and periodontal health.Dent. Res. J. (Isfahan)201512538940510.4103/1735‑3327.16616926604952
    [Google Scholar]
  61. HarwanshR.K. YadavM. DeshmukhR. RahmanA. Recent insights into nanoparticulate carrier systems of curcumin and its clinical perspective in the management of various health issues.Curr. Pharm. Des.202329181421144010.2174/138161282966623061311544737312443
    [Google Scholar]
  62. Chainani-WuN. Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa).J. Altern. Complement. Med.20039116116810.1089/10755530332122303512676044
    [Google Scholar]
  63. PanchatcharamM. MiriyalaS. GayathriV.S. SugunaL. Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species.Mol. Cell. Biochem.20062901-2879610.1007/s11010‑006‑9170‑216770527
    [Google Scholar]
  64. PhanT.T. SeeP. LeeS.T. ChanS.Y. Protective effects of curcumin against oxidative damage on skin cells in vitro: Its implication for wound healing.J. Trauma200151592793110.1097/00005373‑200111000‑0001711706342
    [Google Scholar]
  65. GadekarR. SaurabhM. ThakurG.S. SaurabhA. Study of formulation, characterisation and wound healing potential of transdermal patches of curcumin.Asian J. Pharm. Clin. Res.20125225230
    [Google Scholar]
  66. SidhuG.S. SinghA.K. ThaloorD. BanaudhaK.K. PatnaikG.K. SrimalR.C. MaheshwariR.K. Enhancement of wound healing by curcumin in animals.Wound Repair Regen.19986216717710.1046/j.1524‑475X.1998.60211.x9776860
    [Google Scholar]
  67. SunM.F. JiangC.L. KongY.S. LuoJ.L. YinP. GuoG.Y. Recent advances in analytical methods for determination of polyphenols in tea: A comprehensive review.Foods20221110142510.3390/foods1110142535626995
    [Google Scholar]
  68. ChenY. KangL. XiaoY. WenJ. LiuH. ZhangX. A validated UV-HPLC method for determination of chlorogenic acid in Lepidogrammitis drymoglossoides (Baker) Ching, Polypodiaceae.Pharmacognosy Res.20124314815310.4103/0974‑8490.9907622923952
    [Google Scholar]
  69. PyrzynskaK. Hesperidin: A review on extraction methods, stability and biological activities.Nutrients20221412238710.3390/nu1412238735745117
    [Google Scholar]
  70. AkhtarS. SharmaS. BhuyanN. ShresthaB. BarailyV. A systematic review of different analytical methods for major phytoconstituents of turmeric and black pepper.Int. J. Pharm. Sci. Res.2023146261910.13040/IJPSR.0975‑8232.14(6).2619‑34
    [Google Scholar]
  71. CarvalhoD. JesusÂ. PinhoC. OliveiraR.F. MoreiraF. OliveiraA.I. Validation of an HPLC-DAD Method for Quercetin Quantification in Nanoparticles.Pharmaceuticals (Basel)20231612173610.3390/ph1612173638139862
    [Google Scholar]
  72. HajialyaniM. TewariD. Sobarzo-SánchezE. NabaviS.M. FarzaeiM.H. AbdollahiM. Natural product-based nanomedicines for wound healing purposes: Therapeutic targets and drug delivery systems.Int. J. Nanomedicine2018135023504310.2147/IJN.S17407230214204
    [Google Scholar]
  73. AkhtariN. AhmadiM. Kiani Doust VagheY. AsadianE. BehzadS. VatanpourH. Ghorbani-BidkorpehF. Natural agents as wound-healing promoters.Inflammopharmacology202332110112510.1007/s10787‑023‑01318‑638062178
    [Google Scholar]
  74. ShahcheraghiN. GolchinH. SadriZ. TabariY. BorhanifarF. MakaniS. Nano-biotechnology, an applicable approach for sustainable future.3 Biotech2012126503108-910.1007/s13205‑021‑03108‑9
    [Google Scholar]
  75. Martínez-CuazitlA. Gómez-GarcíaM.C. Pérez-MoraS. Rojas-LópezM. Delgado-MacuilR.J. Ocampo-LópezJ. Vázquez-ZapiénG.J. Mata-MirandaM.M. Pérez-IshiwaraD.G. Polyphenolic Compounds Nanostructurated with Gold Nanoparticles Enhance Wound Repair.Int. J. Mol. Sci.202324241713810.3390/ijms24241713838138966
    [Google Scholar]
  76. AlamP. ImranM. JahanS. AkhtarA. HasanZ. Formulation and characterization of hesperidin-loaded transethosomal gel for dermal delivery to enhance antibacterial activity: Comprehension of in vitro, ex vivo, and dermatokinetic analysis.Gels202391079110.3390/gels910079137888364
    [Google Scholar]
  77. ElmoghayerM.E. SalehN.M. ZaghloulR.A. ElsaedW.M. Abu HashimI.I. The fundamental efficacy of hesperidin-loaded/chitosan-coated hybrid nanoparticles as a prospective regimen in wound healing amendment: In vitro and in vivo comprehensive study.J. Drug Deliv. Sci. Technol.20249210530210.1016/j.jddst.2023.105302
    [Google Scholar]
  78. EnaruB. SocaciS. FarcasA. SocaciuC. DanciuC. StanilaA. DiaconeasaZ. Novel delivery systems of polyphenols and their potential health benefits.Pharmaceuticals (Basel)2021141094610.3390/ph1410094634681170
    [Google Scholar]
  79. GilaniS.J. JahangirM.A. Chandrakala RizwanullahM. TaleuzzamanM. ShahabM.S. ShakeelK. AqilM. ImamS.S. Nano-Based Therapy for Treatment of Skin Cancer.Recent Patents Anti-Infect. Drug Disc.201813215116310.2174/1574891X1366618091109544030205801
    [Google Scholar]
  80. DewanjeeS. ChakrabortyP. BhattacharyaH. SinghS.K. DuaK. DeyA. JhaN.K. Recent advances in flavonoid-based nanocarriers as an emerging drug delivery approach for cancer chemotherapy.Drug Discov. Today202328110340910.1016/j.drudis.2022.10340936265733
    [Google Scholar]
  81. YetisginA.A. CetinelS. ZuvinM. KosarA. KutluO. Therapeutic Nanoparticles and Their Targeted Delivery Applications.Molecules2020259219310.3390/molecules2509219332397080
    [Google Scholar]
  82. ArifZ.U. KhalidM.Y. SheikhM.F. ZolfagharianA. BodaghiM. Biopolymeric sustainable materials and their emerging applications.J. Environ. Chem. Eng.202210410815910.1016/j.jece.2022.108159
    [Google Scholar]
  83. ReddyM.S.B. PonnammaD. ChoudharyR. SadasivuniK.K. A comparative review of natural and synthetic biopolymer composite scaffolds.Polymers (Basel)2021137110510.3390/polym1307110533808492
    [Google Scholar]
  84. AltammarK.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges.Front. Microbiol.202314115562210.3389/fmicb.2023.115562237180257
    [Google Scholar]
  85. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules2516373132824172
    [Google Scholar]
  86. AliS.H. SulaimanG.M. Al-HalbosiyM.M.F. JabirM.S. HameedA.H. Fabrication of hesperidin nanoparticles loaded by poly lactic co-Glycolic acid for improved therapeutic efficiency and cytotoxicity.Artif. Cells Nanomed. Biotechnol.201947137839410.1080/21691401.2018.155917530691314
    [Google Scholar]
  87. KamalZ. SuJ. YuanW. RazaF. JiangL. LiY. QiuM. Red blood cell membrane-camouflaged vancomycin and chlorogenic acid-loaded gelatin nanoparticles against multi-drug resistance infection mice model.J. Drug Deliv. Sci. Technol.20227610370610.1016/j.jddst.2022.103706
    [Google Scholar]
  88. ChoudharyA. KantV. JangirB.L. JoshiV.G. Quercetin loaded chitosan tripolyphosphate nanoparticles accelerated cutaneous wound healing in Wistar rats.Eur. J. Pharmacol.202088017317210.1016/j.ejphar.2020.17317232407724
    [Google Scholar]
  89. LiX. YangX. WangZ. LiuY. GuoJ. ZhuY. ShaoJ. LiJ. WangL. WangK. Antibacterial, antioxidant and biocompatible nanosized quercetin-PVA xerogel films for wound dressing.Colloids Surf. B Biointerfaces2022209Pt 211217510.1016/j.colsurfb.2021.11217534740095
    [Google Scholar]
  90. KrauszA.E. AdlerB.L. CabralV. NavatiM. DoernerJ. CharafeddineR.A. ChandraD. LiangH. GuntherL. ClendanielA. HarperS. FriedmanJ.M. NosanchukJ.D. FriedmanA.J. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent.Nanomedicine201511119520610.1016/j.nano.2014.09.00425240595
    [Google Scholar]
  91. ShendeP. GuptaH. Formulation and comparative characterization of nanoparticles of curcumin using natural, synthetic and semi-synthetic polymers for wound healing.Life Sci.202025311758810.1016/j.lfs.2020.11758832220621
    [Google Scholar]
  92. Guadarrama-AcevedoM.C. Mendoza-FloresR.A. Del Prado-AudeloM.L. Urbán-MorlánZ. Giraldo-GomezD.M. MagañaJ.J. González-TorresM. Reyes-HernándezO.D. Figueroa-GonzálezG. Caballero-FloránI.H. Florán-HernándezC.D. FloránB. CortésH. Leyva-GómezG. Development and Evaluation of Alginate Membranes with Curcumin-Loaded Nanoparticles for Potential Wound-Healing Applications.Pharmaceutics201911838910.3390/pharmaceutics1108038931382553
    [Google Scholar]
  93. MobarakiM. BizariD. SoltaniM. KhshmohabatH. RaahemifarK. Akbarzade AmirdehiM. The effects of curcumin nanoparticles incorporated into collagen-alginate scaffold on wound healing of skin tissue in trauma patients.Polymers (Basel)20211324429110.3390/polym1324429134960842
    [Google Scholar]
  94. ReddyD.N.K. HuangF-Y. WuY-Y. KumarR. WongC-C. Synthesis and characterization of curcumin incorporated multi component nano-scaffold with enhanced anti‐bacterial and wound healing properties.Curr. Drug Deliv.202320440041310.2174/156720181966622041409234235430990
    [Google Scholar]
  95. HoT.C. ChangC.C. ChanH.P. ChungT.W. ShuC.W. ChuangK.P. DuhT.H. YangM.H. TyanY.C. Hydrogels: Properties and applications in biomedicine.Molecules2022279290210.3390/molecules2709290235566251
    [Google Scholar]
  96. GuptaP. SheikhA. AbourehabM.A.S. KesharwaniP. AbourehabM.A.S. Amelioration of full-thickness wound using hesperidin loaded dendrimer-based hydrogel bandages.Biosensors (Basel)202212746210.3390/bios1207046235884268
    [Google Scholar]
  97. BagherZ. EhteramiA. SafdelM.H. KhastarH. SemiariH. AsefnejadA. DavachiS.M. MirzaiiM. SalehiM. Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model.J. Drug Deliv. Sci. Technol.20205510137910.1016/j.jddst.2019.101379
    [Google Scholar]
  98. RehmanU. SheikhA. AlsayariA. WahabS. KesharwaniP. Hesperidin-loaded cubogel as a novel therapeutic armamentarium for full-thickness wound healing.Colloids Surf. B Biointerfaces202423411372810.1016/j.colsurfb.2023.11372838183872
    [Google Scholar]
  99. KodousA.S. Abdel-MaksoudM.A. El-TayebM.A. Al-SherifD.A. MohamedS.S.A. GhobashyM.M. EmadA.M. Abd El-HalimS.M. HagrasS.A.A. ManiS. RaoA.K.D.M. HusseinA.M. SaadaH.N. Hesperidin - loaded PVA/alginate hydrogel: Targeting NFκB/iNOS/COX-2/TNF-α inflammatory signaling pathway.Front. Immunol.202415134742010.3389/fimmu.2024.134742038686374
    [Google Scholar]
  100. HuangH. ChenL. HouY. HeW. WangX. ZhangD. HuJ. Self-assembly of chlorogenic acid into hydrogel for accelerating wound healing.Colloids Surf. B Biointerfaces202322811344010.1016/j.colsurfb.2023.11344037421764
    [Google Scholar]
  101. WangS. LiuY. WangX. ChenL. HuangW. XiongT. WangN. GuoJ. GaoZ. JinM. Modulating macrophage phenotype for accelerated wound healing with chlorogenic acid-loaded nanocomposite hydrogel.J. Control. Release202436942044310.1016/j.jconrel.2024.03.05438575075
    [Google Scholar]
  102. SongL. YangH. LiangD. ChuD. YangL. LiM. YangB. ShiY. ChenZ. YuZ. GuoJ. A chlorogenic acid-loaded hyaluronic acid-based hydrogel facilitates anti-inflammatory and pro-healing effects for diabetic wounds.J. Drug Deliv. Sci. Technol.20227010323210.1016/j.jddst.2022.103232
    [Google Scholar]
  103. ChahardoliF. PourmoslemiS. Soleimani AslS. TamriP. HaddadiR. Preparation of polyvinyl alcohol hydrogel containing chlorogenic acid microspheres and its evaluation for use in skin wound healing.J. Biomater. Appl.20233791667167510.1177/0885328222115084536601681
    [Google Scholar]
  104. GongY. WangP. CaoR. WuJ. JiH. WangM. HuC. HuangP. WangX. Exudate absorbing and antimicrobial hydrogel integrated with multifunctional curcumin-loaded magnesium polyphenol network for facilitating burn wound healing.ACS Nano20231722223552237010.1021/acsnano.3c0455637930078
    [Google Scholar]
  105. FanX. HuangJ. ZhangW. SuZ. LiJ. WuZ. ZhangP. A multifunctional, tough, stretchable, and transparent curcumin hydrogel with potent antimicrobial, antioxidative, anti-inflammatory, and angiogenesis capabilities for diabetic wound healing.ACS Appl. Mater. Interfaces20241689749976710.1021/acsami.3c1683738359334
    [Google Scholar]
  106. JangdeR. SrivastavaS. SinghM.R. SinghD. In vitro and in vivo characterization of quercetin loaded multiphase hydrogel for wound healing application.Int. J. Biol. Macromol.20181151211121710.1016/j.ijbiomac.2018.05.01029730004
    [Google Scholar]
  107. JeeJ.P. PangeniR. JhaS.K. ByunY. ParkJ.W. Preparation and in vivo evaluation of a topical hydrogel system incorporating highly skin-permeable growth factors, quercetin, and oxygen carriers for enhanced diabetic wound-healing therapy.Int. J. Nanomedicine2019145449547510.2147/IJN.S21388331409998
    [Google Scholar]
  108. SharmaG. George JoyJ. SharmaA.R. KimJ.C. Accelerated full-thickness skin wound tissue regeneration by self-crosslinked chitosan hydrogel films reinforced by oxidized CNC-AgNPs stabilized Pickering emulsion for quercetin delivery.J. Nanobiotechnology202422132310.1186/s12951‑024‑02596‑038849931
    [Google Scholar]
  109. StoicaA.E. ChircovC. GrumezescuA.M. Nanomaterials for wound dressings: An up-to-date overview.Molecules20202511269910.3390/molecules2511269932532089
    [Google Scholar]
  110. ChoiJ.S. KimH.S. YooH.S. Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery.Drug Deliv. Transl. Res.20155213714510.1007/s13346‑013‑0148‑925787739
    [Google Scholar]
  111. UnnithanA.R. BarakatN.A.M. Tirupathi PichiahP.B. GnanasekaranG. NirmalaR. ChaY.S. JungC.H. El-NewehyM. KimH.Y. Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl.Carbohydr. Polym.20129041786179310.1016/j.carbpol.2012.07.07122944448
    [Google Scholar]
  112. TaymouriS. HashemiS. VarshosazJ. MinaiyanM. TalebiA. Fabrication and evaluation of hesperidin loaded polyacrylonitrile/polyethylene oxide nanofibers for wound dressing application.J. Biomater. Sci. Polym. Ed.202132151944196510.1080/09205063.2021.195238034228587
    [Google Scholar]
  113. KulkarniA.S. GuravD.D. KhanA.A. ShindeV.S. Curcumin loaded nanofibrous mats for wound healing application.Colloids Surf. B Biointerfaces202018911088510.1016/j.colsurfb.2020.11088532105963
    [Google Scholar]
  114. SinghV. BansalK. BhatiH. BajpaiM. New insights into pharmaceutical nanocrystals for the improved topical delivery of therapeutics in various skin disorders.Curr. Pharm. Biotechnol.202320237552710.2174/011389201027622323102707552737921127
    [Google Scholar]
  115. XuY. FourniolsT. LabrakY. PréatV. BeloquiA. des RieuxA. Surface modification of lipid-based nanoparticles.ACS Nano20221657168719610.1021/acsnano.2c0234735446546
    [Google Scholar]
  116. JainP. TaleuzzamanM. KalaC. Kumar GuptaD. AliA. AslamM. Quality by design (Qbd) assisted development of phytosomal gel of aloe vera extract for topical delivery.J. Liposome Res.202131438138810.1080/08982104.2020.184927933183121
    [Google Scholar]
  117. BeloquiA. SolinísM.Á. Rodríguez-GascónA. AlmeidaA.J. PréatV. Nanostructured lipid carriers: Promising drug delivery systems for future clinics.Nanomedicine201612114316110.1016/j.nano.2015.09.00426410277
    [Google Scholar]
  118. BaeY.H. ParkK. Advanced drug delivery 2020 and beyond: Perspectives on the future.Adv. Drug Deliv. Rev.202015841610.1016/j.addr.2020.06.01832592727
    [Google Scholar]
  119. TaleuzzamanM. JainP. VermaR. IqbalZ. MirzaM.A. Eugenol as a potential drug candidate: A review.Curr. Top. Med. Chem.202121201804181510.2174/156802662166621070114143334218781
    [Google Scholar]
  120. LaffleurF. KeckeisV. Advances in drug delivery systems: Work in progress still needed?Int. J. Pharm.202059011991210.1016/j.ijpharm.2020.11991232971178
    [Google Scholar]
  121. TangQ. DongM. XuZ. XueN. JiangR. WeiX. GuJ. LiY. XinR. WangJ. XiaoX. ZhouX. YinS. WangY. ChenJ. Red blood cell-mimicking liposomes loading curcumin promote diabetic wound healing.J. Control. Release202336187188410.1016/j.jconrel.2023.07.04937532149
    [Google Scholar]
  122. ZhouQ. CaiX. HuangY. ZhouY. Pluronic F127-liposome encapsulated curcumin activates Nrf2/Keap1 signaling pathway to promote cell migration of HaCaT cells.Mol. Cell. Biochem.2023478224124710.1007/s11010‑022‑04481‑635781650
    [Google Scholar]
  123. PoornimaG. DeepaM. DevadharshiniM. GopanG. ManiM. KannanS. In-situ synthesis and evaluation of anti-bacterial efficacy and angiogenesis of curcumin encapsulated lipogel dermal patch for wound healing applications.Biomater. Advances202416421398910.1016/j.bioadv.2024.21398939126901
    [Google Scholar]
  124. JangdeR. SinghD. Preparation and optimization of quercetin loaded liposomes for wound healing, using response surface methodology.Artif. Cells Nanomed. Biotechnol.201644263564110.3109/21691401.2014.97523825375215
    [Google Scholar]
  125. MoghassemiS. HadjizadehA. Nano-niosomes as nanoscale drug delivery systems: An illustrated review.J. Control. Release2014185223610.1016/j.jconrel.2014.04.01524747765
    [Google Scholar]
  126. AbdelbaryG.A. AminM.M. ZakariaM.Y. Ocular ketoconazole-loaded proniosomal gels: Formulation, ex vivo corneal permeation and in vivo studies.Drug Deliv.201724130931910.1080/10717544.2016.124792828165809
    [Google Scholar]
  127. KassemM.A. El-SawyH.S. Abd-AllahF.I. AbdelghanyT.M. El-SayK.M. Maximizing the Therapeutic efficacy of imatinib mesylate–loaded niosomes on human colon adenocarcinoma using box-behnken design.J. Pharm. Sci.2017106111112210.1016/j.xphs.2016.07.00727544432
    [Google Scholar]
  128. TrivediH.R. PuranikP.K. Chlorogenic acid loaded niosomes and proniosomes: In vitro antioxidant and antibacterial activities with efficacy in wound healing.Digital Chin. Med.20236217018810.1016/j.dcmed.2023.07.007
    [Google Scholar]
  129. AkramM.W. JamshaidH. RehmanF.U. ZaeemM. KhanJ. ZebA. Transfersomes: A revolutionary nanosystem for efficient transdermal drug delivery.AAPS PharmSciTech2021231710.1208/s12249‑021‑02166‑934853906
    [Google Scholar]
  130. OpathaS.A.T. TitapiwatanakunV. BoonpisutiinantK. ChutoprapatR. Preparation, characterization and permeation study of topical gel loaded with transfersomes containing asiatic acid.Molecules20222715486510.3390/molecules2715486535956816
    [Google Scholar]
  131. BensonH.A.E. Transfersomes for transdermal drug delivery.Expert Opin. Drug Deliv.20063672773710.1517/17425247.3.6.72717076595
    [Google Scholar]
  132. AbdallahM. NeseemD. El GazayerlyO. AbdelbaryA. L. Y. Topical delivery of quercetin loaded transfersomes for wound treatment: In-vitro and in-vivo evaluation.Int. J. Appl. Pharm.202113518919710.22159/ijap.2021v13i5.41345
    [Google Scholar]
  133. AfzalO. AltamimiA.S.A. NadeemM.S. AlzareaS.I. AlmalkiW.H. TariqA. MubeenB. MurtazaB.N. IftikharS. RiazN. KazmiI. Nanoparticles in drug delivery: From history to therapeutic applications.Nanomaterials (Basel)20221224449410.3390/nano1224449436558344
    [Google Scholar]
  134. LiuR. LuoC. PangZ. ZhangJ. RuanS. WuM. WangL. SunT. LiN. HanL. ShiJ. HuangY. GuoW. PengS. ZhouW. GaoH. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment.Chin. Chem. Lett.202334210751810.1016/j.cclet.2022.05.032
    [Google Scholar]
  135. SatapathyM.K. YenT.L. JanJ.S. TangR.D. WangJ.Y. TaliyanR. YangC.H. Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB.Pharmaceutics2021138118310.3390/pharmaceutics1308118334452143
    [Google Scholar]
  136. PandeyS. ShaikhF. GuptaA. TripathiP. YadavJ.S. A Recent Update: Solid Lipid Nanoparticles for Effective Drug Delivery.Adv. Pharm. Bull.2021121173310.34172/apb.2022.00735517874
    [Google Scholar]
  137. GanesanP. RamalingamP. KarthivashanG. KoY.T. ChoiD.K. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto bioactive compounds in various chronic diseases.Int. J. Nanomedicine2018131569158310.2147/IJN.S15559329588585
    [Google Scholar]
  138. SandhuS.K. KumarS. RautJ. SinghM. KaurS. SharmaG. RoldanT.L. TrehanS. HollowayJ. WahlerG. LaskinJ.D. SinkoP.J. BerthiaumeF. Michniak-KohnB. RishiP. GaneshN. KaurI.P. Systematic development and characterization of novel, high drug-loaded, photostable, curcumin solid lipid nanoparticle hydrogel for wound healing.Antioxidants202110572510.3390/antiox1005072534063003
    [Google Scholar]
  139. SoutoE.B. CanoA. Martins-GomesC. CoutinhoT.E. ZielińskaA. SilvaA.M. Microemulsions and nanoemulsions in skin drug delivery.Bioengineering (Basel)20229415810.3390/bioengineering904015835447718
    [Google Scholar]
  140. HarwanshR.K. MukherjeeP.K. KarA. BahadurS. Al-DhabiN.A. DuraipandiyanV. Enhancement of photoprotection potential of catechin loaded nanoemulsion gel against UVA induced oxidative stress.J. Photochem. Photobiol. B201616031832910.1016/j.jphotobiol.2016.03.02627167597
    [Google Scholar]
  141. BansalK. ChaudharyN. BhatiH. Vanshita Unveiling FDA-approved drugs and formulations in the management of bladder cancer: A review.Curr. Pharm. Biotechnol.20242511510.2174/011389201031465024051405373538797905
    [Google Scholar]
  142. TewabeA. AbateA. TamrieM. SeyfuA. Abdela SirajE. Targeted drug delivery — from magic bullet to nanomedicine: Principles, challenges, and future perspectives.J. Multidiscip. Healthc.2021141711172410.2147/JMDH.S31396834267523
    [Google Scholar]
  143. ZhangZ. LuY. QiJ. WuW. An update on oral drug delivery via intestinal lymphatic transport.Acta Pharm. Sin. B20211182449246810.1016/j.apsb.2020.12.02234522594
    [Google Scholar]
  144. JiaoL. SeowJ.Y.R. SkinnerW.S. WangZ.U. JiangH.L. Metal–organic frameworks: Structures and functional applications.Mater. Today201927436810.1016/j.mattod.2018.10.038
    [Google Scholar]
  145. XueY. GaoY. MengF. LuoL. Recent progress of nanotechnology-based theranostic systems in cancer treatments.Cancer Biol. Med.202118233635110.20892/j.issn.2095‑3941.2020.051033861527
    [Google Scholar]
  146. KaurJ. AnwerM.K. SartajA. PandaB.P. AliA. ZafarA. KumarV. GilaniS.J. KalaC. TaleuzzamanM. ZnO nanoparticles of Rubia cordifolia extract formulation developed and optimized with QbD application, considering ex vivo skin permeation, antimicrobial and antioxidant properties.Molecules2022274145010.3390/molecules2704145035209242
    [Google Scholar]
  147. BrunaT. Maldonado-BravoF. JaraP. CaroN. Silver nanoparticles and their antibacterial applications.Int. J. Mol. Sci.20212213720210.3390/ijms2213720234281254
    [Google Scholar]
  148. RenX. HuY. ChangL. XuS. MeiX. ChenZ. Electrospinning of antibacterial and anti-inflammatory Ag@hesperidin core-shell nanoparticles into nanofibers used for promoting infected wound healing.Regen. Biomater.20229rbac01210.1093/rb/rbac01235592139
    [Google Scholar]
  149. BadhwarR. ManglaB. NeupaneY.R. KhannaK. PopliH. Quercetin loaded silver nanoparticles in hydrogel matrices for diabetic wound healing.Nanotechnology2021325050510210.1088/1361‑6528/ac253634500444
    [Google Scholar]
  150. JoseC. AmraK. BhavsarC. MominM. OmriA. Polymeric Lipid Hybrid Nanoparticles: Properties and Therapeutic Applications.Crit. Rev. Ther. Drug Carrier Syst.201835655558810.1615/CritRevTherDrugCarrierSyst.201802475130317969
    [Google Scholar]
  151. DateT. NimbalkarV. KamatJ. MittalA. MahatoR.I. ChitkaraD. Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics.J. Control. Release2018271607310.1016/j.jconrel.2017.12.01629273320
    [Google Scholar]
  152. MukherjeeA. WatersA.K. KalyanP. AchrolA.S. KesariS. YenugondaV.M. Lipid–polymer hybrid nanoparticles as a next generation drug delivery platform: State of the art, emerging technologies, and perspectives.Int. J. Nanomedicine2019141937195210.2147/IJN.S19835330936695
    [Google Scholar]
  153. JangdeR. ElhassanG.O. KhuteS. SinghD. SinghM. SahuR.K. KhanJ. Hesperidin-Loaded lipid polymer hybrid nanoparticles for topical delivery of bioactive drugs.Pharmaceuticals (Basel)202215221110.3390/ph1502021135215324
    [Google Scholar]
  154. GuoX. LiuY. BeraH. ZhangH. ChenY. CunD. FoderàV. YangM. α-lactalbumin-based nanofiber dressings improve burn wound healing and reduce scarring.ACS Appl. Mater. Interfaces20201241457024571310.1021/acsami.0c0517532667794
    [Google Scholar]
  155. HeJ. LiangY. ShiM. GuoB. Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly(ε-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing.Chem. Eng. J.202038512346410.1016/j.cej.2019.123464
    [Google Scholar]
  156. WangJ. PlanzV. VukosavljevicB. WindbergsM. Multifunctional electrospun nanofibers for wound application - Novel insights into the control of drug release and antimicrobial activity.Eur J. Pharm. Biopharm.2018129117518310.1016/j.ejpb.2018.05.035
    [Google Scholar]
  157. ZhouL. CaiL. RuanH. ZhangL. WangJ. JiangH. WuY. FengS. ChenJ. Electrospun chitosan oligosaccharide/polycaprolactone nanofibers loaded with wound-healing compounds of Rutin and Quercetin as antibacterial dressings.Int. J. Biol. Macromol.20211831145115410.1016/j.ijbiomac.2021.05.03133965491
    [Google Scholar]
  158. FahimiradS. AbtahiH. SateiP. Ghaznavi-RadE. MoslehiM. GanjiA. Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles.Carbohydr. Polym.202125911764010.1016/j.carbpol.2021.11764033673981
    [Google Scholar]
  159. LiuM. DongL. ChenA. ZhengY. SunD. WangX. WangB. Inclusion complexes of quercetin with three β-cyclodextrins derivatives at physiological pH: Spectroscopic study and antioxidant activity.Spectrochim. Acta A Mol. Biomol. Spectrosc.201311585486010.1016/j.saa.2013.07.00823892509
    [Google Scholar]
  160. RahmanM.A. Abul BarkatH. HarwanshR.K. DeshmukhR. Carbon-based Nanomaterials: Carbon Nanotubes, Graphene, and Fullerenes for the Control of Burn Infections and Wound Healing.Curr. Pharm. Biotechnol.202223121483149610.2174/138920102366622030915234035264085
    [Google Scholar]
  161. EsmaeilpourD. HusseinA.A. AlmalkiF.A. ShityakovS. BordbarA.K. Probing inclusion complexes of 2-hydroxypropyl-β-cyclodextrin with mono-amino mono-carboxylic acids: Physicochemical specification, characterization and molecular modeling.Heliyon202064e0336010.1016/j.heliyon.2020.e0336032322699
    [Google Scholar]
  162. WangsawangrungN. ChoipangC. ChaiarwutS. EkabutrP. SuwantongO. ChuysinuanP. TechasakulS. SupapholP. Quercetin/hydroxypropyl-β-cyclodextrin inclusion complex-loaded hydrogels for accelerated wound healing.Gels20228957310.3390/gels809057336135285
    [Google Scholar]
  163. VabeiryureilaiM. NF-KB and COX-2 repression with topical application of hesperidin and naringin hydrogels augments repair and regeneration of deep dermal wounds.Burns202248113214510.1016/j.burns.2021.04.01633972147
    [Google Scholar]
  164. TrivediH.R. PuranikP.K. Chlorogenic acid-optimized nanophytovesicles: A novel approach for enhanced permeability and oral bioavailability.Future J. Pharmaceut. Sci.20239111610.1186/s43094‑023‑00559‑0
    [Google Scholar]
  165. GokB. Budama-KilincY. Chlorogenic acid nanoemulsion for staphylococcus aureus causing skin infection: Synthesis, characterization and evaluation of antibacterial efficac.Sigma J. Eng. Nat. Sci.202241232233010.14744/sigma.2022.00045
    [Google Scholar]
  166. KumarA.S. PremaD. RaoR.G. PrakashJ. BalashanmugamP. DevasenaT. VenkatasubbuG.D. Fabrication of poly (lactic-co-glycolic acid)/gelatin electro spun nanofiber patch containing CaCO3/SiO2 nanocomposite and quercetin for accelerated diabetic wound healing.Int. J. Biol. Macromol.2024254Pt 312806010.1016/j.ijbiomac.2023.12806037963500
    [Google Scholar]
  167. YiY. YangZ. ZhouC. YangY. WuY. ZhangQ. Quercetin-encapsulated GelMa hydrogel microneedle reduces oxidative stress and facilitates wound healing.Nano TransMed20243100030
    [Google Scholar]
  168. CetinN. MenevseE. CelikZ.E. CeylanC. RamaS.T. GultekinY. TekinT. SahinA. Evaluation of burn wound healing activity of thermosensitive gel and PLGA nanoparticle formulation of quercetin in Wistar albino rats.J. Drug Deliv. Sci. Technol.20227510362010.1016/j.jddst.2022.103620
    [Google Scholar]
  169. FerraraF. BenedusiM. SguizzatoM. CortesiR. BaldisserottoA. BuzziR. ValacchiG. EspositoE. Ethosomes and transethosomes as cutaneous delivery systems for quercetin: A preliminary study on melanoma cells.Pharmaceutics2022145103810.3390/pharmaceutics1405103835631628
    [Google Scholar]
  170. LiY.J. WeiS.C. ChuH.W. JianH.J. AnandA. NainA. HuangY.F. ChangH.T. HuangC.C. LaiJ.Y. Poly quercetin-based nanoVelcro as a multifunctional wound dressing for effective treatment of chronic wound infections.Chem. Eng. J.202243713531510.1016/j.cej.2022.135315
    [Google Scholar]
  171. KantV. JangirB.L. SharmaM. KumarV. JoshiV.G. Topical application of quercetin improves wound repair and regeneration in diabetic rats.Immunopharmacol. Immunotoxicol.202143553655310.1080/08923973.2021.195075834278923
    [Google Scholar]
  172. EbrahimzadehA. KaramianM. AbediF. Hanafi-BojdM.Y. GhateeM.A. HemmatiM. AlemzadehE. Topically applied luteolin /quercetin-capped silver nanoparticle ointment as antileishmanial composite: Acceleration wound healing in BALB/c mice.Adv. Mater. Sci. Eng.2023202311110.1155/2023/1878170
    [Google Scholar]
  173. LakkimV. ReddyM.C. LekkalaV.V.V. LebakaV.R. KoriviM. LomadaD. Antioxidant efficacy of green-synthesized silver nanoparticles promotes wound healing in mice.Pharmaceutics2023155151710.3390/pharmaceutics1505151737242759
    [Google Scholar]
  174. AyeK.C. RojanarataT. NgawhirunpatT. OpanasopitP. PornpitchanarongC. PatrojanasophonP. Development and characterization of curcumin nanosuspension-embedded genipin-crosslinked chitosan/polyvinylpyrrolidone hydrogel patch for effective wound healing.Int. J. Biol. Macromol.2024274Pt 113351910.1016/j.ijbiomac.2024.13351938960235
    [Google Scholar]
  175. XuanG. BinL. Preparation method and application of Pickering emulsion with antibacterial, anti-inflammatory and wound healing promoting effects.CN Patent 114767631B2022
  176. Sean MitchellB.K. Use of polyphenols comprising sugarcane extract for preventing, ameliorating or treating skin problems.CN Patent 111194219B2018
  177. Matthew FlavelB.K. Use of polyphenol containing sugar cane extracts for preventing, improving or treating a skin condition.AU Patent 2018315055B22018
  178. XianJ. Hydrogel active dressing with antibacterial and anti inflammatory functions.CN Patent 112370567B2018
  179. ShengK. Preparation method and application of curcumin-loaded Pickering emulsion gel.CN Patent 114522138A2022
  180. MuharramG. Wound sealer with collagen and hyaluronic acid based liposomal plant extract.TR Patent 2022000554A22022
  181. GuZ. Metal polyphenol collagen membrane material, preparation method and application thereof.CN Patent 112316204B2020
  182. Rajan DattR.K. Multifunctional formulation comprised of natural ingredients and method of preparation/manufacturing thereof.EP Patent 3281614B12017
  183. Etsurou UdagawaY.E. Therapeutic agent for skin wound or rough skin.US Patent 11020427B22020
  184. KennethA. Buckwheat honey and povidone-iodine wound healing dressing.US Patent 20200093756A12020
  185. Nathan StaskoS.B. Topical gels and methods of using the same.US Patent 10376538B22017
  186. Manuela Martins-GreenS.D. Wound healing.US Patent 20170252320A12017
  187. ZhiyunW. The external use skin care of a kind of regulation of skin immunity, delay skin aging.CN Patent 103520081B2015
  188. Lee KiY.K. Hydrogel patch containing the curcumin for wound healing and preparation method thereof.KR Patent 20140114617A2015
/content/journals/cpa/10.2174/0115734129344438240927100440
Loading
/content/journals/cpa/10.2174/0115734129344438240927100440
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): analysis; nano delivery; nanotechnology; Polyphenols; skin lesions; wound healing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test