Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Background

Anticancer herbal drugs have gained significant attention in pharmaceutical research due to their complex chemical profiles and multifaceted therapeutic effects. Electrochemical analysis has emerged as a powerful tool for studying these compounds, offering unique insights into their behavior and properties.

Methods

This review examines recent advances in the electrochemical analysis of five key anticancer herbal drugs: emodin, rutin, berberine, shikonin, and sophoridine. Various electrochemical techniques, including cyclic voltammetry, differential pulse voltammetry, and square wave voltammetry, are discussed in relation to their application in detecting and characterizing these compounds.

Results

Significant progress has been made in developing highly sensitive and selective electrochemical sensors for these herbal drugs. Nanomaterial-modified electrodes have consistently improved detection limits and expanded linear ranges. Compound-specific innovations in electrode modifications and measurement techniques have been tailored to the unique electrochemical properties of each drug.

Conclusion

Electrochemical analysis of anticancer herbal drugs has advanced substantially, offering powerful tools for studying and utilizing these compounds in cancer research and treatment. Future directions include the development of multi-analyte sensors, integration with microfluidic technologies, and application of artificial intelligence for data analysis. Challenges remain in improving the stability of modified electrodes and standardizing protocols for sample preparation and analysis.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129340143240906104042
2024-09-20
2025-05-13
Loading full text...

Full text loading...

References

  1. DhamaK. KarthikK. KhandiaR. MunjalA. TiwariR. RanaR. KhuranaS.K. Sana Ullah KhanR.U. AlagawanyM. FaragM.R. DadarM. JoshiS.K. Medicinal and therapeutic potential of herbs and plant metabolites / extracts countering viral pathogens - Current knowledge and future prospects.Curr. Drug Metab.201819323626310.2174/138920021966618012914525229380697
    [Google Scholar]
  2. ZhangC. ChenG. TangG. XuX. FengZ. LuY. ChanY.T. WuJ. ChenY. XuL. RenQ. YuanH. YangD.H. ChenZ.S. WangN. FengY. Multi-component Chinese medicine formulas for drug discovery: State of the art and future perspectives.Acta Mater. Med.20232110612510.15212/AMM‑2022‑0049
    [Google Scholar]
  3. ZanfrogniniB. PiganiL. ZanardiC. Recent advances in the direct electrochemical detection of drugs of abuse.J. Solid State Electrochem.20202411-122603261610.1007/s10008‑020‑04686‑z
    [Google Scholar]
  4. GongD. LiX. LiuX. SunG. GuoP. Electrochemical-based quantitative fingerprint evaluation strategy combined with multi markers assay by monolinear method for quality control of herbal medicine.Phytomedicine202210415427410.1016/j.phymed.2022.15427435717807
    [Google Scholar]
  5. MelaréA.G. BarretoF.C. SilvaM.K.L. SimõesR.P. CesarinoI. Determination of fluoxetine in weight loss herbal medicine Using an electrochemical sensor based on rGO-CuNPs.Molecules20232817636110.3390/molecules2817636137687190
    [Google Scholar]
  6. GomesJ.S. da CostaÉ.A. MunozR.A.A. de OliveiraA. SousaR.M.F. Selective electrochemical detection of catechin compounds in herbal medicines.J. Electrochem. Soc.2022169101751610.1149/1945‑7111/ac4bbf
    [Google Scholar]
  7. LiuZ. LiuY. TanZ. LiuY. MengL. YangS. Electrochemical determination of rutin in herbal samples using CuO/CNT composite modified glassy carbon electrode.Int. J. Electrochem. Sci.202217722072410.20964/2022.07.22
    [Google Scholar]
  8. PanC. WenQ. MaL. QinX. FengS. Novel water-dispersible silicon nanoparticles as a fluorescent and colorimetric dual-mode probe for emodin detection.New J. Chem.20214528125281253710.1039/D1NJ01775F
    [Google Scholar]
  9. Köseoğlu YılmazP. KolakU. Development and validation of a SPE–HPLC Method for quantification of rhein, emodin, chrysophanol and physcion in rhamnus petiolaris boiss. & balansa.J. Chromatogr. Sci.2023bmad05310.1093/chromsci/bmad05337501520
    [Google Scholar]
  10. MeinhartA.D. DaminF.M. CaldeirãoL. Teixeira-FilhoJ. GodoyH.T. Rutin in herbs and infusions: Screening of new sources and consumption estimation.Food Sci. Technol. (Campinas)20204011312010.1590/fst.01219
    [Google Scholar]
  11. SatijaS. TambuwalaM.M. PabrejaK. BakshiH.A. ChellappanD.K. AljabaliA.A. NammiS. SinghT.G. DurejaH. GuptaG. DuaK. MehtaM. GargM. Development of a novel HPTLC fingerprint method for simultaneous estimation of berberine and rutin in medicinal plants and their pharmaceutical preparations followed by its application in antioxidant assay.J. Planar Chromatogr. Mod. TLC202033331331910.1007/s00764‑020‑00035‑y
    [Google Scholar]
  12. ShengK. ZhangQ. LiL. WangY. YeB. A new voltammetric sensor and its application in pharmaceutical analysis for rutin.J. Environ. Sci. Health a202055783784610.1080/10934529.2020.174789232255737
    [Google Scholar]
  13. LiuW. WuS. SunT.X. BaiJ. YangY. LianW.H. ZhaoY. Post-synthetic modified luminescent metal–organic framework for the detection of berberine hydrochloride in a traditional Chinese herb.RSC Advances202414160260710.1039/D3RA07054A38173615
    [Google Scholar]
  14. GuoL. WangZ. XuX. XuL. WangZ. KuangH. XuC. An ultrasensitive fluorescent paper sensor for fast screening of berberine.New J. Chem.20214529130801308710.1039/D1NJ02210E
    [Google Scholar]
  15. RuanS. WuS. YangL. LiM. ZhangY. WangZ. WangS. A novel turn-on fluorescent probe based on berberine for detecting Hg2+ and ClO− with the different fluorescence signals.Microchem. J.202116610619910.1016/j.microc.2021.106199
    [Google Scholar]
  16. MollaeiS. KhanehbarndazO. Gerami-KhashalZ. EbadiM. Molecular identification and phytochemical screening of endophytic fungi isolated from Lithospermum officinale L. roots: A new source of shikonin.Phytochemistry201916811211610.1016/j.phytochem.2019.11211631513947
    [Google Scholar]
  17. GaoH. LiuL. QuZ. WeiF. WangS. ChenG. QinL. JiangF. WangY. ShangL. GaoC. Anti-adenovirus activities of shikonin, a component of Chinese herbal medicine in vitro.Biol. Pharm. Bull.201134219720210.1248/bpb.34.19721415527
    [Google Scholar]
  18. WuL. LuL. ZhangL. XuJ. ZhangK. WenY. DuanX. YangF. Electrochemical determination of the anticancer herbal drug shikonin at a nanostructured poly(hydroxymethylated‐3,4‐ethylenedioxythiophene) modified electrode.Electroanalysis20132592244225010.1002/elan.201300247
    [Google Scholar]
  19. VermaA. YadavB.C. Comprehensive review on two dimensional nanomaterials for optical biosensors: Present progress and outlook.Sustain. Mater. Technol.202440e0090010.1016/j.susmat.2024.e00900
    [Google Scholar]
  20. VermaA. YadavB.C. Development and integration of a hierarchical Pd/WO3 acetone-sensing device for real-time exhaled breath monitoring with disposable face mask.J. Hazard. Mater.202446313287210.1016/j.jhazmat.2023.13287237924704
    [Google Scholar]
  21. VermaA. YadavD. NatesanS. GuptaM. Chandra YadavB. Kumar MishraY. Advancements in nanohybrid material-based acetone gas sensors relevant to diabetes diagnosis: A comprehensive review.Microchem. J.202420111071310.1016/j.microc.2024.110713
    [Google Scholar]
  22. FuL. ZhengY. WangA. ZhangP. DingS. WuW. ZhouQ. ChenF. ZhaoS. Identification of medicinal herbs in Asteraceae and Polygonaceae using an electrochemical fingerprint recorded using screen-printed electrode.J. Herb. Med.20213010051210.1016/j.hermed.2021.100512
    [Google Scholar]
  23. RadhiM.M. ObaidA.A. HoidyW.H. Electrochemical analysis using nano-sensor of stevia herb as a healthful alternative sugar.Nano Biomed. Eng.202113220721110.5101/nbe.v13i2.p207‑211
    [Google Scholar]
  24. ZhangJ. ZhouZ. KongQ. Progress in the electrochemical analysis of flavonoids: A scientometric analysis in citespace.Curr. Pharm. Anal.2022181435410.2174/1573412917666210525153519
    [Google Scholar]
  25. TeymourianH. ParrillaM. SempionattoJ.R. MontielN.F. BarfidokhtA. Van EchelpoelR. De WaelK. WangJ. Wearable electrochemical sensors for the monitoring and screening of drugs.ACS Sens.2020592679270010.1021/acssensors.0c0131832822166
    [Google Scholar]
  26. BulediJ.A. ShahZ.H. MallahA. SolangiA.R. Current perspective and developments in electrochemical sensors modified with nanomaterials for environmental and pharmaceutical analysis.Curr. Anal. Chem.202218110211510.2174/1573411016999201006122740
    [Google Scholar]
  27. PysarevskaS. PlotycyaS. DubenskaL. Voltammetry of local anesthetics: Theoretical and practical aspects.Crit. Rev. Anal. Chem.202151433935210.1080/10408347.2020.172969132096424
    [Google Scholar]
  28. RenS. ZengJ. ZhengZ. ShiH. Perspective and application of modified electrode material technology in electrochemical voltammetric sensors for analysis and detection of illicit drugs.Sens. Actuators A Phys.202132911282110.1016/j.sna.2021.112821
    [Google Scholar]
  29. ManjunathaJ.G. PushpanjaliP.A. HareeshaN. An overview of recent developments of carbon-based sensors for the analysis of drug molecules.J. Electrochem. Sci. Eng.202111316117710.5599/jese.999
    [Google Scholar]
  30. LiZ. ShenF. MishraR.K. WangZ. ZhaoX. ZhuZ. Advances of drugs electroanalysis based on direct electrochemical redox on electrodes: A review.Crit. Rev. Anal. Chem.202454226931410.1080/10408347.2022.207267935575782
    [Google Scholar]
  31. BaracuA.M. Dinu GugoasaL.A. Review—recent advances in microfabrication, design and applications of amperometric sensors and biosensors.J. Electrochem. Soc.2021168303750310.1149/1945‑7111/abe8b6
    [Google Scholar]
  32. MagarH.S. HassanR.Y.A. MulchandaniA. Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications.Sensors (Basel)20212119657810.3390/s2119657834640898
    [Google Scholar]
  33. KempN.T. A tutorial on electrochemical impedance spectroscopy and nanogap electrodes for biosensing applications.IEEE Sens. J.20212120222322224510.1109/JSEN.2021.3084284
    [Google Scholar]
  34. LaiH. MingP. LiuY. WangS. ZhouQ. ZhaiH. MWCNTs and ZnO-based Ce-MOF nanocomposites as enhanced sensing platform for electrochemical detection of carbendazim in Chinese traditional herbs samples.Mikrochim. Acta2023190828110.1007/s00604‑023‑05869‑x37407849
    [Google Scholar]
  35. LiuX. YanZ. Identification of geographical origins of Astragalus membranaceus in China using electrochemical fingerprinting.Int. J. Electrochem. Sci.202318710018310.1016/j.ijoes.2023.100183
    [Google Scholar]
  36. Sharifi-RadJ. Herrera-BravoJ. KamilogluS. PetroniK. MishraA.P. Monserrat-MesquidaM. SuredaA. MartorellM. AidarbekovnaD.S. YessimsiitovaZ. YdyrysA. HanoC. CalinaD. ChoW.C. Recent advances in the therapeutic potential of emodin for human health.Biomed. Pharmacother.202215411355510.1016/j.biopha.2022.11355536027610
    [Google Scholar]
  37. AkkolE.K. TatlıI.I. KaratoprakG.Ş. AğarO.T. YücelÇ. Sobarzo-SánchezE. CapassoR. Is emodin with anticancer effects completely innocent? two sides of the coin.Cancers (Basel)20211311273310.3390/cancers1311273334073059
    [Google Scholar]
  38. ZhangQ. ChenW.W. SunX. QianD. TangD.D. ZhangL.L. LiM.Y. WangL.Y. WuC.J. PengW. The versatile emodin: A natural easily acquired anthraquinone possesses promising anticancer properties against a variety of cancers.Int. J. Biol. Sci.20221883498352710.7150/ijbs.7044735637953
    [Google Scholar]
  39. LiuW. QaedE. ZhuY. TianW. WangY. KangL. MaX. TangZ. Research progress and new perspectives of anticancer effects of emodin.Am. J. Chin. Med.20235171751179310.1142/S0192415X2350078737732372
    [Google Scholar]
  40. McDonaldS.J. VanderVeenB.N. VelazquezK.T. EnosR.T. FairmanC.M. CardaciT.D. FanD. MurphyE.A. Therapeutic potential of emodin for gastrointestinal cancers.Integr. Cancer Ther.20222110.1177/1534735421106746934984952
    [Google Scholar]
  41. LvB. ZhengK. SunY. WuL. QiaoL. WuZ. ZhaoY. ZhengZ. Network pharmacology experiments show that emodin can exert a protective effect on MCAO rats by regulating Hif-1α/VEGF-A signaling.ACS Omega2022726225772259310.1021/acsomega.2c0189735811865
    [Google Scholar]
  42. LiuC. ChenL. WangW. QinD. JiaC. YuanM. WangH. GuoY. ZhuJ. ZhouY. ZhaoH. LiuT. Emodin suppresses the migration and invasion of melanoma cells.Biol. Pharm. Bull.202144677177910.1248/bpb.b20‑0080733731543
    [Google Scholar]
  43. WangL. ZhangZ. YeB. Study on the electrochemical behaviour of the anticancer herbal drug emodin.Electrochim. Acta200651265961596510.1016/j.electacta.2006.03.082
    [Google Scholar]
  44. YinZ.H. XuQ. TuY. ZouQ.J. YuJ.H. ZhaoY.D. Electrocatalysis of emodin at multi-wall nanotubes.Bioelectrochemistry200872215516010.1016/j.bioelechem.2008.01.00518313991
    [Google Scholar]
  45. LiD. JinB. Study on the electrochemical redox mechanism of emodin.J. Electrochem.201723334735510.13208/j.electrochem.161045
    [Google Scholar]
  46. HouL. KongC. HuZ. HanY. WuB. Redox active organic molecule-Emodin modified graphene for high-performance supercapacitors.J. Electroanal. Chem. (Lausanne)202189511540210.1016/j.jelechem.2021.115402
    [Google Scholar]
  47. LiJ. ChenJ. ZhangX.L. LuC.H. YangH.H. A novel sensitive detection platform for antitumor herbal drug aloe-emodin based on the graphene modified electrode.Talanta201083255355810.1016/j.talanta.2010.09.05821111173
    [Google Scholar]
  48. HaoQ. LuL. KanX. Probe and analogue: Double roles of thionine for aloe-emodin selective and sensitive ratiometric detection.Sens. Actuators B Chem.201929224725310.1016/j.snb.2019.04.129
    [Google Scholar]
  49. WangM. KanX. Imprinted polymer/Fe3O4 micro-particles decorated multi-layer graphite paper: Electrochemical and colorimetric dual-modal sensing interface for aloe-emodin assay.Sens. Actuators B Chem.202032312867210.1016/j.snb.2020.128672
    [Google Scholar]
  50. WangY. XiongH. ZhangX. WangS. Electrochemical study of Aloe-emodin on an ionic liquid-type carbon paste electrode.Mikrochim. Acta20101693-425526010.1007/s00604‑010‑0348‑7
    [Google Scholar]
  51. DharaM. BanerjeeS. TuduB. GhatakB. TuduB. Electrochemical detection of aloe emodin using platinum electrode based voltammetry technique.J. Mater. Sci. Res.20231461610.47363/JMSMR/2023(4)146
    [Google Scholar]
  52. BianC. ZhangL. XiongH. ZhangX. WangS. Electrochemical behavior of herbal antitumor drug aloe‐emodin at carbon‐coated nickel magnetic nanoparticles modified glassy carbon electrode.Electroanalysis201022222658266410.1002/elan.201000211
    [Google Scholar]
  53. TemerkY.M. IbrahimH.S.M. Individual and simultaneous square wave voltammetric determination of the anticancer drugs emodin and irinotecan at renewable pencil graphite electrodes.J. Braz. Chem. Soc.2013241669167810.5935/0103‑5053.20130214
    [Google Scholar]
  54. VuD.L. ErtekB. DilginY. CervenkaL. Determination of anti-cancer drug emodin using a silica-gel-modified carbon paste electrode.Quim. Nova2014371629163210.5935/0100‑4042.20140244
    [Google Scholar]
  55. ChenB.Y. HsuehC.C. TsaiP.W. LinY.H. TsaiP.S. LienT.K. YangC.W. JiangL.D. Deciphering biotransformation of anthraquinone electron shuttles in Rheum palmatum L. for value added production.J. Taiwan Inst. Chem. Eng.202213910450810.1016/j.jtice.2022.104508
    [Google Scholar]
  56. BanE. ParkM. JeongS. KwonT. KimE.H. JungK. KimA. Poloxamer-based thermoreversible gel for topical delivery of emodin: Influence of P407 and P188 on solubility of emodin and its application in cellular activity screening.Molecules201722224610.3390/molecules2202024628178225
    [Google Scholar]
  57. NegahdariR. BohlouliS. SharifiS. Maleki DizajS. Rahbar SaadatY. KhezriK. JafariS. AhmadianE. Gorbani JahandiziN. RaeesiS. Therapeutic benefits of rutin and its nanoformulations.Phytother. Res.20213541719173810.1002/ptr.690433058407
    [Google Scholar]
  58. SatariA. GhasemiS. HabtemariamS. AsgharianS. LorigooiniZ. Rutin: A flavonoid as an effective sensitizer for anticancer therapy; insights into multifaceted mechanisms and applicability for combination therapy.Evid. Based Complement. Alternat. Med.20212021111010.1155/2021/991317934484407
    [Google Scholar]
  59. NouriZ. FakhriS. NouriK. WallaceC.E. FarzaeiM.H. BishayeeA. Targeting multiple signaling pathways in cancer: The rutin therapeutic approach.Cancers (Basel)2020128227610.3390/cancers1208227632823876
    [Google Scholar]
  60. WangY. ChenJ. WangC. ZhangL. YangY. ChenC. XieY. ZhaoP. FeiJ. An electrochemical sensor based on Ce-MOF-derived Ce-doped poly(3,4-ethylenedioxythiophene) composite for efficient determination of rutin in food.Talanta202326312467810.1016/j.talanta.2023.12467837247454
    [Google Scholar]
  61. LiY. TangJ. LinY. LiJ. YangY. ZhaoP. FeiJ. XieY. Ultrasensitive determination of natural flavonoid rutin using an electrochemical sensor based on metal-organic framework CAU−1/Acidified carbon nanotubes composites.Molecules20222722776110.3390/molecules2722776136431862
    [Google Scholar]
  62. HeQ. WuY. TianY. LiG. LiuJ. DengP. ChenD. Facile electrochemical sensor for nanomolar rutin detection based on magnetite nanoparticles and reduced graphene oxide decorated electrode.Nanomaterials (Basel)20199111510.3390/nano901011530669370
    [Google Scholar]
  63. AskariN. SalarizadehN. AskariM.B. Electrochemical determination of rutin by using NiFe2O4 nanoparticles-loaded reduced graphene oxide.J. Mater. Sci. Mater. Electron.20213289765977510.1007/s10854‑021‑05636‑938624849
    [Google Scholar]
  64. ŞenocakA. SankoV. TümayS.O. OroojiY. DemirbasE. YoonY. KhataeeA. Ultrasensitive electrochemical sensor for detection of rutin antioxidant by layered Ti3Al0.5Cu0.5C2 MAX phase.Food Chem. Toxicol.202216411301610.1016/j.fct.2022.11301635430329
    [Google Scholar]
  65. SwamyN.K. MohanaK.N.S. HegdeM.B. MadhusudanaA.M. RajithaK. NayakS.R. Fabrication of graphene nanoribbon-based enzyme-free electrochemical sensor for the sensitive and selective analysis of rutin in tablets.J. Appl. Electrochem.20215171047105710.1007/s10800‑021‑01557‑x
    [Google Scholar]
  66. HareeshaN. ManjunathaJ.G. AlothmanZ.A. SillanpääM. Simple and affordable graphene nano-platelets and carbon nanocomposite surface decorated with cetrimonium bromide as a highly responsive electrochemical sensor for rutin detection.J. Electroanal. Chem. (Lausanne)202291711638810.1016/j.jelechem.2022.116388
    [Google Scholar]
  67. TangJ. PengL. AliA. ZhaoS. ZengZ. YuanK. YaoS. Electrochemical detection of rutin in black tartary buckwheat tea and related health-care pills with new ionic liquid-based supramolecular hydrogels.Food Control202415511004510.1016/j.foodcont.2023.110045
    [Google Scholar]
  68. ShiY. HuK. MeiL. ChaoL. WuM. ChenZ. WuX. QiaoJ. ZhuP. MiaoM. ZhangS. Platforms of graphene/MXene heterostructure for electrochemical monitoring of rutin in drug and Tartary buckwheat tea.Talanta202427012554810.1016/j.talanta.2023.12554838104427
    [Google Scholar]
  69. GuH. ShuiX. ZhangY. ZengT. YangJ. WuZ. ZhangX. YangN. Porous carbon scaffolded Fe-based alloy nanoparticles for electrochemical quantification of acetaminophen and rutin.Carbon202422111895410.1016/j.carbon.2024.118954
    [Google Scholar]
  70. GanesamurthiJ. ShanmugamR. ChenT.W. ChenS.M. BalamuruganM. GanZ.W. SiddiquiM.R. WabaidurS.M. AliM.A. NiO/ZnO binary metal oxide based electrochemical sensor for the evaluation of hazardous flavonoid in biological and vegetable samples.Colloids Surf. A Physicochem. Eng. Asp.202264712907710.1016/j.colsurfa.2022.129077
    [Google Scholar]
  71. ElancheziyanM. GanesanS. TheyagarajanK. DuraisamyM. ThenmozhiK. WengC.H. LinY.T. PonnusamyV.K. Novel biomass-derived porous-graphitic carbon coated iron oxide nanocomposite as an efficient electrocatalyst for the sensitive detection of rutin (vitamin P) in food and environmental samples.Environ. Res.202221111301210.1016/j.envres.2022.11301235231460
    [Google Scholar]
  72. BalramD. LianK.Y. SebastianN. RasanaN. Surface functionalization of CNTs with amine group and decoration of begonia-like ZnO for detection of antipyretic drug acetaminophen.Appl. Surf. Sci.202155914998110.1016/j.apsusc.2021.149981
    [Google Scholar]
  73. TaoT. GaoN. HeH. ZhouR. TuB. CaiZ. ChangG. HeY. JiX. Au-PEDOT/rGO nanocomposites functionalized graphene electrochemical transistor for ultra-sensitive detection of acetaminophen in human urine.Anal. Chim. Acta2022119133930610.1016/j.aca.2021.33930635033240
    [Google Scholar]
  74. KavyaK.V. KumarR.S. Rajendra KumarR.T. RameshS. YangW. KakaniV. HaldoraiY. Fabrication of 1D/2D Au nanofiber/MIL-101(Cr)–NH2 composite for selective electrochemical detection of caffeic acid: Predicting sensor performance by machine learning and investigating the porosity using AI and computer vision-based image analysis.Microchem. J.202420011049010.1016/j.microc.2024.110490
    [Google Scholar]
  75. VoitechovičE. PauliukaiteR. Electrochemical multisensor systems and arrays in the era of artificial intelligence.Curr. Opin. Electrochem.20234210141110.1016/j.coelec.2023.101411
    [Google Scholar]
  76. TesioA.Y. RobledoS.N. GraneroA.M. FernándezH. ZonM.A. Simultaneous electroanalytical determination of luteolin and rutin using artificial neural networks.Sens. Actuators B Chem.201420365566210.1016/j.snb.2014.07.005
    [Google Scholar]
  77. XiongR.G. HuangS.Y. WuS.X. ZhouD.D. YangZ.J. SaimaitiA. ZhaoC.N. ShangA. ZhangY.J. GanR.Y. LiH.B. Anticancer effects and mechanisms of berberine from medicinal herbs: An update review.Molecules20222714452310.3390/molecules2714452335889396
    [Google Scholar]
  78. DiculescuV.C. EnacheT.A. OliveiraP.J. Oliveira-BrettA.M. Electrochemical oxidation of berberine and of its oxidation products at a glassy carbon electrode.Electroanalysis20092191027103410.1002/elan.200804516
    [Google Scholar]
  79. GetoA. PitaM. De LaceyA.L. TessemaM. AdmassieS. Electrochemical determination of berberine at a multi-walled carbon nanotubes-modified glassy carbon electrode.Sens. Actuators B Chem.20131839610110.1016/j.snb.2013.03.121
    [Google Scholar]
  80. WangJ.S. SakthivelR. AnbazhaganR. krishnamoorthiR. KubendhiranS. LaiJ.Y. TsaiH.C. ChenS.M. Electroactive polypyrrole-molybdenum disulfide nanocomposite for ultrasensitive detection of berberine in rat plasma.Anal. Chim. Acta2020112521021910.1016/j.aca.2020.05.05632674768
    [Google Scholar]
  81. WangF. GaoY. GaoL. XingT. Study on the electrochemical behavior of the anticancer herbal drug berberine and its analytical application.J. Chin. Chem. Soc. (Taipei)201158445045610.1002/jccs.201190005
    [Google Scholar]
  82. StankovićD.M. SamphaoA. KalcherK. Anti‐cancer herbal drug berberine – Sensitive determination using boron‐doped diamond electrode.Electroanalysis201527122753275910.1002/elan.201500356
    [Google Scholar]
  83. HeX. LiX. FengS. LiX. NongC. Fabrication of photoelectrochemical sensor based on Fe-doped mose 2 for the sensitive detection of berberine hydrochloride.J. Electrochem. Soc.2021168505652310.1149/1945‑7111/ac035e
    [Google Scholar]
  84. LuL. QinA. HuangH. ZhouP. ZhangC. LiuN. LiS. WenG. ZhangC. DongW. WangX. DouQ.P. LiuJ. Shikonin extracted from medicinal Chinese herbs exerts anti-inflammatory effect via proteasome inhibition.Eur. J. Pharmacol.20116582-324224710.1016/j.ejphar.2011.02.04321392503
    [Google Scholar]
  85. LanW. WanS. GuW. WangH. ZhouS. Mechanisms behind the inhibition of lung adenocarcinoma cell by shikonin.Cell Biochem. Biophys.20147021459146710.1007/s12013‑014‑0083‑524972691
    [Google Scholar]
  86. AndújarI. RecioM. GinerR. RíosJ. Traditional chinese medicine remedy to jury: the pharmacological basis for the use of shikonin as an anticancer therapy.Curr. Med. Chem.201320232892289810.2174/0929867311320999000823651309
    [Google Scholar]
  87. HsuP.C. HuangY.T. TsaiM.L. WangY.J. LinJ.K. PanM.H. Induction of apoptosis by shikonin through coordinative modulation of the Bcl-2 family, p27, and p53, release of cytochrome c, and sequential activation of caspases in human colorectal carcinoma cells.J. Agric. Food Chem.200452206330633710.1021/jf049599315453709
    [Google Scholar]
  88. BalochS.K. MaL. WangX.L. ShiJ. ZhuY. WuF.Y. PangY.J. LuG.H. QiJ.L. WangX.M. GuH.W. YangY.H. Design, synthesis and mechanism of novel shikonin derivatives as potent anticancer agents.RSC Advances2015540317593176710.1039/C5RA01872B
    [Google Scholar]
  89. GaoY.S. WuL.P. ZhangK.X. XuJ.K. LuL.M. ZhuX.F. WuY. Electroanalytical method for determination of shikonin based on the enhancement effect of cyclodextrin functionalized carbon nanotubes.Chin. Chem. Lett.201526561361810.1016/j.cclet.2014.11.032
    [Google Scholar]
  90. ZhouH. WangJ. YeaB. Electrochemical investigation of redox reactions of herbal drug-shikonin and its determination in pharmaceutical preparations.J. Anal. Chem.201065774975410.1134/S1061934810070154
    [Google Scholar]
  91. AnJ. LiJ. ChenW. YangC. HuF. WangC. Electrochemical study and application on shikonin at poly(diallyldimethylammonium chloride) functionalized graphene sheets modified glass carbon electrode.Chem. Res. Chin. Univ.201329479880510.1007/s40242‑013‑2436‑9
    [Google Scholar]
  92. BayraktepeD.E. YazanZ. PolatK. Sensitive and selective voltammetric determination of anti˗cancer agent shikonin on sepiolite clay/TiO 2 nanoparticle/MWCNTs composite carbon paste sensor and investigation of its electro˗oxidation mechanism.J. Electroanal. Chem. (Lausanne)2016780384510.1016/j.jelechem.2016.08.035
    [Google Scholar]
  93. WuL. XuJ. LuL. YangT. GaoY. Fabrication of nanostructured PEDOT clusters using β-cyclodextrin as substrate and applied for simultaneous determination of hyperoside and shikonin.Colloids Surf. A Physicochem. Eng. Asp.201548220321210.1016/j.colsurfa.2015.05.017
    [Google Scholar]
  94. HuangH. DengL. XieS. LiJ. YouX. YueR. XuJ. Sandwich-structured PEDOT:PSS/MXene-PdAu/PEDOT:PSS film for highly sensitive detection of shikonin in lithospermum erythrorhizon.Anal. Chim. Acta2022122134012710.1016/j.aca.2022.34012735934363
    [Google Scholar]
  95. Hong-biZ. Le-xiangL. Study on square-wave voltammetry determination and electrochemical behavior of shikonin.Anal. Test. Technol. Instrum.2011173160163
    [Google Scholar]
  96. ur RashidH. RasoolS. AliY. KhanK. MartinesM.A.U. Anti-cancer potential of sophoridine and its derivatives: Recent progress and future perspectives.Bioorg. Chem.20209910386310.1016/j.bioorg.2020.10386332334197
    [Google Scholar]
  97. TangQ. LiuY. PengX. WangB. LuanF. ZengN. Research progress in the pharmacological activities, toxicities, and pharmacokinetics of sophoridine and its derivatives.Drug Des. Devel. Ther.20221619121210.2147/DDDT.S33955535082485
    [Google Scholar]
  98. XuZ. ZhangF. BaiC. YaoC. ZhongH. ZouC. ChenX. Sophoridine induces apoptosis and S phase arrest via ROS-dependent JNK and ERK activation in human pancreatic cancer cells.J. Exp. Clin. Cancer Res.201736112410.1186/s13046‑017‑0590‑528893319
    [Google Scholar]
  99. PengZ. GuanQ. LuoJ. DengW. LiuJ. YanR. WangW. Sophoridine exerts tumor-suppressive activities via promoting ESRRG-mediated β-catenin degradation in gastric cancer.BMC Cancer202020158210.1186/s12885‑020‑07067‑x32571331
    [Google Scholar]
  100. LiangL. WangX.Y. ZhangX.H. JiB. YanH.C. DengH.Z. WuX.R. Sophoridine exerts an anti-colorectal carcinoma effect through apoptosis induction in vitro and in vivo.Life Sci.20129125-261295130310.1016/j.lfs.2012.09.02123069582
    [Google Scholar]
  101. ChenM.H. GuY.Y. ZhangA.L. SzeD.M. MoS.L. MayB.H. Biological effects and mechanisms of matrine and other constituents of Sophora flavescens in colorectal cancer.Pharmacol. Res.202117110577810.1016/j.phrs.2021.10577834298110
    [Google Scholar]
  102. ZhangR. WangR. ZhaoS. ChenD. HaoF. WangB. ZhangJ. MaY. ChenX. GaoX. HanL. BaiC. Extraction, separation, antitumor effect, and mechanism of alkaloids in sophora alopecuroides: A review.Separations202291138010.3390/separations9110380
    [Google Scholar]
  103. ZhuangH. DaiX. ZhangX. MaoZ. HuangH. Sophoridine suppresses macrophage-mediated immunosuppression through TLR4/IRF3 pathway and subsequently upregulates CD8+ T cytotoxic function against gastric cancer.Biomed. Pharmacother.202012110963610.1016/j.biopha.2019.10963631733580
    [Google Scholar]
  104. LiY. ChenL. PuR. ZhouL. ZhouX. LiX. Effects of a matrine- and sophoridine-containing herbal compound medicine (AH-05) on liver cancer.Nat. Prod. Commun.202015710.1177/1934578X20935227
    [Google Scholar]
  105. XiongJ. ZhuL. DengJ. HuangS. CaoY. XuF. p1.03-019 sophoridine inhibits lung cancer cell proliferation through activating hippo signaling and p53 pathway.J. Thorac. Oncol.20171211S195810.1016/j.jtho.2017.09.823
    [Google Scholar]
  106. WangF. WuY. LuK. GaoL. YeB. A simple, rapid and green method based on pulsed potentiostatic electrodeposition of reduced graphene oxide on glass carbon electrode for sensitive voltammetric detection of sophoridine.Electrochim. Acta2014141828810.1016/j.electacta.2014.07.018
    [Google Scholar]
  107. LiY. ZouL. SongG. LiK. YeB. Electrochemical behavior of sophoridine at a new amperometric sensor based on l-Theanine modified electrode and its sensitive determination.J. Electroanal. Chem. (Lausanne)20137091910.1016/j.jelechem.2013.09.030
    [Google Scholar]
  108. WangF. CaoY. ZhangB. GaoL. GeJ. A sensitive amperometric sensor for the determination of sophocarpine based on vertically oriented graphene nanosheets modified glassy carbon electrode.J. Electrochem. Soc.20151626H352H35610.1149/2.0531506jes
    [Google Scholar]
  109. XuemeiW.U. JieW.E.I. HongpingX.U. LingxiaZ.U.O. XiaoyanS. HuiqinY.O. ZhixiangZ. Switchable electrochemical behavior of matrine and sophoridine at multi-stimuli responsive hydrogel film electrode and construction of logic gate.Chem. J. Chin. Univ.201940468510.7503/cjcu20180741
    [Google Scholar]
  110. WangF. ZhaoL. YangL. LiB. QiangL. GaoL. Voltammetric determination of sophoridine based on gold nanoparticles/L‐cysteine/ graphene modified glassy carbon electrode.J. Chin. Chem. Soc. (Taipei)201562652853510.1002/jccs.201400527
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129340143240906104042
Loading
/content/journals/cpa/10.2174/0115734129340143240906104042
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test