Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Background

Considerable interest has been devoted to electrochemical sensors for the detection of L-cysteine using BiPr-based oxide-modified electrodes due to high specific surface area and good electro-catalytic activity with several oxidation states. The combination of the BiPr composite oxide nanowires with polyaniline (PAn) can promote the electro-catalytic performance towards L-cysteine because PAn can facilitate the electro-catalytic process by enhancing the charge transfer.

Methods

PAn/BiPr composite oxide nanowires were obtained low temperature one-step hydrothermal route. The obtained composite oxide nanowires were analyzed by X-ray diffraction, electron microscopy, and electrochemical methods.

Results

Characterization results indicate that amorphous PAn nanoparticles with a size of about 50 nm are homogeneously dispersed at the surface of the BiPr composite oxide nanowires. PAn/BiPr composite oxide nanowire-modified electrode shows an enhanced L-cysteine electro-catalytic activity. PAn promotes electro-catalytic activity of the BiPr composite oxide nanowires. A pair of quasi-reversible cyclic voltammetry (CV) peaks exist at +0.49 V, -0.19 V, respectively. PAn/BiPr composite oxide nanowire modified electrode possesses a linear response in L-cysteine concentration of 0.001-2 mM and detection limit of 0.095 μM, good repeatability, and stability.

Conclusion

PAn/BiPr composite oxide nanowires act as effective electro-catalysts for L-cysteine oxidation resulting in the enhancement of the electro-catalytic activity relative to BiPr composite oxide nanowires.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129317923240808114505
2024-08-12
2025-01-22
Loading full text...

Full text loading...

References

  1. ChoiJ. QuY. HoffmannM.R. SnO2, IrO2, Ta2O5, Bi2O3, and TiO2 nanoparticle anodes: electrochemical oxidation coupled with the cathodic reduction of water to yield molecular H2.J. Nanopart. Res.201214898310.1007/s11051‑012‑0983‑5
    [Google Scholar]
  2. GujarT.P. ShindeV.R. LokhandeC.D. HanS.H. Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors.J. Power Sources200616121479148510.1016/j.jpowsour.2006.05.036
    [Google Scholar]
  3. SammesN. GainsfordG. Phase stability and oxygen ion conduction in Bi2O3−Pr6O11.Solid State Ion.1993623-417918410.1016/0167‑2738(93)90370‑I
    [Google Scholar]
  4. KawabeM. OnoH. SanoT. TsujiM. TamauraY. Thermochemical oxygen pump with praseodymium oxides using a temperature-swing at 403–873 K.Energy199722111041104910.1016/S0360‑5442(97)00044‑3
    [Google Scholar]
  5. ZidanM. TeeT.W. AbdullahA.H. ZainalZ. KhengG.J. Electrochemical oxidation of ascorbic acid mediated by Bi2O3 microparticles modified glassy carbon electrode.Int. J. Electrochem. Sci.20116228930010.1016/S1452‑3981(23)14995‑9
    [Google Scholar]
  6. DevnaniH. SatsangeeS.P. JainR. A novel graphene-chitosan-Bi2O3 nanocomposite modified sensor for sensitive and selective electrochemical determination of a monoamine neurotransmitter epinephrine.Ionics201622694395610.1007/s11581‑015‑1620‑y
    [Google Scholar]
  7. SuH. CaoS. XiaN. HuangX. YanJ. LiangQ. YuanD. Controllable growth of Bi2O3 with rod-like structures via the surfactants and its electrochemical properties.J. Appl. Electrochem.201444673574010.1007/s10800‑014‑0681‑3
    [Google Scholar]
  8. HuangJ. TaoF. LiF. CaiZ. ZhangY. FanC. PeiL. Controllable synthesis of BiPr composite oxide nanowires electrocatalyst for sensitive L-cysteine sensing properties.Nanotechnology2022333434570410.1088/1361‑6528/ac7244 35605596
    [Google Scholar]
  9. FengX. LiR. MaY. ChenR. MeiQ. FanQ. HuangW. Nitrogen-doped carbon nanotube/polyaniline composite: Synthesis, characterization, and its application to the detection of dopamine.Sci. China Chem.201154101615162110.1007/s11426‑011‑4330‑y
    [Google Scholar]
  10. PeiL.Z. CaiZ.Y. XieY.K. FuD.G. Electrochemical behaviors of benzoic acid at polyaniline/CuGeO3 nanowire modified glassy carbon electrode.Measurement201453627010.1016/j.measurement.2014.03.032
    [Google Scholar]
  11. MathiyarasuJ. SenthilkumarS. PhaniK.L.N. YegnaramanV. Selective detection of dopamine using a functionalised polyaniline composite electrode.J. Appl. Electrochem.200535551351910.1007/s10800‑005‑0914‑6
    [Google Scholar]
  12. ZhuN. ChangZ. HeP. FangY. Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization.Electrochim. Acta200651183758376210.1016/j.electacta.2005.10.038
    [Google Scholar]
  13. PeiL. QiuF. MaY. LinF. FanC. LingX. Polyaniline/Al bismuthate composite nanorods modified glassy carbon electrode for the detection of benzoic acid.Curr. Pharm. Anal.202016215315810.2174/1573412914666181017145307
    [Google Scholar]
  14. LiY. WangH. CaoX. YuanM. YangM. A composite of polyelectrolyte-grafted multi-walled carbon nanotubes and in situ polymerized polyaniline for the detection of low concentration triethylamine vapor.Nanotechnology200819101550310.1088/0957‑4484/19/01/015503 21730534
    [Google Scholar]
  15. NguyenB.H. TranL.D. DoQ.P. NguyenH.L. TranN.H. NguyenP.X. Label-free detection of aflatoxin M1 with electrochemical Fe3O4/polyaniline-based aptasensor.Mater. Sci. Eng. C20133342229223410.1016/j.msec.2013.01.044 23498252
    [Google Scholar]
  16. LiJ. LiuS. YuJ. LianW. CuiM. XuW. HuangJ. Electrochemical immunosensor based on graphene–polyaniline composites and carboxylated graphene oxide for estradiol detection.Sens. Actuators B Chem.20131889910510.1016/j.snb.2013.06.082
    [Google Scholar]
  17. ZhangY. MaY. WeiT. LinF.F. QiuF.L. PeiL.Z. Polyaniline/zinc bismuthate nanocomposites for the enhanced electrochemical performance of the determination of L-Cysteine.Measurement2018128556210.1016/j.measurement.2018.06.036
    [Google Scholar]
  18. RuechaN. RodthongkumN. CateD.M. VolckensJ. ChailapakulO. HenryC.S. Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II).Anal. Chim. Acta2015874404810.1016/j.aca.2015.02.064 25910444
    [Google Scholar]
  19. GeS. YanM. LuJ. ZhangM. YuF. YuJ. SongX. YuS. Electrochemical biosensor based on graphene oxide–Au nanoclusters composites for l-cysteine analysis.Biosens. Bioelectron.2012311495410.1016/j.bios.2011.09.038 22019101
    [Google Scholar]
  20. SohouliE. GhalkhaniM. RostamiM. Rahimi-NasrabadiM. AhmadiF. A noble electrochemical sensor based on TiO2@CuO-N-rGO and poly (L-cysteine) nanocomposite applicable for trace analysis of flunitrazepam.Mater. Sci. Eng. C202011711130010.1016/j.msec.2020.111300 32919661
    [Google Scholar]
  21. PanJ. XuW. LiW. ChenS. DaiY. YuS. ZhouQ. XiaF. Electrochemical aptamer-based sensors with tunable detection range.Anal. Chem.202395142043210.1021/acs.analchem.2c04498 36625123
    [Google Scholar]
  22. GaoA. ZhouQ. CaoZ. XuW. ZhouK. WangB. PanJ. PanC. XiaF. A self-powered biochemical sensor for intelligent agriculture enabled by signal enhanced triboelectric nanogenerator.Adv. Sci. (Weinh.)20241122230982410.1002/advs.202309824 38561966
    [Google Scholar]
  23. ZhouQ. PanJ. DengS. XiaF. KimT. Triboelectric nanogenerator-based sensor systems for chemical or biological detection.Adv. Mater.20213335200827610.1002/adma.202008276 34245059
    [Google Scholar]
  24. YangS. LiG. QuC. WangG. WangD. Simple synthesis of ZnO nanoparticles on N-doped reduced graphene oxide for the electrocatalytic sensing of L -cysteine.RSC Advances2017756350043501110.1039/C7RA04052K
    [Google Scholar]
  25. PeiL.Z. WeiT. LinN. ZhangH. FanC.G. Bismuth tellurate nanospheres and electrochemical behaviors of L-Cysteine at the nanospheres modified electrode.Russ. J. Electrochem.2018541849110.1134/S102319351711012X
    [Google Scholar]
  26. KivrakH. SelçukK. ErO.F. AktasN. Nanostructured electrochemical cysteine sensor based on carbon nanotube supported Ru, Pd, and Pt catalysts.Mater. Chem. Phys.202126712468910.1016/j.matchemphys.2021.124689
    [Google Scholar]
  27. WangY. WangW. LiG. LiuQ. WeiT. LiB. JiangC. SunY. Electrochemical detection of L-cysteine using a glassy carbon electrode modified with a two-dimensional composite prepared from platinum and Fe3O4 nanoparticles on reduced graphene oxide.Mikrochim. Acta2016183123221322810.1007/s00604‑016‑1974‑5
    [Google Scholar]
  28. LaiY.T. GangulyA. ChenL.C. ChenK.H. Direct voltammetric sensing of l-Cysteine at pristine GaN nanowires electrode.Biosens. Bioelectron.20102641688169110.1016/j.bios.2010.07.005 20685105
    [Google Scholar]
  29. SpãtaruN. SaradaB.V. PopaE. TrykD.A. FujishimaA. Voltammetric determination of L-cysteine at conductive diamond electrodes.Anal. Chem.200173351451910.1021/ac000220v 11217755
    [Google Scholar]
  30. AhmadM. PanC. ZhuJ. Electrochemical determination of l-Cysteine by an elbow shaped, Sb-doped ZnO nanowire-modified electrode.J. Mater. Chem.201020347169717410.1039/c0jm01055c
    [Google Scholar]
  31. TangX. LiuY. HouH. YouT. Electrochemical determination of L-Tryptophan, L-Tyrosine and L-Cysteine using electrospun carbon nanofibers modified electrode.Talanta20108052182218610.1016/j.talanta.2009.11.027 20152470
    [Google Scholar]
  32. DharmapandianP. RajeshS. RajasinghS. RajendranA. KarunakaranC. Electrochemical cysteine biosensor based on the selective oxidase–peroxidase activities of copper, zinc superoxide dismutase.Sens. Actuators B Chem.20101481172210.1016/j.snb.2010.04.023
    [Google Scholar]
  33. ChenZ. ZhengH. LuC. ZuY. Oxidation of L-cysteine at a fluorosurfactant-modified gold electrode: lower overpotential and higher selectivity.Langmuir20072321108161082210.1021/la701667p 17824628
    [Google Scholar]
  34. ChenS.M. ChenJ.Y. ThangamuthuR. Electrochemical Preparation of brilliant-blue-modified poly(diallyldimethylammonium chloride) and nafion-coated glassy carbon electrodes and their electrocatalytic behavior towards oxygen and L-cysteine.Electroanalysis200820141565157310.1002/elan.200804213
    [Google Scholar]
  35. FeiS. ChenJ. YaoS. DengG. HeD. KuangY. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum.Anal. Biochem.20053391293510.1016/j.ab.2005.01.002 15766706
    [Google Scholar]
  36. BaiY.H. XuJ.J. ChenH.Y. Selective sensing of cysteine on manganese dioxide nanowires and chitosan modified glassy carbon electrodes.Biosens. Bioelectron.200924102985299010.1016/j.bios.2009.03.008 19345085
    [Google Scholar]
  37. ZhouM. DingJ. GuoL. ShangQ. Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode.Anal. Chem.200779145328533510.1021/ac0703707 17555298
    [Google Scholar]
  38. WenY. PeiL. WeiT. Synthesis of binary bismuth–cadmium oxide nanorods with sensitive electrochemical sensing performance.Int. J. Mater. Res.2017108759259910.3139/146.111516
    [Google Scholar]
  39. PeiL.Z. WeiT. LinN. CaiZ.Y. FanC.G. YangZ. Synthesis of zinc bismuthate nanorods and electrochemical performance for sensitive determination of L-cysteine.J. Electrochem. Soc.20161632H1H810.1149/2.0041602jes
    [Google Scholar]
  40. PeiL.Z. PeiY.Q. XieY.K. FanC.G. YuH.Y. Synthesis and characterization of manganese vanadate nanorods as glassy carbon electrode modified materials for the determination of l-cysteine.CrystEngComm20131591729173810.1039/c2ce26592c
    [Google Scholar]
  41. GhalkhaniM. BakirhanN.K. OzkanS.A. Combination of efficiency with easiness, speed, and cheapness in development of sensitive electrochemical sensors.Crit. Rev. Anal. Chem.202050653855310.1080/10408347.2019.1664281 31559831
    [Google Scholar]
  42. GhalkhaniM. Ghorbani-BidkorbehF. Development of carbon nanostructured based electrochemical sensors for pharmaceutical analysis.Iran. J. Pharm. Res.2019182658669 31531049
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129317923240808114505
Loading
/content/journals/cpa/10.2174/0115734129317923240808114505
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test