Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Background

Preservatives called parabens are frequently found in medicinal formulations and personal hygiene products. However, questions have been raised concerning their possible impact on health, leading to the need for reliable methods to determine their presence and degradation of products.

Objective

This study aimed to create and validate a straightforward, accurate, dependable, and selective method for determining the levels of methyl and propyl parabens, as well as the breakdown product p-hydroxy benzoic acid. Additionally, a force degradation study was conducted to assess the stability of parabens in a parenteral formulation under various conditions.

Methods

Separation of the compounds was achieved using X-Bridge C18 (250 X 4.6 mm) 5µm column with a mobile phase composed of water (pH 3.0 with glacial acetic acid) and methanol (30:70). Detection was carried out at 254 nm using a UV detector with an injection volume of 20 µL and a flow rate of 1.0 mL/min. Force degradation studies included acid, base, oxidation, thermal, and photo-degradation.

Results

Under the described conditions, the separation of p-hydroxy benzoic acid, methylparaben, and propylparaben was achieved in less than 12.0 minutes. The concentration ranges for p-hydroxy benzoic acid, methylparaben, and propylparaben were determined to be 1ng - 50 µg/mL, 100ng - 50µg/mL, and 100ng -12µ g/mL, respectively. The linearity, accuracy, and precision of the method were within acceptable ranges.

Discussion

Maximum degradation of methylparaben was observed under base and neutral conditions in the first sample and under base and thermal conditions in the second sample. Similarly, maximum degradation of propylparaben was observed under base conditions in the first sample and under neutral and thermal conditions in the second sample. P-hydroxy benzoic acid degradation was observed under all conditions, with the highest degradation occurring in 0.1 N NaOH and 0.1 N HCl at 60°C.

Conclusion

The developed method proved to be effective for the determination of methyl and propylparaben, along with their degradation product p-hydroxy benzoic acid, in pharmaceutical formulations. The results of the force degradation study provided valuable insights into the stability of parabens under various conditions, highlighting the importance of monitoring and controlling their degradation in pharmaceutical products.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129319225240812055549
2024-08-13
2025-01-22
Loading full text...

Full text loading...

References

  1. SanadM.H. IbrahimA.A. Preparation and biological evaluation of 99m Tc N-histamine as a model for brain imaging: In silico study and preclinical evaluation.Radiochim. Acta2018106322923810.1515/ract‑2017‑2804
    [Google Scholar]
  2. SanadM.H. FaroukN. FouzyA.S.M. Radiocomplexation and bioevaluation of 99m Tc nitrido-piracetam as a model for brain imaging.Radiochim. Acta2017105972973710.1515/ract‑2016‑2714
    [Google Scholar]
  3. SanadM.H. RizviS.F.A. FaragA.B. Synthesis, characterization, and bioevaluation of 99m Tc nitrido-oxiracetam as a brain imaging model.Radiochim. Acta2021109647748310.1515/ract‑2021‑0003
    [Google Scholar]
  4. SanadM.H. El-TawoosyM. IbrahimI.T. Preparation and biological evaluation of 99m Tc-timonacic acid as a new complex for hepatobiliary imaging.Radiochemistry2017591929710.1134/S106636221701012X
    [Google Scholar]
  5. SanadM.H. MarzookF.A. IbrahimI.T. Abd-ElhalimS.M. FarragN.S. Preparation and bioevaluation of radioiodinated omberacetam as a radiotracer for brain imaging.Radiochemistry202365111412110.1134/S1066362223010162
    [Google Scholar]
  6. SanadM. MarzookF. ChallanS. EssamH. FaragA. Radioiodination, and Biological Assessment of Olsalazine, as a Highly Selective Radiotracer for Ulcerative Colitis Imaging in Mice.Arab Journal of Nuclear Sciences and Applications202300010.21608/ajnsa.2022.163538.1639
    [Google Scholar]
  7. IbrahimI.T. AbdelhalimS.M. SanadM.H. MotalebM.A. Radioiodination of 3-amino-2-quinoxalinecarbonitrile 1,4-dioxide and its biological distribution in Erhlich ascites cancer bearing mice as a preclinical tumor imaging agent.Radiochemistry201759330130610.1134/S1066362217030146
    [Google Scholar]
  8. MotalebM.A. SelimA.A. El-TawoosyM. SanadM.H. El-HashashM.A. Synthesis, radiolabeling and biological distribution of a new dioxime derivative as a potential tumor imaging agent.J. Radioanal. Nucl. Chem.201731431517152210.1007/s10967‑017‑5310‑2
    [Google Scholar]
  9. SanadM.H. SallamK.M. SalamaD.H. 99mTc-Oxiracetam as a Potential Agent for Diagnostic Imaging of Brain: Labeling, Characterization, and Biological Evaluation.Radiochemistry2018601586310.1134/S1066362218010101
    [Google Scholar]
  10. SanadM.H. IbrahimA.A. TalaatH.M. Synthesis, bioevaluation and gamma scintigraphy of 99mTc-N-2-(furylmethyl iminodiacetic acid) complex as a new renal radiopharmaceutical.J. Radioanal. Nucl. Chem.20183151576310.1007/s10967‑017‑5617‑z
    [Google Scholar]
  11. TadeR.S. Assessment of health impacts of parabens in pharmaceutical and food products.IJPPR2018113116
    [Google Scholar]
  12. El-KawyO.A. SanadM.H. MarzookF. 99mTc-Mesalamine as potential agent for diagnosis and monitoring of ulcerative colitis: Labelling, characterisation and biological evaluation.J. Radioanal. Nucl. Chem.2016308127928610.1007/s10967‑015‑4338‑4
    [Google Scholar]
  13. SanadM.H. TalaatH.M. FouzyA.S.M. Radioiodination and biological evaluation of mesalamine as a tracer for ulcerative colitis imaging.Radiochim. Acta2018106539340010.1515/ract‑2017‑2840
    [Google Scholar]
  14. SanadM.H. TalaatH.M. IbrahimI.T. SalehG.M. AbouzeidL.A. Radioiodinated celiprolol as a new highly selective radiotracer for β 1 -adrenoceptor-myocardial perfusion imaging.Radiochim. Acta2018106975175710.1515/ract‑2017‑2903
    [Google Scholar]
  15. MotalebM.A. SanadM.H. SelimA.A. El-TawoosyM. Abd-AllahM. Synthesis, characterization, and radiolabeling of heterocyclic bisphosphonate derivative as a potential agent for bone imaging.Radiochemistry201860220120710.1134/S106636221802011X
    [Google Scholar]
  16. MotalebM.A. SelimA.A. El-TawoosyM. SanadM.H. El-HashashM.A. Synthesis, characterization, radiolabeling and biodistribution of a novel cyclohexane dioxime derivative as a potential candidate for tumor imaging.Int. J. Radiat. Biol.201894659059610.1080/09553002.2018.1466067 29659318
    [Google Scholar]
  17. SanadM.H. RizviS.F.A. FaragA.B. Radiosynthesis and in silico bioevaluation of 131 I-Sulfasalazine as a highly selective radiotracer for imaging of ulcerative colitis.Chem. Biol. Drug Des.202198575176110.1111/cbdd.13929 34314572
    [Google Scholar]
  18. SanadM.H. GomaaN.M. El BakaryN.M. IbrahimI.T. MassoudA. Radioiodination of balsalazide, bioevaluation, and characterization as a highly selective radiotracer for imaging of ulcerative colitis in mice.J. Labelled Comp. Radiopharm.2022653718210.1002/jlcr.3961 34984721
    [Google Scholar]
  19. TadeR.S. MoreM.P. ChatapV. DeshmukhP. PatilP. Safety and toxicity assessment of parabens in pharmaceutical and food products.Inventi Rapid. Pharm. Pract. (Granada)20183310200719
    [Google Scholar]
  20. CashmanA.L. WarshawE.M. Parabens: A review of epidemiology, structure, allergenicity, and hormonal properties.Dermatitis20051625766 16036114
    [Google Scholar]
  21. von WoedtkeT. SchlüterB. PflegelP. LindequistU. JülichW.D. Aspects of the antimicrobial efficacy of grapefruit seed extract and its relation to preservative substances contained.Pharmazie1999546452456 10399191
    [Google Scholar]
  22. MizubaS. SheikhW. Antimicrobial efficacy of potassium salts of four parabens.J. Ind. Microbiol. Biotechnol.198716363369
    [Google Scholar]
  23. SanadM.H. ChallanS.B. EssamH.M. MassoudA. Assessment of Radiolabeled L-Carnitine for Hepatotoxicity Imaging in Rats.Radiochemistry202365110111310.1134/S1066362223010150
    [Google Scholar]
  24. SanadM.H. EyssaH.M. MarzookF.A. FaragA.B. RizviS.F.A. Radioiodinated Procainamide as Radiotracer for Myocardial Perfusion Imaging in Mice.Pharm. Chem. J.202357454354910.1007/s11094‑023‑02918‑w
    [Google Scholar]
  25. SanadM.H. GomaaN.M. El BakaryN.M. MarzookF.A. BassemS.A. Radioiodination and Biological Evaluation of Novel Quinoline Derivative for Infective Inflammation Diagnosis.Pharm. Chem. J.20235771018102810.1007/s11094‑023‑02979‑x
    [Google Scholar]
  26. KirchhofM.G. de GannesG.C. The health controversies of parabens.Skin Therapy Lett.201318257 23508773
    [Google Scholar]
  27. SanadM.H. EyssaH.M. MarzookF.A. RizviS.F.A. FaragA.B. FouzyA.S.M. BassemS.A. IbrahimA.A. Synthesis, radiolabeling, and biological evaluation of 99mTc-Tricarbonyl mesalamine as a potential ulcerative colitis imaging agent.Radiochemistry202163683584210.1134/S1066362221060163
    [Google Scholar]
  28. ChallanS. KhaterS. RashadA. Preparation, molecular modeling and in-vivo evaluation of 99mTc-Oseltamivir as a tumor diagnostic agent. International Journal of Radiation Research2022203635642
    [Google Scholar]
  29. SanadM.H. SallamK.M. MarzookF.A. Abd-ElhaliemS.M. Radioiodination and biological evaluation of candesartan as a tracer for cardiovascular disorder detection.J. Labelled Comp. Radiopharm.2016591248449110.1002/jlcr.3435 27634455
    [Google Scholar]
  30. SanadM. SaadM. FouzyA. MarzookF. IbrahimI. Radiochemical and biological evaluation of 99mTc-Labeling of phthalic acid using 99mTc-Tricabonyl and 99mTc-Sn (II) as a model for potential hazards imaging.J. Mol. Imaging Dyn.201661
    [Google Scholar]
  31. EyssaH.M. El RefayH.M. SanadM.H. Enhancement of the thermal and physicochemical properties of styrene butadiene rubber composite foam using nanoparticle fillers and electron beam radiation.Radiochim. Acta2022110320521810.1515/ract‑2021‑1091
    [Google Scholar]
  32. SanadM.H. FaragA.B. BassemS.A. MarzookF.A. Radioiodination of zearalenone and determination of Lactobacillus plantarum effect of on zearalenone organ distribution: In silico study and preclinical evaluation.Toxicol. Rep.2022947047910.1016/j.toxrep.2022.02.003 35345860
    [Google Scholar]
  33. SanadM.H. EyssaH.M. MarzookF.A. FaragA.B. RizviS.F.A. MandalS.K. PatnaikS.S. FouzyA.S.M. Optimized chromatographic separation and bioevalution of radioiodinated ilaprazole as a new labeled compound for peptic ulcer localization in mice.Radiochemistry202163681181910.1134/S1066362221060138
    [Google Scholar]
  34. LiW. SunY. JosephJ. FitzloffJ.F. FongH.H.S. van BreemenR.B. p-Hydroxybenzoic acid alkyl esters in Andrographis paniculata herbs, commercial extracts, and formulated products.J. Agric. Food Chem.200351252452910.1021/jf0258712 12517121
    [Google Scholar]
  35. IbrahimI.T. SanadM.H. Radiolabeling and biological evaluation of losartan as a possible cardiac imaging agent.Radiochemistry201355333634010.1134/S1066362213030168
    [Google Scholar]
  36. SanadM.H. IbrahimI.T. Radiodiagnosis of peptic ulcer with technetium-99m-pantoprazole.Radiochemistry201355334134510.1134/S106636221303017X
    [Google Scholar]
  37. SanadM.H. AminA.M. Optimization of labeling conditions and bioevalution of 99m Tc-Meloxicam for inflammation imaging.Radiochemistry201355552152610.1134/S1066362213050123
    [Google Scholar]
  38. SanadM.H. TalaatH.M. Radiodiagnosis of peptic ulcer with technetium-99m-labeled esomeprazole.Radiochemistry201759439640110.1134/S1066362217040129
    [Google Scholar]
  39. SoniM.G. CarabinI.G. BurdockG.A. Safety assessment of esters of p-hydroxybenzoic acid (parabens).Food Chem. Toxicol.2005437985101510.1016/j.fct.2005.01.020 15833376
    [Google Scholar]
  40. SanadM.H. El-TawoosyM. Labeling of ursodeoxycholic acid with technetium-99m for hepatobiliary imaging.J. Radioanal. Nucl. Chem.201329821105110910.1007/s10967‑013‑2512‑0
    [Google Scholar]
  41. AminA.M. SanadM.H. Abd-ElhaliemS.M. Radiochemical and biological characterization of 99m Tc-piracetam for brain imaging.Radiochemistry201355662462810.1134/S1066362213060118
    [Google Scholar]
  42. SanadM.H. MarzookE.A. El-KawyO.A. Radiochemical and biological characterization of 99mTc-oxiracetam as a model for brain imaging.Radiochemistry201759662462910.1134/S1066362217060011X
    [Google Scholar]
  43. SanadM.H. FaragA.B. RizviS.F.A. In silico and in vivo study of radio-iodinated nefiracetam as a radiotracer for brain imaging in mice.Radiochim. Acta2021109757558210.1515/ract‑2020‑0125
    [Google Scholar]
  44. SanadM.H. Novel radiochemical and biological characterization of 99mTc-histamine as a model for brain imaging.J. Anal. Sci. Technol.2014512310.1186/s40543‑014‑0023‑4
    [Google Scholar]
  45. SanadM.H. BoraiE.H. Performance characteristics of biodistribution of 99mTc-cefprozil for in vivo infection imaging.J. Anal. Sci. Technol.2014513210.1186/s40543‑014‑0032‑3
    [Google Scholar]
  46. SanadM.H. SakrT.M. Abdel-HamidW.H.A. MarzookE.A. In silico study and biological evaluation of 99mTc-tricabonyl oxiracetam as a selective imaging probe for AMPA receptors.J. Radioanal. Nucl. Chem.201731431505151510.1007/s10967‑016‑5120‑y
    [Google Scholar]
  47. SanadM.H. El-BayoumyA.S.A. IbrahimA.A. Comparative biological evaluation between 99mTc(CO)3 and 99mTc-Sn (II) complexes of novel quinoline derivative: A promising infection radiotracer.J. Radioanal. Nucl. Chem.2017311111410.1007/s10967‑016‑4945‑8
    [Google Scholar]
  48. SanadH.M. IbrahimA.A. Radioiodination, diagnostic nuclear imaging and bioevaluation of olmesartan as a tracer for cardiac imaging.Radiochim. Acta20181061084385010.1515/ract‑2018‑2960
    [Google Scholar]
  49. SanadM.H. FaragA.B. MotalebM.A. Radioiodination and biological evaluation of landiolol as a tracer for myocardial perfusion imaging: Preclinical evaluation and diagnostic nuclear imaging.Radiochim. Acta2018106121001100810.1515/ract‑2018‑2980
    [Google Scholar]
  50. SanadM. BoraiE. FouzyA. Chromatographic separation and utilization of labeled 99m Tc-valsartan for cardiac imaging.J. Mol. Imaging Dyn.201441142
    [Google Scholar]
  51. SanadM. ShweetaH. Preparation and bio-evaluation of 99mTc-carbonyl complex of ursodeoxycholic acid for heptobiliary imaging.J. Mol. Imaging Dyn.20155115
    [Google Scholar]
  52. RotheH. FautzR. GerberE. NeumannL. RettingerK. SchuhW. GronewoldC. Special aspects of cosmetic spray safety evaluations: Principles on inhalation risk assessment.Toxicol. Lett.201120529710410.1016/j.toxlet.2011.05.1038 21669261
    [Google Scholar]
  53. SanadM.H. EyssaH.M. MarzookF.A. FaragA.B. ElrefaeiA. FouzyA.S.M. ChallanS.B. Radiocomplexation, Biological Evaluation, and Characterization of [99mTc]-5-[(3-Carboxy-4-hydroxyphenyl)diazenyl]-2-hydroxybenzoic Acid as a Novel Agent for Imaging of Ulcerative Colitis in Mice.Radiochemistry202365337838610.1134/S1066362223030141
    [Google Scholar]
  54. SanadM.H. BoraiE.H. Comparative biological evaluation between 99m Tc tricarbonyl and 99m Tc-Sn(II) levosalbutamol as a β2 -adrenoceptor agonist.Radiochim. Acta20151031287989110.1515/ract‑2015‑2428
    [Google Scholar]
  55. SanadM.H. SalamaD.H. MarzookF.A. Radioiodinated famotidine as a new highly selective radiotracer for peptic ulcer disorder detection, diagnostic nuclear imaging and biodistribution.Radiochim. Acta2017105538939810.1515/ract‑2016‑2683
    [Google Scholar]
  56. SanadM.H. FaragA.B. SalamaD.H. Radioiodination and bioevaluation of rolipram as a tracer for brain imaging: In silico study, molecular modeling and gamma scintigraphy.J. Labelled Comp. Radiopharm.201861650150810.1002/jlcr.3614 29430688
    [Google Scholar]
  57. SanadM.H. ChallanS.B. MarzookF.A. Abd-ElhaliemS.M. MarzookE.A. Radioiodination and biological evaluation of Cimetidine as a new highly selective radiotracer for peptic ulcer disorder detection.Radiochim. Acta2021109210911710.1515/ract‑2020‑0046
    [Google Scholar]
  58. ZvejnieceL. SvalbeB. VaversE. Makrecka-KukaM. MakarovaE. LiepinsV. KalvinshI. LiepinshE. DambrovaM. S -phenylpiracetam, a selective DAT inhibitor, reduces body weight gain without influencing locomotor activity.Pharmacol. Biochem. Behav.2017160212910.1016/j.pbb.2017.07.009 28743458
    [Google Scholar]
  59. SanadM.H. Labeling and biological evaluation of 99m Tc-azithromycin for infective inflammation diagnosis.Radiochemistry201355553954410.1134/S1066362213050159
    [Google Scholar]
  60. SanadM.H. Labeling of omeprazole with technetium-99m for diagnosis of stomach.Radiochemistry201355660560910.1134/S1066362213060076
    [Google Scholar]
  61. EyssaH.M. El MogyS.A. YoussefH.A. Impact of foaming agent and nanoparticle fillers on the properties of irradiated rubber.Radiochim. Acta2021109212714210.1515/ract‑2020‑0015
    [Google Scholar]
  62. AndersenF.A. Final amended report on the safety assessment of Methylparaben, Ethylparaben, Propylparaben, Isopropylparaben, Butylparaben, Isobutylparaben, and Benzylparaben as used in cosmetic products. . Int. J. Toxicol., 2008274_suppl)(Suppl. 418210.1177/109158180802704s0119101832
    [Google Scholar]
  63. SanadM.H. IbrahimI.T. Radiodiagnosis of peptic ulcer with technetium-99m labeled rabeprazole.Radiochemistry201557442543010.1134/S1066362215040165
    [Google Scholar]
  64. SanadM.H. SalehG.M. MarzookF.A. Radioiodination and biological evaluation of nizatidine as a new highly selective radiotracer for peptic ulcer disorder detection.J. Labelled Comp. Radiopharm.2017601360060710.1002/jlcr.3541 28833386
    [Google Scholar]
  65. SanadM.H. MarzookE.A. ChallanS.B. Radioiodination of olmesartan medoxomil and biological evaluation of the product as a tracer for cardiac imaging.Radiochim. Acta2018106432933610.1515/ract‑2017‑2830
    [Google Scholar]
  66. SakrT.M. SanadM.H. Abd-AllaW.H. SalamaD.H. SalehG.M. Radioiodinated esmolol as a highly selective radiotracer for myocardial perfusion imaging: In silico study and preclinical evaluation.Appl. Radiat. Isot.2018137414910.1016/j.apradiso.2018.03.006 29554644
    [Google Scholar]
  67. SanadM.H. EyssaH.M. GomaaN.M. MarzookF.A. BassemS.A. Radioiodinated esomeprazole as a model for peptic ulcer localization.Radiochim. Acta2021109971171810.1515/ract‑2021‑1056
    [Google Scholar]
  68. SanadM.H. RizviS.F.A. FaragA.B. Design of novel radiotracer 99m TcN-tetrathiocarbamate as SPECT imaging agent: A preclinical study for GFR renal function.Chem. Pap.20222022111
    [Google Scholar]
  69. SanadM.H. FaragA.B. MarzookF.A. MandalS.K. Preparation, characterization, and bioevaluation of 99m Tc-famotidine as a selective radiotracer for peptic ulcer disorder detection in mice.Radiochim. Acta20221101677410.1515/ract‑2021‑1105
    [Google Scholar]
  70. WeiF. MortimerM. ChengH. SangN. GuoL.H. Parabens as chemicals of emerging concern in the environment and humans: A review.Sci. Total Environ.202177814615010.1016/j.scitotenv.2021.146150 34030374
    [Google Scholar]
  71. SanadM.H. AbelrahmanM.A. MarzookF.M.A. Radioiodination and biological evaluation of levalbuterol as a new selective radiotracer: A β2 -adrenoceptor agonist.Radiochim. Acta2016104534535310.1515/ract‑2015‑2518
    [Google Scholar]
  72. BoraiE.H. SanadM.H. FouzyA.S.M. Optimized chromatographic separation and biological evaluation of 99m Tc-clarithromycin for infective inflammation diagnosis.Radiochemistry2016581849110.1134/S1066362216010136
    [Google Scholar]
  73. MoustaphaM. MotalebM. SanadM. Synthesis and biological evaluation of 99m Tc-labetalol for β 1-adrenoceptor-mediated cardiac imaging.J. Radioanal. Nucl. Chem.2016309511516
    [Google Scholar]
  74. SanadM.H. FaragA.B. SalehG.M. Radiosynthesis and Biological Evaluation of 188Re-5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphyrin Complex as a Tumor-Targeting Agent.Radiochemistry201961334735110.1134/S106636221903010X
    [Google Scholar]
  75. RizviS.F.A. ZhangH. MehmoodS. SanadM. Synthesis of 99mTc-labeled 2-Mercaptobenzimidazole as a novel radiotracer to diagnose tumor hypoxia.Transl. Oncol.2020131210085410.1016/j.tranon.2020.100854 32862104
    [Google Scholar]
  76. SanadM.H. GizawyM.A. MotalebM.A. IbrahimI.T. SaadE.A. A Comparative Study of Stannous Chloride and Sodium Borohydride as Reducing Agents for the Radiolabeling of 2,3,7,8,12,13,17,18-Octaethyl-21H,23H-Porphine with Technetium-99m for Tumor Imaging.Radiochemistry202163451251910.1134/S1066362221040159
    [Google Scholar]
  77. SanadM.H. MarzookF.A. RizviS.F.A. FaragA.B. FouzyA.S.M. Radioiodinated azilsartan as a new highly selective radiotracer for myocardial perfusion imaging.Radiochemistry202163452052510.1134/S1066362221040160
    [Google Scholar]
  78. SanadM. Abdel RahimE. RashedM. FouzyA. OmaimaA. MarzookF. Radioiodination and biological evaluation of parathion as a new radiotracer to study in experimental mice.World J. Pharm. Pharm. Sci.202098148158
    [Google Scholar]
  79. EI-Weteryk, A. Fayz M, Sanad M, EI-Hashash M. Study on the Preparation of 99m Tc-N (pyrimidine-2-yl-carbamoyl methyl) Iminodiacetic Acid as a New Complex for Hepatobiliary Imaging Agent.Arab Journal of Nuclear Sciences and Applications.2007402109118
    [Google Scholar]
  80. EyssaH.M. ElnaggarM.Y. ZakyM.M. Impact of graphene oxide nanoparticles and carbon black on the gamma radiation sensitization of acrylonitrile–butadiene rubber seal materials.Polym. Eng. Sci.202161112843286010.1002/pen.25804
    [Google Scholar]
  81. PetricZ. Ružić J.; Žuntar, I. The controversies of parabens – an overview nowadays.Acta Pharm.2021711173210.2478/acph‑2021‑0001 32697748
    [Google Scholar]
  82. MotalebM.A. AdliA.S.A. El-TawoosyM. SanadM.H. AbdAllah, M. An easy and effective method for synthesis and radiolabelling of risedronate as a model for bone imaging.J. Labelled Comp. Radiopharm.201659415716310.1002/jlcr.3384 26955900
    [Google Scholar]
  83. SanadM.H. RizviF.A. KumarR.R. IbrahimA.A. Synthesis and Preliminary Biological Evaluation of 99mTc Tricarbonyl Ropinirole as a Potential Brain Imaging Agent.Radiochemistry201961675475810.1134/S1066362219060195
    [Google Scholar]
  84. SanadM.H. FaragA.B. MarzookF.A. MandalS.K. Radiocomplexation, Chromatographic Separation and Bioevaluation of [99mTc]Dithiocarbamate of Procainamide as Selective Labeled Compound for Myocardial Perfusion Imaging.Pharm. Chem. J.202256677778410.1007/s11094‑022‑02709‑9
    [Google Scholar]
  85. SanadM. Synthesis and labeling of some organic compounds f with technetium-99m., MS. C: Thesis, Chemistry Department, Faculty of Science, Zagazig University, 2004
    [Google Scholar]
  86. SanadM. TallatH. SalehG. In silico study and preclinical evaluation of radioiodinated procaterol as a potential scintigraphic agent for lung imaging.. Egyptian Journal of Radiation Sciences and Applications, 2017, 0(0), 0.10.21608/ejrsa.2017.1500.1016
    [Google Scholar]
  87. RizviS.F.A. JabbarT. ShahidW. SanadM.H. ZhangH. Facile One-Pot Strategy for Radiosynthesis of 99mTc-Doxycycline to Diagnose Staphylococcus aureus in Infectious Animal Models.Appl. Biochem. Biotechnol.202219462672268310.1007/s12010‑022‑03856‑1 35239149
    [Google Scholar]
  88. SanadM.H. MarzookF.A. MandalS.K. BaidyaM. Radiocomplexation and biological evaluation of [99mtc]tricarbonyl rabeprazole as a radiotracer for peptic ulcer localization.Radiochemistry202264221121810.1134/S1066362222020138
    [Google Scholar]
  89. SanadM.H. EyssaH.M. MarzookF.A. FaragA.B. Preparation and Bioevaluation of [99mTc]Tricarbonyl Omeprazole for Gastric Ulcer Localization in Mice.Radiochemistry2022641546110.1134/S106636222201009X
    [Google Scholar]
  90. EyssaH.M. AfifiM. MoustafaH. Improvement of the acoustic and mechanical properties of sponge ethylene propylene diene rubber/carbon nanotube composites crosslinked by subsequent sulfur and electron beam irradiation.Polym. Int.2023721879810.1002/pi.6449
    [Google Scholar]
  91. SanadM.H. RizviF.A. KumarR.R. Radiosynthesis and bioevaluation of ranitidine as highly selective radiotracer for peptic ulcer disorder detection.Radiochemistry202062111912410.1134/S1066362220010154
    [Google Scholar]
  92. SanadM.H. FouzyA.S.M. SobhyH.M. HathoutA.S. HussainO.A. Tracing the protective activity of Lactobacillus plantarum using technetium- 99m -labeled zearalenone for organ toxicity.Int. J. Radiat. Biol.201894121151115810.1080/09553002.2019.1524990 30273080
    [Google Scholar]
  93. SanadM. FaragA. Abdel-RahmanG.N. FouzyA.S. Facile One-Pot Strategy For Radiopreprationof Radioiodinated Phenylpiracetam As A New Highly Selective Radiotracer For Brainimaging.Egypt. J. Chem.20246713189198
    [Google Scholar]
  94. SanadM.H. MarzookF.A. Abd-ElhaliemS.M. Radioiodination and biological evaluation of irbesartan as a tracer for cardiac imaging.Radiochim. Acta20211091414610.1515/ract‑2020‑0025
    [Google Scholar]
  95. SanadM. Synthesis and labeling of some organic compounds with one of the most radioactive isotope. Ph. D. Thesis, Chemistry Department, Faculty of Science2007
    [Google Scholar]
  96. SanadM.H. SallamK.M. MarzookF. Labeling and biological evaluation of 99m Tc-tricarbonyl-chenodiol for hepatobiliary imaging.Radiochemistry201759552552910.1134/S10663622170500149
    [Google Scholar]
  97. MotalebM. SanadM. Preparation and quality control of 99mTc-6-{[2-amino-2-(4-hydroxyphenyl)-acetyl] amino}-3, 3-dimethyl-7-oxo-4-thia-1-azabicyclo-heptane-2-carboxylic acid complex as a model for detecting sites of infection.Arab J Nucl Sci Appli.20124537178
    [Google Scholar]
  98. SanadM. Ulcerative colitis and peptic ulcer imaging: Ulcer and Imaging.Saarbrucken, GermanyLAP LAMBERT Academic Publishing2017
    [Google Scholar]
  99. SanadM.H. MarzookF. SalehG.M. FaragA.B. TalaatH.M. Radiolabeling, preparation, and bioevaluation of 99mtc-azathioprine as a potential targeting agent for solid tumor imaging.Radiochemistry201961447848210.1134/S106636221904012X
    [Google Scholar]
  100. MotalebM. WanisK. SanadM. Synthesis, characterization and labeling of 2-{N, N-dicarboxymethyl (aminoacetyl)} aminothiazole with technetium-99m.Arab J Nuclear Sci App.2005382137145
    [Google Scholar]
  101. SanadM.H. MarzookF.A. FaragA.B. MandalS.K. RizviS.F.A. GuptaJ.K. Preparation, biological evaluation and radiolabeling of [ 99m Tc]-technetium tricarbonyl procainamide as a tracer for heart imaging in mice.Radiochim. Acta2022110426727710.1515/ract‑2021‑1079
    [Google Scholar]
  102. SanadM.H. RizviS.F.A. MarzookF.A. FaragA.B. In-silico study, preparation and biological evaluation of 99MTC-mesalamine complex as radiotracer for diagnostics and monitoring of ulcerative colitis in mice.Pharm. Chem. J.202256675476110.1007/s11094‑022‑02706‑y
    [Google Scholar]
  103. SanadM. FaragA.B. HussainO.A. FuozyA. Facile one-pot strategy for radiocoplexation of [99mtc]-nitrido-nebracetam for brain imaging: Biological evaluation, optimized chromatographic separation and labeling conditions.Egypt. J. Chem.20246713471480
    [Google Scholar]
  104. EyssaH.M. SadekR.F. AttiaR.M. Assessment of antibacterial fabric nanocomposites utilizing polymer blend and silver/copper oxide after irradiation with electron beam. Egypt. J. Chem.202400010.21608/ejchem.2024.258271.9100
    [Google Scholar]
  105. GmurekM. RossiA.F. MartinsR.C. Quinta-FerreiraR.M. LedakowiczS. Photodegradation of single and mixture of parabens – Kinetic, by-products identification and cost-efficiency analysis.Chem. Eng. J.201527630331410.1016/j.cej.2015.04.093
    [Google Scholar]
  106. Błędzka, D.; Gromadzińska, J.; Wąsowicz, W. Parabens. From environmental studies to human health.Environ. Int.201467274210.1016/j.envint.2014.02.007 24657492
    [Google Scholar]
  107. RoutledgeE.J. ParkerJ. OdumJ. AshbyJ. SumpterJ.P. Some alkyl hydroxy benzoate preservatives (parabens) are estrogenic.Toxicol. Appl. Pharmacol.19981531121910.1006/taap.1998.8544 9875295
    [Google Scholar]
  108. Kasprzyk-HordernB. DinsdaleR.M. GuwyA.J. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK.Water Res.200842133498351810.1016/j.watres.2008.04.026 18514758
    [Google Scholar]
  109. European Medicine Agency ICH Topic Q 2 (R1): Validation of Analytical Procedures: Text and Methodology.2005Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-q2r1-validation-analytical-procedurestext-methodology-step-5-first-version_en.pdf
    [Google Scholar]
  110. GarciaP.L. BuffoniE. GomesF.P. Quero, JLV Analytical method validation.Wide Spectra of Quality Control; InTechOpen: London.2011
    [Google Scholar]
  111. BrummerH. How to approach a forced degradation study.Life Sci Technol Bull.20113114
    [Google Scholar]
  112. ChardeM. KumarJ. WelankiwarA. ChakoleR. Review: Development of forced degradation studies of drugs.Int J Advances Pharmaceut.2013233439
    [Google Scholar]
  113. VialJ. JardyA. Experimental comparison of the different approaches to estimate LOD and LOQ of an HPLC method.Anal. Chem.199971142672267710.1021/ac981179n
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129319225240812055549
Loading
/content/journals/cpa/10.2174/0115734129319225240812055549
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test