Skip to content
2000
Volume 17, Issue 4
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background: The DNA-binding proteins is an important process in multiple biomolecular functions. However, the tradition experimental methods for DNA-binding proteins identification are still time consuming and extremely expensive. Objective: In past several years, various computational methods have been developed to detect DNAbinding proteins. However, most of them do not integrate multiple information. Methods: In this study, we propose a novel computational method to predict DNA-binding proteins by two steps Multiple Kernel Support Vector Machine (MK-SVM) and sequence information. Firstly, we extract several feature and construct multiple kernels. Then, multiple kernels are linear combined by Multiple Kernel Learning (MKL). At last, a final SVM model, constructed by combined kernel, is built to predict DNA-binding proteins. Results: The proposed method is tested on two benchmark data sets. Compared with other existing method, our approach is comparable, even better than other methods on some data sets. Conclusion: We can conclude that MK-SVM is more suitable than common SVM, as the classifier for DNA-binding proteins identification.

Loading

Article metrics loading...

/content/journals/cp/10.2174/1570164616666190417100509
2020-08-01
2025-07-07
Loading full text...

Full text loading...

/content/journals/cp/10.2174/1570164616666190417100509
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test