Skip to content
2000
Volume 17, Issue 4
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background: The ligand-receptor interaction plays an important role in signal transduction required for cellular differentiation, proliferation, and immune response process. The analysis of ligand-receptor interactions is helpful to provide a deeper understanding of cellular proliferation/ differentiation and other cell processes. Methods: The computational technique would be used to promote ligand-receptor interactions research in future proteomics research. In this paper, we propose a novel computational method to predict ligand-receptor interactions from amino acid sequences by a machine learning approach. We extract features from ligand and receptor sequences by Histogram of Oriented Gradient (HOG) and Discrete Cosine Transform (DCT). Then, these features are fed into the Fuzzy C-Means (FCM) clustering algorithm for clustering, and also we get multiple training subsets to generate the same number of sub-classifiers. We choose an optimal sub-classifier for predicting ligand-receptor interactions according to the similarity from one sample to training subsets. Observations: In order to verify the performance, we perform five-fold cross-validation experiments on a ligand-receptor interactions dataset and achieve 80.08% accuracy, 82.98% sensitivity and 80.02% specificity. Then, we test our extracted feature method on two Protein-Protein Interactions (PPIs) datasets, and achieve accuracies of 93.79% and 87.46%, respectively. Conclusion: Our proposed method can be a useful tool for identifying of ligand-receptor interactions. Related data sets and source code are available at https://github.com/guofei-tju/ligand-receptorinteractions. git.

Loading

Article metrics loading...

/content/journals/cp/10.2174/1570164616666190306151423
2020-08-01
2025-06-21
Loading full text...

Full text loading...

/content/journals/cp/10.2174/1570164616666190306151423
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test