Skip to content
2000
image of Network Pharmacology and Computational Approach to Explore the Potential Underlying Mechanism of Centella asiatica in the Treatment of Diabetes Mellitus

Abstract

Background

is a tropical medicinal herb traditionally used for the treatment of different diseases, such as arthritis, kidney disease, diabetes mellitus, . Diabetes mellitus is emerging as a global health concern, demanding research to provide insights into it.

Objective

The current research study aimed at employing the Network Pharmacology and Molecular Docking approach to unearth and validate the possible molecular mechanism involved in the treatment of diabetic mellitus with herbal constituents from .

Methods

The phytocompounds and targets of were screened from different databases. An herb-core-target-ingredient-diabetes mellitus network was established Cystoscope 3.7.2. Next, Go and KEGG enrichment analysis was performed. Lastly, the interaction between ligands and targets was investigated molecular docking.

Results

According to the results obtained, we identified 49 core targets of diabetes mellitus and 37 active ingredients of . Next, Go and KEGG resulted in a total of 455 biological processes for the treatment of diabetes mellitus. The KEGG enrichment analysis reported that the targets were related to metabolic pathways, insulin signaling pathways, glycolysis/gluconeogenesis, oxidative stress, insulin resistance, . On the basis of KEGG enrichment and protein-protein interaction, we selected Fructose-1-6 bisphosphate1 (FBP1), Glucokinase (GCK), Cytochromes P450 (CYP19A1), fatty acid binding protein 1 (FABP1), Interleukin 2 (IL2) and angiotensin-converting enzyme (ACE), and phytocompounds from for docking. From the docking study, it was concluded that several targets had a stable binding affinity with phytocompounds.

Conclusion

We explored the biological mechanism of phytocompounds involved in the treatment of diabetes mellitus through different biological processes and signaling pathways, and lastly, docking provides us commending results that direct for experiments ahead.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646364860250102115855
2025-01-28
2025-04-25
Loading full text...

Full text loading...

References

  1. Levesque C. Therapeutic lifestyle changes for diabetes mellitus. Nurs. Clin. North Am. 2017 52 4 679 692 10.1016/j.cnur.2017.07.012 29080584
    [Google Scholar]
  2. Chobot A. Górowska-Kowolik K. Sokołowska M. Jarosz-Chobot P. Obesity and diabetes—Not only a simple link between two epidemics. Diabetes Metab. Res. Rev. 2018 34 7 e3042 10.1002/dmrr.3042 29931823
    [Google Scholar]
  3. Sun H. Saeedi P. Karuranga S. Pinkepank M. Ogurtsova K. Duncan B.B. Stein C. Basit A. Chan J.C.N. Mbanya J.C. Pavkov M.E. Ramachandaran A. Wild S.H. James S. Herman W.H. Zhang P. Bommer C. Kuo S. Boyko E.J. Magliano D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022 183 109119 10.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  4. Saeedi P. Petersohn I. Salpea P. Malanda B. Karuranga S. Unwin N. Colagiuri S. Guariguata L. Motala A.A. Ogurtsova K. Shaw J.E. Bright D. Williams R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019 Nov 157 107843
    [Google Scholar]
  5. Safiri S. Karamzad N. Kaufman J.S. Bell A.W. Nejadghaderi S.A. Sullman M.J.M. Moradi-Lakeh M. Collins G. Kolahi A.A. Prevalence, deaths and disability-adjusted-life-years (DALYs) due to type 2 diabetes and its attributable risk factors in 204 countries and territories, 1990-2019: Results from the global burden of disease study 2019. Front. Endocrinol. 2022 13 838027 10.3389/fendo.2022.838027 35282442
    [Google Scholar]
  6. Ong K.L. Stafford L.K. McLaughlin S.A. Boyko E.J. Vollset S.E. Smith A.E. Dalton B.E. Duprey J. Cruz J.A. Hagins H. Lindstedt P.A. Aali A. Abate Y.H. Abate M.D. Abbasian M. Abbasi-Kangevari Z. Abbasi-Kangevari M. Abd ElHafeez S. Abd-Rabu R. Abdulah D.M. Abdullah A.Y.M. Abedi V. Abidi H. Aboagye R.G. Abolhassani H. Abu-Gharbieh E. Abu-Zaid A. Adane T.D. Adane D.E. Addo I.Y. Adegboye O.A. Adekanmbi V. Adepoju A.V. Adnani Q.E.S. Afolabi R.F. Agarwal G. Aghdam Z.B. Agudelo-Botero M. Aguilera Arriagada C.E. Agyemang-Duah W. Ahinkorah B.O. Ahmad D. Ahmad R. Ahmad S. Ahmad A. Ahmadi A. Ahmadi K. Ahmed A. Ahmed A. Ahmed L.A. Ahmed S.A. Ajami M. Akinyemi R.O. Al Hamad H. Al Hasan S.M. AL-Ahdal T.M.A. Alalwan T.A. Al-Aly Z. AlBataineh M.T. Alcalde-Rabanal J.E. Alemi S. Ali H. Alinia T. Aljunid S.M. Almustanyir S. Al-Raddadi R.M. Alvis-Guzman N. Amare F. Ameyaw E.K. Amiri S. Amusa G.A. Andrei C.L. Anjana R.M. Ansar A. Ansari G. Ansari-Moghaddam A. Anyasodor A.E. Arabloo J. Aravkin A.Y. Areda D. Arifin H. Arkew M. Armocida B. Ärnlöv J. Artamonov A.A. Arulappan J. Aruleba R.T. Arumugam A. Aryan Z. Asemu M.T. Asghari-Jafarabadi M. Askari E. Asmelash D. Astell-Burt T. Athar M. Athari S.S. Atout M.M.W. Avila-Burgos L. Awaisu A. Azadnajafabad S. B D.B. Babamohamadi H. Badar M. Badawi A. Badiye A.D. Baghcheghi N. Bagheri N. Bagherieh S. Bah S. Bahadory S. Bai R. Baig A.A. Baltatu O.C. Baradaran H.R. Barchitta M. Bardhan M. Barengo N.C. Bärnighausen T.W. Barone M.T.U. Barone-Adesi F. Barrow A. Bashiri H. Basiru A. Basu S. Basu S. Batiha A-M.M. Batra K. Bayih M.T. Bayileyegn N.S. Behnoush A.H. Bekele A.B. Belete M.A. Belgaumi U.I. Belo L. Bennett D.A. Bensenor I.M. Berhe K. Berhie A.Y. Bhaskar S. Bhat A.N. Bhatti J.S. Bikbov B. Bilal F. Bintoro B.S. Bitaraf S. Bitra V.R. Bjegovic-Mikanovic V. Bodolica V. Boloor A. Brauer M. Brazo-Sayavera J. Brenner H. Butt Z.A. Calina D. Campos L.A. Campos-Nonato I.R. Cao Y. Cao C. Car J. Carvalho M. Castañeda-Orjuela C.A. Catalá-López F. Cerin E. Chadwick J. Chandrasekar E.K. Chanie G.S. Charan J. Chattu V.K. Chauhan K. Cheema H.A. Chekol Abebe E. Chen S. Cherbuin N. Chichagi F. Chidambaram S.B. Cho W.C.S. Choudhari S.G. Chowdhury R. Chowdhury E.K. Chu D-T. Chukwu I.S. Chung S-C. Coberly K. Columbus A. Contreras D. Cousin E. Criqui M.H. Cruz-Martins N. Cuschieri S. Dabo B. Dadras O. Dai X. Damasceno A.A.M. Dandona R. Dandona L. Das S. Dascalu A.M. Dash N.R. Dashti M. Dávila-Cervantes C.A. De la Cruz-Góngora V. Debele G.R. Delpasand K. Demisse F.W. Demissie G.D. Deng X. Denova-Gutiérrez E. Deo S.V. Dervišević E. Desai H.D. Desale A.T. Dessie A.M. Desta F. Dewan S.M.R. Dey S. Dhama K. Dhimal M. Diao N. Diaz D. Dinu M. Diress M. Djalalinia S. Doan L.P. Dongarwar D. dos Santos Figueiredo F.W. Duncan B.B. Dutta S. Dziedzic A.M. Edinur H.A. Ekholuenetale M. Ekundayo T.C. Elgendy I.Y. Elhadi M. El-Huneidi W. Elmeligy O.A.A. Elmonem M.A. Endeshaw D. Esayas H.L. Eshetu H.B. Etaee F. Fadhil I. Fagbamigbe A.F. Fahim A. Falahi S. Faris M.A.I.E.M. Farrokhpour H. Farzadfar F. Fatehizadeh A. Fazli G. Feng X. Ferede T.Y. Fischer F. Flood D. Forouhari A. Foroumadi R. Foroutan Koudehi M. Gaidhane A.M. Gaihre S. Gaipov A. Galali Y. Ganesan B. Garcia-Gordillo M.A. Gautam R.K. Gebrehiwot M. Gebrekidan K.G. Gebremeskel T.G. Getacher L. Ghadirian F. Ghamari S-H. Ghasemi Nour M. Ghassemi F. Golechha M. Goleij P. Golinelli D. Gopalani S.V. Guadie H.A. Guan S-Y. Gudayu T.W. Guimarães R.A. Guled R.A. Gupta R. Gupta K. Gupta V.B. Gupta V.K. Gyawali B. Haddadi R. Hadi N.R. Haile T.G. Hajibeygi R. Haj-Mirzaian A. Halwani R. Hamidi S. Hankey G.J. Hannan M.A. Haque S. Harandi H. Harlianto N.I. Hasan S.M.M. Hasan S.S. Hasani H. Hassanipour S. Hassen M.B. Haubold J. Hayat K. Heidari G. Heidari M. Hessami K. Hiraike Y. Holla R. Hossain S. Hossain M.S. Hosseini M-S. Hosseinzadeh M. Hosseinzadeh H. Huang J. Huda M.N. Hussain S. Huynh H-H. Hwang B-F. Ibitoye S.E. Ikeda N. Ilic I.M. Ilic M.D. Inbaraj L.R. Iqbal A. Islam S.M.S. Islam R.M. Ismail N.E. Iso H. Isola G. Itumalla R. Iwagami M. Iwu C.C.D. Iyamu I.O. Iyasu A.N. Jacob L. Jafarzadeh A. Jahrami H. Jain R. Jaja C. Jamalpoor Z. Jamshidi E. Janakiraman B. Jayanna K. Jayapal S.K. Jayaram S. Jayawardena R. Jebai R. Jeong W. Jin Y. Jokar M. Jonas J.B. Joseph N. Joseph A. Joshua C.E. Joukar F. Jozwiak J.J. Kaambwa B. Kabir A. Kabthymer R.H. Kadashetti V. Kahe F. Kalhor R. Kandel H. Karanth S.D. Karaye I.M. Karkhah S. Katoto P.D.M.C. Kaur N. Kazemian S. Kebede S.A. Khader Y.S. Khajuria H. Khalaji A. Khan M.A.B. Khan M. Khan A. Khanal S. Khatatbeh M.M. Khater A.M. Khateri S. khorashadizadeh F. Khubchandani J. Kibret B.G. Kim M.S. Kimokoti R.W. Kisa A. Kivimäki M. Kolahi A-A. Komaki S. Kompani F. Koohestani H.R. Korzh O. Kostev K. Kothari N. Koyanagi A. Krishan K. Krishnamoorthy Y. Kuate Defo B. Kuddus M. Kuddus M.A. Kumar R. Kumar H. Kundu S. Kurniasari M.D. Kuttikkattu A. La Vecchia C. Lallukka T. Larijani B. Larsson A.O. Latief K. Lawal B.K. Le T.T.T. Le T.T.B. Lee S.W.H. Lee M. Lee W-C. Lee P.H. Lee S. Lee S.W. Legesse S.M. Lenzi J. Li Y. Li M-C. Lim S.S. Lim L-L. Liu X. Liu C. Lo C-H. Lopes G. Lorkowski S. Lozano R. Lucchetti G. Maghazachi A.A. Mahasha P.W. Mahjoub S. Mahmoud M.A. Mahmoudi R. Mahmoudimanesh M. Mai A.T. Majeed A. Majma Sanaye P. Makris K.C. Malhotra K. Malik A.A. Malik I. Mallhi T.H. Malta D.C. Mamun A.A. Mansouri B. Marateb H.R. Mardi P. Martini S. Martorell M. Marzo R.R. Masoudi R. Masoudi S. Mathews E. Maugeri A. Mazzaglia G. Mekonnen T. Meshkat M. Mestrovic T. Miao Jonasson J. Miazgowski T. Michalek I.M. Minh L.H.N. Mini G.K. Miranda J.J. Mirfakhraie R. Mirrakhimov E.M. Mirza-Aghazadeh-Attari M. Misganaw A. Misgina K.H. Mishra M. Moazen B. Mohamed N.S. Mohammadi E. Mohammadi M. Mohammadian-Hafshejani A. Mohammadshahi M. Mohseni A. Mojiri-forushani H. Mokdad A.H. Momtazmanesh S. Monasta L. Moniruzzaman M. Mons U. Montazeri F. Moodi Ghalibaf A.A. Moradi Y. Moradi M. Moradi Sarabi M. Morovatdar N. Morrison S.D. Morze J. Mossialos E. Mostafavi E. Mueller U.O. Mulita F. Mulita A. Murillo-Zamora E. Musa K.I. Mwita J.C. Nagaraju S.P. Naghavi M. Nainu F. Nair T.S. Najmuldeen H.H.R. Nangia V. Nargus S. Naser A.Y. Nassereldine H. Natto Z.S. Nauman J. Nayak B.P. Ndejjo R. Negash H. Negoi R.I. Nguyen H.T.H. Nguyen D.H. Nguyen P.T. Nguyen V.T. Nguyen H.Q. Niazi R.K. Nigatu Y.T. Ningrum D.N.A. Nizam M.A. Nnyanzi L.A. Noreen M. Noubiap J.J. Nzoputam O.J. Nzoputam C.I. Oancea B. Odogwu N.M. Odukoya O.O. Ojha V.A. Okati-Aliabad H. Okekunle A.P. Okonji O.C. Okwute P.G. Olufadewa I.I. Onwujekwe O.E. Ordak M. Ortiz A. Osuagwu U.L. Oulhaj A. Owolabi M.O. Padron-Monedero A. Padubidri J.R. Palladino R. Panagiotakos D. Panda-Jonas S. Pandey A. Pandey A. Pandi-Perumal S.R. Pantea Stoian A.M. Pardhan S. Parekh T. Parekh U. Pasovic M. Patel J. Patel J.R. Paudel U. Pepito V.C.F. Pereira M. Perico N. Perna S. Petcu I-R. Petermann-Rocha F.E. Podder V. Postma M.J. Pourali G. Pourtaheri N. Prates E.J.S. Qadir M.M.F. Qattea I. Raee P. Rafique I. Rahimi M. Rahimifard M. Rahimi-Movaghar V. Rahman M.O. Rahman M.A. Rahman M.H.U. Rahman M. Rahman M.M. Rahmani M. Rahmani S. Rahmanian V. Rahmawaty S. Rahnavard N. Rajbhandari B. Ram P. Ramazanu S. Rana J. Rancic N. Ranjha M.M.A.N. Rao C.R. Rapaka D. Rasali D.P. Rashedi S. Rashedi V. Rashid A.M. Rashidi M-M. Ratan Z.A. Rawaf S. Rawal L. Redwan E.M.M. Remuzzi G. Rengasamy K.R.R. Renzaho A.M.N. Reyes L.F. Rezaei N. Rezaei N. Rezaeian M. Rezazadeh H. Riahi S.M. Rias Y.A. Riaz M. Ribeiro D. Rodrigues M. Rodriguez J.A.B. Roever L. Rohloff P. Roshandel G. Roustazadeh A. Rwegerera G.M. Saad A.M.A. Saber-Ayad M.M. Sabour S. Sabzmakan L. Saddik B. Sadeghi E. Saeed U. Saeedi Moghaddam S. Safi S. Safi S.Z. Saghazadeh A. Saheb Sharif-Askari N. Saheb Sharif-Askari F. Sahebkar A. Sahoo S.S. Sahoo H. Saif-Ur-Rahman K.M. Sajid M.R. Salahi S. Salahi S. Saleh M.A. Salehi M.A. Salomon J.A. Sanabria J. Sanjeev R.K. Sanmarchi F. Santric-Milicevic M.M. Sarasmita M.A. Sargazi S. Sathian B. Sathish T. Sawhney M. Schlaich M.P. Schmidt M.I. Schuermans A. Seidu A-A. Senthil Kumar N. Sepanlou S.G. Sethi Y. Seylani A. Shabany M. Shafaghat T. Shafeghat M. Shafie M. Shah N.S. Shahid S. Shaikh M.A. Shanawaz M. Shannawaz M. Sharfaei S. Shashamo B.B. Shiri R. Shittu A. Shivakumar K.M. Shivalli S. Shobeiri P. Shokri F. Shuval K. Sibhat M.M. Silva L.M.L.R. Simpson C.R. Singh J.A. Singh P. Singh S. Siraj M.S. Skryabina A.A. Sohag A.A.M. Soleimani H. Solikhah S. Soltani-Zangbar M.S. Somayaji R. Sorensen R.J.D. Starodubova A.V. Sujata S. Suleman M. Sun J. Sundström J. Tabarés-Seisdedos R. Tabatabaei S.M. Tabatabaeizadeh S-A. Tabish M. Taheri M. Taheri E. Taki E. Tamuzi J.J.L.L. Tan K-K. Tat N.Y. Taye B.T. Temesgen W.A. Temsah M-H. Tesler R. Thangaraju P. Thankappan K.R. Thapa R. Tharwat S. Thomas N. Ticoalu J.H.V. Tiyuri A. Tonelli M. Tovani-Palone M.R. Trico D. Trihandini I. Tripathy J.P. Tromans S.J. Tsegay G.M. Tualeka A.R. Tufa D.G. Tyrovolas S. Ullah S. Upadhyay E. Vahabi S.M. Vaithinathan A.G. Valizadeh R. van Daalen K.R. Vart P. Varthya S.B. Vasankari T.J. Vaziri S. Verma M. Verras G-I. Vo D.C. Wagaye B. Waheed Y. Wang Z. Wang Y. Wang C. Wang F. Wassie G.T. Wei M.Y.W. Weldemariam A.H. Westerman R. Wickramasinghe N.D. Wu Y.F. Wulandari R.D.W.I. Xia J. Xiao H. Xu S. Xu X. Yada D.Y. Yang L. Yatsuya H. Yesiltepe M. Yi S. Yohannis H.K. Yonemoto N. You Y. Zaman S.B. Zamora N. Zare I. Zarea K. Zarrintan A. Zastrozhin M.S. Zeru N.G. Zhang Z-J. Zhong C. Zhou J. Zielińska M. Zikarg Y.T. Zodpey S. Zoladl M. Zou Z. Zumla A. Zuniga Y.M.H. Magliano D.J. Murray C.J.L. Hay S.I. Vos T. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the global burden of disease study 2021. Lancet 2023 402 10397 203 234 10.1016/S0140‑6736(23)01301‑6 37356446
    [Google Scholar]
  7. Tan S.Y. Mei Wong J.L. Sim Y.J. Wong S.S. Mohamed Elhassan S.A. Tan S.H. Ling Lim G.P. Rong Tay N.W. Annan N.C. Bhattamisra S.K. Candasamy M. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab. Syndr. 2019 13 1 364 372 10.1016/j.dsx.2018.10.008 30641727
    [Google Scholar]
  8. Moreira M.W.L. Rodrigues J.J.P.C. Kumar N. Al-Muhtadi J. Korotaev V. Evolutionary radial basis function network for gestational diabetes data analytics. J. Comput. Sci. 2018 27 410 417 10.1016/j.jocs.2017.07.015
    [Google Scholar]
  9. Tran N. Pham B. Le L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology 2020 9 9 252 10.3390/biology9090252 32872226
    [Google Scholar]
  10. Torbati F.A. Ramezani M. Dehghan R. Amiri M.S. Moghadam A.T. Shakour N. Elyasi S. Sahebkar A. Emami S.A. Ethnobotany, phytochemistry and pharmacological features of centella asiatica: A comprehensive review. Adv. Exp. Med. Biol. 2021 1308 451 499 10.1007/978‑3‑030‑64872‑5_25 33861456
    [Google Scholar]
  11. James J.T. Dubery I.A. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban. Molecules 2009 14 10 3922 3941 10.3390/molecules14103922 19924039
    [Google Scholar]
  12. Viswanathan G. Dan V.M. Radhakrishnan N. Nair A.S. Rajendran Nair A.P. Baby S. Protection of mouse brain from paracetamol-induced stress by Centella asiatica methanol extract. J. Ethnopharmacol. 2019 236 474 483 10.1016/j.jep.2019.03.017 30872170
    [Google Scholar]
  13. Kabir A.U. Samad M.B. D’Costa N.M. Akhter F. Ahmed A. Hannan J.M.A. Anti-hyperglycemic activity of Centella asiatica is partly mediated by carbohydrase inhibition and glucose-fiber binding. BMC Complement. Altern. Med. 2014 14 1 31 10.1186/1472‑6882‑14‑31 24438380
    [Google Scholar]
  14. Rahman S. Jamal M.A.H.M. Parvin A. Mahfuz-Al-Mamun M. Islam M.R. Antidiabetic activity of Centella asiatica (L.) urbana in alloxan induced Type 1 diabetic model rats. J. Biosci. 2012 19 23 27 10.3329/jbs.v19i0.12996
    [Google Scholar]
  15. Oyenihi A.B. Ahiante B.O. Oyenihi O.R. Masola B. Centella asiatica: Its potential for the treatment of diabetes. Diabetes 2020 213 222
    [Google Scholar]
  16. Lee D.S. Burd H. Liu J. Almaas E. Wiest O. Barabási A.L. Oltvai Z.N. Kapatral V. Comparative genome-scale metabolic reconstruction and flux balance analysis of multiple Staphylococcus aureus genomes identify novel antimicrobial drug targets. J. Bacteriol. 2009 191 12 4015 4024 10.1128/JB.01743‑08 19376871
    [Google Scholar]
  17. Li L. Yang L. Yang L. He C. He Y. Chen L. Dong Q. Zhang H. Chen S. Li P. Network pharmacology: A bright guiding light on the way to explore the personalized precise medication of traditional Chinese medicine. Chin. Med. 2023 18 1 146 10.1186/s13020‑023‑00853‑2 37941061
    [Google Scholar]
  18. Noor F. Tahir ul Qamar M. Ashfaq U.A. Albutti A. Alwashmi A.S.S. Aljasir M.A. Network pharmacology approach for medicinal plants: Review and assessment. Pharmaceuticals 2022 15 5 572 10.3390/ph15050572 35631398
    [Google Scholar]
  19. Seeliger D. de Groot B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 2010 24 5 417 422 10.1007/s10822‑010‑9352‑6 20401516
    [Google Scholar]
  20. Meng X.Y. Zhang H.X. Mezei M. Cui M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des. 2011 7 2 146 157 10.2174/157340911795677602 21534921
    [Google Scholar]
  21. Fan J. Fu A. Zhang L. Progress in molecular docking. Quant. Biol. 2019 7 2 83 89 10.1007/s40484‑019‑0172‑y
    [Google Scholar]
  22. Wang Y. Hu B. Feng S. Wang J. Zhang F. Target recognition and network pharmacology for revealing anti-diabetes mechanisms of natural product. J. Comput. Sci. 2020 45 101186 10.1016/j.jocs.2020.101186
    [Google Scholar]
  23. Walters W.P. Going further than Lipinski’s rule in drug design. Expert Opin. Drug Discov. 2012 7 2 99 107 10.1517/17460441.2012.648612 22468912
    [Google Scholar]
  24. Zhang M.Q. Wilkinson B. Drug discovery beyond the ‘rule-of-five’. Curr. Opin. Biotechnol. 2007 18 6 478 488 10.1016/j.copbio.2007.10.005 18035532
    [Google Scholar]
  25. Seidel T. Wieder O. Garon A. Langer T. Applications of the pharmacophore concept in natural product inspired drug design. Mol. Inform. 2020 39 11 e2000059 10.1002/minf.202000059
    [Google Scholar]
  26. Jia C.Y. Li J.Y. Hao G.F. Yang G.F. A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discov. Today 2020 25 1 248 258 10.1016/j.drudis.2019.10.014 31705979
    [Google Scholar]
  27. Singh H. Bharadvaja N. Treasuring the computational approach in medicinal plant research. Prog. Biophys. Mol. Biol. 2021 164 19 32 10.1016/j.pbiomolbio.2021.05.004 34004233
    [Google Scholar]
  28. Nogales C. Mamdouh Z.M. List M. Kiel C. Casas A.I. Schmidt H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022 43 2 136 150 10.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  29. Lee D.S. Interconnectivity of human cellular metabolism and disease prevalence. J. Stat. Mech. 2010 2010 12 P12015 10.1088/1742‑5468/2010/12/P12015
    [Google Scholar]
  30. Chen L. Zhang Y.H. Wang S. Zhang Y. Huang T. Cai Y.D. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS One 2017 12 9 e0184129 10.1371/journal.pone.0184129 28873455
    [Google Scholar]
  31. Dennis G. Jr Sherman B.T. Hosack D.A. Yang J. Gao W. Lane H.C. Lempicki R.A. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 2003 4 5 P3 10.1186/gb‑2003‑4‑5‑p3 12734009
    [Google Scholar]
  32. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  33. Batista T.M. Haider N. Kahn C.R. Defining the underlying defect in insulin action in type 2 diabetes. Diabetologia 2021 64 5 994 1006 10.1007/s00125‑021‑05415‑5 33730188
    [Google Scholar]
  34. Gerich J.E. Contributions of insulin-resistance and insulin-secretory defects to the pathogenesis of type 2 diabetes mellitus. Mayo Clin. Proc. 2003 78 4 447 456 10.4065/78.4.447 12683697
    [Google Scholar]
  35. Furnham N. Laskowski R.A. Thornton J.M. Abstracting knowledge from the protein data bank. Biopolymers 2013 99 3 183 188 10.1002/bip.22107 23023892
    [Google Scholar]
  36. Ndisang J.F. Vannacci A. Rastogi S. Insulin resistance, Type 1 and type 2 diabetes, and related complications 2017. J. Diabetes Res. 2017 2017 1 3 10.1155/2017/1478294 29279853
    [Google Scholar]
  37. Röder P.V. Wu B. Liu Y. Han W. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 2016 48 3 e219 10.1038/emm.2016.6 26964835
    [Google Scholar]
  38. Jayaraman S. Devarajan N. Rajagopal P. Babu S. Ganesan S.K. Veeraraghavan V.P. Palanisamy C.P. Cui B. Periyasamy V. Chandrasekar K. β-Sitosterol circumvents obesity induced inflammation and insulin resistance by down-regulating IKKβ/NF-κB and JNK signaling pathway in adipocytes of type 2 diabetic rats. Molecules 2021 26 7 2101 10.3390/molecules26072101 33917607
    [Google Scholar]
  39. Zhang W. Hong D. Zhou Y. Zhang Y. Shen Q. Li J. Hu L. Li J. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochim. Biophys. Acta, Gen. Subj. 2006 1760 10 1505 1512 10.1016/j.bbagen.2006.05.009 16828971
    [Google Scholar]
  40. Ward M.G. Li G. Barbosa-Lorenzi V.C. Hao M. Stigmasterol prevents glucolipotoxicity induced defects in glucose-stimulated insulin secretion. Sci. Rep. 2017 7 1 9536 10.1038/s41598‑017‑10209‑0 28842702
    [Google Scholar]
  41. Shi L. Zhang W. Zhou Y.Y. Zhang Y.N. Li J.Y. Hu L.H. Li J. Corosolic acid stimulates glucose uptake via enhancing insulin receptor phosphorylation. Eur. J. Pharmacol. 2008 584 1 21 29 10.1016/j.ejphar.2008.01.020 18348886
    [Google Scholar]
  42. Manna P. Sinha M. Sil P.C. Prophylactic role of arjunolic acid in response to streptozotocin mediated diabetic renal injury: Activation of polyol pathway and oxidative stress responsive signaling cascades. Chem. Biol. Interact. 2009 181 3 297 308 10.1016/j.cbi.2009.08.004 19682444
    [Google Scholar]
  43. Matschinsky F.M. Wilson D.F. The central role of glucokinase in glucose homeostasis: A perspective 50 years after demonstrating the presence of the enzyme in islets of langerhans. Front. Physiol. 2019 10 148 10.3389/fphys.2019.00148 30949058
    [Google Scholar]
  44. Osbak K.K. Colclough K. Saint-Martin C. Beer N.L. Bellanné-Chantelot C. Ellard S. Gloyn A.L. Update on mutations in glucokinase ( GCK ), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum. Mutat. 2009 30 11 1512 1526 10.1002/humu.21110 19790256
    [Google Scholar]
  45. Catrina S.B. Zheng X. Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia 2021 64 4 709 716 10.1007/s00125‑021‑05380‑z 33496820
    [Google Scholar]
  46. Packer M. Mechanisms leading to differential hypoxia-inducible factor signaling in the diabetic kidney: Modulation by SGLT2 inhibitors and hypoxia mimetics. Am. J. Kidney Dis. 2021 77 2 280 286 10.1053/j.ajkd.2020.04.016 32711072
    [Google Scholar]
  47. Chou J.Y. Mansfield B.C. Mutations in the glucose-6-phosphatase-α (G6PC) gene that cause type Ia glycogen storage disease. Hum. Mutat. 2008 29 7 921 930 10.1002/humu.20772 18449899
    [Google Scholar]
  48. Hatting M. Tavares C.D.J. Sharabi K. Rines A.K. Puigserver P. Insulin regulation of gluconeogenesis. Ann. N. Y. Acad. Sci. 2018 1411 1 21 35 10.1111/nyas.13435 28868790
    [Google Scholar]
  49. Giacco F. Brownlee M. Oxidative stress and diabetic complications. Circ. Res. 2010 107 9 1058 1070 10.1161/CIRCRESAHA.110.223545 21030723
    [Google Scholar]
  50. Darenskaya M.A. Kolesnikova L.I. Kolesnikov S.I. Oxidative stress: Pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction. Bull. Exp. Biol. Med. 2021 171 2 179 189 10.1007/s10517‑021‑05191‑7 34173093
    [Google Scholar]
  51. Oyenihi A.B. Chegou N.N. Oguntibeju O.O. Masola B. Centella asiatica enhances hepatic antioxidant status and regulates hepatic inflammatory cytokines in type 2 diabetic rats. Pharm. Biol. 2017 55 1 1671 1678 10.1080/13880209.2017.1318293 28447512
    [Google Scholar]
  52. Arora R. Kumar R. Agarwal A. Reeta K.H. Gupta Y.K. Comparison of three different extracts of Centella asiatica for anti-amnesic, antioxidant and anticholinergic activities: In vitro and in vivo study. Biomed. Pharmacother. 2018 105 1344 1352 10.1016/j.biopha.2018.05.156 30021372
    [Google Scholar]
  53. Setyaningsih W. A. W. Arfian N. Fitriawan A.S. Yuniartha R. Sari D. C. R. Ethanolic extract of centella asiatica treatment in the early stage of hyperglycemia condition inhibits glomerular injury and vascular remodeling in diabetic rat model. Evid. Based Complement Alternat. Med. 2021 Jul 6 2021 6671130
    [Google Scholar]
  54. Tonon F. Candido R. Toffoli B. Tommasi E. Cortello T. Fabris B. Bernardi S. Type 1 diabetes is associated with significant changes of ACE and ACE2 expression in peripheral blood mononuclear cells. Nutr. Metab. Cardiovasc. Dis. 2022 32 5 1275 1282 10.1016/j.numecd.2022.01.029 35260304
    [Google Scholar]
  55. Maneesai P. Bunbupha S. Kukongviriyapan U. Senggunprai L. Kukongviriyapan V. Prachaney P. Pakdeechote P. Effect of asiatic acid on the Ang II-AT1R-NADPH oxidase-NF-κB pathway in renovascular hypertensive rats. Naunyn Schmiedebergs Arch. Pharmacol. 2017 390 10 1073 1083 10.1007/s00210‑017‑1408‑x 28733880
    [Google Scholar]
  56. Ighodaro O.M. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed. Pharmacother. 2018 108 656 662 10.1016/j.biopha.2018.09.058 30245465
    [Google Scholar]
  57. Cho S.J. Kang K.A. Piao M.J. Ryu Y.S. Fernando P.D.S.M. Zhen A.X. Hyun Y.J. Ahn M.J. Kang H.K. Hyun J.W. 7,8-Dihydroxyflavone protects high glucose-damaged neuronal cells against oxidative stress. Biomol. Ther. 2019 27 1 85 91 10.4062/biomolther.2018.202 30481956
    [Google Scholar]
  58. Winiarska A. Knysak M. Nabrdalik K. Gumprecht J. Stompór T. Inflammation and oxidative stress in diabetic kidney disease: The targets for SGLT2 inhibitors and GLP-1 receptor agonists. Int. J. Mol. Sci. 2021 22 19 10822 10.3390/ijms221910822 34639160
    [Google Scholar]
  59. Yoon M.S. The emerging role of branched-chain amino acids in insulin resistance and metabolism. Nutrients 2016 8 7 405 10.3390/nu8070405 27376324
    [Google Scholar]
  60. Furuzono S. Kubota T. Taura J. Konishi M. Naito A. Tsutsui M. Karasawa H. Kubota N. Kadowaki T. A xanthene derivative, DS20060511, attenuates glucose intolerance by inducing skeletal muscle-specific GLUT4 translocation in mice. Commun. Biol. 2021 4 1 994 10.1038/s42003‑021‑02491‑6 34417555
    [Google Scholar]
  61. Guasch-Ferré M. Santos J.L. Martínez-González M.A. Clish C.B. Razquin C. Wang D. Liang L. Li J. Dennis C. Corella D. Muñoz-Bravo C. Romaguera D. Estruch R. Santos-Lozano J.M. Castañer O. Alonso-Gómez A. Serra-Majem L. Ros E. Canudas S. Asensio E.M. Fitó M. Pierce K. Martínez J.A. Salas-Salvadó J. Toledo E. Hu F.B. Ruiz-Canela M. Glycolysis/gluconeogenesis- and tricarboxylic acid cycle–Related metabolites, Mediterranean diet, and type 2 diabetes. Am. J. Clin. Nutr. 2020 111 4 835 844 10.1093/ajcn/nqaa016 32060497
    [Google Scholar]
  62. Sales D.S. Carmona F. de Azevedo B.C. Taleb-Contini S.H. Bartolomeu A.C.D. Honorato F.B. Martinez E.Z. Pereira A.M.S. Eugenia punicifolia (Kunth) DC. as an adjuvant treatment for type-2 diabetes mellitus: A non-controlled, pilot study. Phytother. Res. 2014 28 12 1816 1821 10.1002/ptr.5206 25132112
    [Google Scholar]
  63. Cui F. Wang Y.F. Gao Y. Meng Y. Cai Z. Shen C. Liu Z. Jiang X. Zhao W. Effects of BSF on podocyte apoptosis via regulating the ROS-mediated PI3K/AKT pathway in DN. J. Diabetes Res. 2019 2019 1 10 10.1155/2019/9512406 31886291
    [Google Scholar]
  64. Muhlishoh A. Wasita B. Nuhriawangsa A.M.P. Antidiabetic effect of Centella asiatica extract (whole plant) in streptozotocin nicotinamide-induced diabetic rats. Indonesian J Nutr Dietetics 2019 6 1 1422
    [Google Scholar]
  65. Ramachandran V. Saravanan R. Glucose uptake through translocation and activation of GLUT4 in PI3K/Akt signaling pathway by asiatic acid in diabetic rats. Hum. Exp. Toxicol. 2015 34 9 884 893 10.1177/0960327114561663 26286522
    [Google Scholar]
  66. Pramono S. Fitrawan L. Ariastuti R. Tjandrawinata R.R. Nugroho A.E. Antidiabetic effect of combination of fractionated-extracts of Andrographis paniculata and Centella asiatica: In vitro study. Asian Pac. J. Trop. Biomed. 2018 8 11 527 10.4103/2221‑1691.245957
    [Google Scholar]
  67. Giribabu N. Srinivasarao N. Swapna Rekha S. Muniandy S. Salleh N. Centella asiatica attenuates diabetes induced hippocampal changes in experimental diabetic rats. Evid. Based Complement. Alternat. Med. 2014 2014 1 592062 10.1155/2014/592062 25161691
    [Google Scholar]
  68. Chen Y.N. Wu C.G. Shi B.M. Qian K. Ding Y. The protective effect of asiatic acid on podocytes in the kidney of diabetic rats. Am. J. Transl. Res. 2018 10 11 3733 3741 30662623
    [Google Scholar]
  69. Xu G. Sun W. Guo X. Asiatic acid promotes liver fatty acid metabolism in diabetic models. Int. J. Clin. Exp. Med. 2018 11 11 1183745
    [Google Scholar]
  70. Liu J. He T. Lu Q. Shang J. Sun H. Zhang L. Asiatic acid preserves beta cell mass and mitigates hyperglycemia in streptozocin‐induced diabetic rats. Diabetes Metab. Res. Rev. 2010 26 6 448 454 10.1002/dmrr.1101 20809533
    [Google Scholar]
  71. Hsu Y.M. Hung Y. Hu L. Lee Y. Yin M. Anti-diabetic effects of madecassic acid and rotundic acid. Nutrients 2015 7 12 10065 10075 10.3390/nu7125512 26633490
    [Google Scholar]
  72. Songvut P. Chariyavilaskul P. Tantisira M. Khemawoot P. Safety and pharmacokinetics of standardized extract of Centella asiatica (ECa 233) capsules in healthy thai volunteers: A phase 1 clinical study. Planta Med. 2019 85 6 483 490 10.1055/a‑0835‑6671 30699457
    [Google Scholar]
  73. Jamil A.S. Saputro P.G. Molecular docking and ADME studies of centella asiatica as anti hyperuricemia. Pharmacogn. J. 2023 15 2 384 389 10.5530/pj.2023.15.59
    [Google Scholar]
  74. Macalalad M.A.B. Gonzales A.A. III In-silico screening and identification of phytochemicals from Centella asiatica as potential inhibitors of sodium-glucose co-transporter 2 for treating diabetes. J. Biomol. Struct. Dyn. 2022 40 22 12221 12238 10.1080/07391102.2021.1969282 34455930
    [Google Scholar]
  75. Lee D.S. Park J. Kay K.A. Christakis N.A. Oltvai Z.N. Barabási A.L. The implications of human metabolic network topology for disease comorbidity. Proc. Natl. Acad. Sci. USA 2008 105 29 9880 9885 10.1073/pnas.0802208105 18599447
    [Google Scholar]
  76. Li Y. Li Z. Ye T. Hao F. Wang Y. Li W. Yan Q. Shi H. Han W. Mechanism of Erzhiwan in treating osteoporosis based on molecular docking technology and molecular dynamics simulation. J. Mol. Model. 2023 29 1 21 10.1007/s00894‑022‑05418‑y 36565386
    [Google Scholar]
/content/journals/cp/10.2174/0115701646364860250102115855
Loading
/content/journals/cp/10.2174/0115701646364860250102115855
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test