Skip to content
2000
image of Proteomics Response of Photosynthetic Machinery to Abiotic Stresses: A Review

Abstract

Abiotic stress, including drought, salinity, extreme temperatures, and light intensity, profoundly affects plant growth and development. Plants being sessile cannot escape the stress conditions,, thus have developed either evading or tolerance mechanisms during evolution. In plants several processes are affected by drought . there is inhibition of growth, reduction in photosynthesis, and yield, and increased membrane damage. Plants respond to drought or tolerate stress by downregulation of growth, photosynthetic machinery and membrane fluidity, increased cuticle thickness, osmolyte accumulation, increased defense chemicals, and secondary metabolites, and stress responding proteins . Late Embryogenic Abundance and Heat Shock proteins . The root architecture is elaborated, and leaf rolling occurs. Futher, there is an increase in the cell's antioxidant potential and antioxidant enzyme activity. Most of these mechanisms are investigated using proteomics and protein techniques. With the advent of sensitive proteomics techniques and the availability of databases for several plants, proteomics experiments have become routine in stress based studies. Current review highlights the modulation in the photosynthetic and chloroplastic proteins in higher plants that proteomics and other protein determination studies have revealed, in response to stress treatment. It specifically discusses the latest developments in terms of protein changes in leaves or other tissues from the studies using stress treatment, since several reviews have already covered the earlier findings. Moreover, it further discusses the future role of proteomics studies in elucidating stress mechanisms in plants.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646347647241211211906
2025-01-09
2025-04-25
Loading full text...

Full text loading...

References

  1. Claeys H. Inzé D. The agony of choice: How plants balance growth and survival under water-limiting conditions. Plant Physiol. 2013 162 4 1768 1779 10.1104/pp.113.220921 23766368
    [Google Scholar]
  2. Kausar R. Wang X. Komatsu S. Crop proteomics under abiotic stress: From data to insights. Plants 2022 11 21 2877 10.3390/plants11212877 36365330
    [Google Scholar]
  3. Dalal V.K. Impact of urban ecology and related stresses on photosynthetic activities of plants. J Plant Biol Crop Res 2021 4 2 1044
    [Google Scholar]
  4. Sharma A. Kumar V. Shahzad B. Ramakrishnan M. Sidhu S.G.P. Bali A.S. Handa N. Kapoor D. Yadav P. Khanna K. Bakshi P. Rehman A. Kohli S.K. Khan E.A. Parihar R.D. Yuan H. Thukral A.K. Bhardwaj R. Zheng B. Photosynthetic response of plants under different abiotic stresses: A review. J. Plant Growth Regul. 2020 39 2 509 531 10.1007/s00344‑019‑10018‑x
    [Google Scholar]
  5. Hussain S. Ulhassan Z. Brestic M. Zivcak M. Zhou W. Allakhverdiev S.I. Yang X. Safdar M.E. Yang W. Liu W. Photosynthesis research under climate change. Photosynth. Res. 2021 150 1-3 5 19 10.1007/s11120‑021‑00861‑z 34235625
    [Google Scholar]
  6. Mittler R. Finka A. Goloubinoff P. How do plants feel the heat? Trends Biochem. Sci. 2012 37 3 118 125 10.1016/j.tibs.2011.11.007 22236506
    [Google Scholar]
  7. Kwon K.C. Verma D. Jin S. Singh N.D. Daniell H. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress. PLoS One 2013 8 6 e67106 10.1371/journal.pone.0067106 23799142
    [Google Scholar]
  8. Lu Y. Yao J. Chloroplasts at the crossroad of photosynthesis, pathogen infection and plant defense. Int. J. Mol. Sci. 2018 19 12 3900 10.3390/ijms19123900 30563149
    [Google Scholar]
  9. Dalal V.K. Modulation of photosynthesis and other proteins during water–stress. Mol. Biol. Rep. 2021 48 4 3681 3693 10.1007/s11033‑021‑06329‑6 33856605
    [Google Scholar]
  10. Peng Z. Wang M. Li F. Lv H. Li C. Xia G. A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol. Cell. Proteomics 2009 8 12 2676 2686 10.1074/mcp.M900052‑MCP200 19734139
    [Google Scholar]
  11. Zhu D. Luo F. Zou R. Liu J. Yan Y. Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses. J. Proteomics 2021 234 104097 10.1016/j.jprot.2020.104097 33401000
    [Google Scholar]
  12. Goussi R. Manfredi M. Marengo E. Derbali W. Cantamessa S. Barbato R. Manaa A. Thylakoid proteome variation of Eutrema salsugineum in response to drought and salinity combined stress. Biochim. Biophys. Acta Bioenerg. 2021 1862 12 148482 10.1016/j.bbabio.2021.148482 34418359
    [Google Scholar]
  13. Dalal V.K. Tripathy B.C. Water-stress induced downsizing of light-harvesting antenna complex protects developing rice seedlings from photo-oxidative damage. Sci. Rep. 2018 8 1 5955 10.1038/s41598‑017‑14419‑4 29654242
    [Google Scholar]
  14. Abid G. Jebara M. Debode F. Vertommen D. Ruys S.P. Ghouili E. Jebara S.H. Ouertani R.N. Ayed E.M. de Oliveira A.C. Muhovski Y. Comparative physiological, biochemical and proteomic analyses reveal key proteins and crucial regulatory pathways related to drought stress tolerance in faba bean (Vicia faba L.) leaves. Curr. Plant Biol. 2024 37 100320 10.1016/j.cpb.2024.100320
    [Google Scholar]
  15. Fan K. T. Xu Y. Unraveling proteomic adaptations to moderate heat stress in Arabidopsis thaliana: Insights for developing thermotolerant crops. ResearchGate 2024 1 26 10.21203/rs.3.rs‑4351529/v1
    [Google Scholar]
  16. Zhang J. Sun W. Li Z. Liang Y. Song A. Cadmium fate and tolerance in rice cultivars. Agron. Sustain. Dev. 2009 29 3 483 490 10.1051/agro/2009008
    [Google Scholar]
  17. Sharma A. Kapoor D. Gautam S. Landi M. Kandhol N. Araniti F. Ramakrishnan M. Satish L. Singh V.P. Sharma P. Bhardwaj R. Tripathi D.K. Zheng B. Heavy metal induced regulation of plant biology: Recent insights. Physiol. Plant. 2022 174 3 e13688 10.1111/ppl.13688 35470470
    [Google Scholar]
  18. Semane B. Dupae J. Cuypers A. Noben J.P. Tuomainen M. Tervahauta A. Kärenlampi S. Belleghem V.F. Smeets K. Vangronsveld J. Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J. Plant Physiol. 2010 167 4 247 254 10.1016/j.jplph.2009.09.015 20005002
    [Google Scholar]
  19. Tammam A.A. Shehata R.A.M.M. Pessarakli M. Aggan E.W.H. Vermicompost and its role in alleviation of salt stress in plants – I. Impact of vermicompost on growth and nutrient uptake of salt-stressed plants. J. Plant Nutr. 2023 46 7 1446 1457 10.1080/01904167.2022.2072741
    [Google Scholar]
  20. Tian L.R. Chen J.H. Photosystem I: A paradigm for understanding biological environmental adaptation mechanisms in cyanobacteria and algae. Int. J. Mol. Sci. 2024 25 16 8767 10.3390/ijms25168767 39201454
    [Google Scholar]
  21. Timperio A.M. Egidi M.G. Zolla L. Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP). J. Proteomics 2008 71 4 391 411 10.1016/j.jprot.2008.07.005 18718564
    [Google Scholar]
  22. Ahsan N. Renaut J. Komatsu S. Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics 2009 9 10 2602 2621 10.1002/pmic.200800935 19405030
    [Google Scholar]
  23. Noor Z. Ahn S.B. Baker M.S. Ranganathan S. Mohamedali A. Mass spectrometry–based protein identification in proteomics—A review. Brief. Bioinform. 2021 22 2 1620 1638 10.1093/bib/bbz163 32047889
    [Google Scholar]
  24. Mergner J. Kuster B. Plant proteome dynamics. Annu. Rev. Plant Biol. 2022 73 1 67 92 10.1146/annurev‑arplant‑102620‑031308 35138880
    [Google Scholar]
  25. Christopher J.A. Stadler C. Martin C.E. Morgenstern M. Pan Y. Betsinger C.N. Rattray D.G. Mahdessian D. Gingras A.C. Warscheid B. Lehtiö J. Cristea I.M. Foster L.J. Emili A. Lilley K.S. Subcellular proteomics. Nat. Rev. Meth. Prim. 2021 1 1 32 10.1038/s43586‑021‑00029‑y 34549195
    [Google Scholar]
  26. Vistain L.F. Tay S. Single-cell proteomics. Trends Biochem. Sci. 2021 46 8 661 672 10.1016/j.tibs.2021.01.013 33653632
    [Google Scholar]
  27. Mehta D. Scandola S. Uhrig R.G. Direct data-independent acquisition (direct DIA) enables substantially improved label-free quantitative proteomics in Arabidopsis. bioRxiv 2020 10.1101/2020.11.07.372276
    [Google Scholar]
  28. Fan K.T. Wang K.H. Chang W.H. Yang J.C. Yeh C.F. Cheng K.T. Hung S.C. Chen Y.R. Application of data-independent acquisition approach to study the proteome change from early to later phases of tomato pathogenesis responses. Int. J. Mol. Sci. 2019 20 4 863 10.3390/ijms20040863 30781546
    [Google Scholar]
  29. Mustafa G. Komatsu S. Plant proteomic research for improvement of food crops under stresses: A review. Mol. Omics 2021 17 6 860 880 10.1039/D1MO00151E 34870299
    [Google Scholar]
  30. Qin S. Qin S. Tian Z. Comprehensive site- and structure-specific characterization of N-glycosylation in model plant Arabidopsis using mass-spectrometry-based N-glycoproteomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2022 1198 123234 10.1016/j.jchromb.2022.123234 35421698
    [Google Scholar]
  31. Liu C. Niu G. Li X. Zhang H. Chen H. Hou D. Lan P. Hong Z. Comparative label-free quantitative proteomics analysis reveals the essential roles of N-glycans in salt tolerance by modulating protein abundance in Arabidopsis. Front. Plant Sci. 2021 12 646425 10.3389/fpls.2021.646425 34276718
    [Google Scholar]
  32. Chong L. Hsu C.C. Zhu Y. Advances in mass spectrometry-based phosphoproteomics for elucidating abscisic acid signaling and plant responses to abiotic stress. J. Exp. Bot. 2022 73 19 6547 6557 10.1093/jxb/erac324 35959917
    [Google Scholar]
  33. Subba P. Prasad T.S.K. Plant phosphoproteomics: Known knowns, known unknowns, and unknown unknowns of an emerging systems science frontier. OMICS 2021 25 12 750 769 10.1089/omi.2021.0192 34882020
    [Google Scholar]
  34. Khodabocus I. Li Q. Mehta D. Uhrig R.G. A road map for undertaking quantitative proteomics in plants: New opportunities for cereal crops. Accelerated Breeding of Cereal Crops New York, NY Springer 2021 269 292
    [Google Scholar]
  35. Ren W. Shi Z. Zhou M. Zhao B. Li H. Wang J. Liu Y. Zhao J. iTRAQ-based quantitative proteomic analysis provides insight into the drought-stress response in maize seedlings. Sci. Rep. 2022 12 1 9520 10.1038/s41598‑022‑13110‑7 35681021
    [Google Scholar]
  36. Corral E.R. Schwenkert S. Lundquist P.K. Molecular changes of Arabidopsis thaliana plastoglobules facilitate thylakoid membrane remodeling under high light stress. Plant J. 2021 106 6 1571 1587 10.1111/tpj.15253 33783866
    [Google Scholar]
  37. United Nations. Around 68% of the world population is expected to live in cities by 2050. Available from: www.un.org [Accessed on: Aug]. 2024
  38. Kleerekoper L. van Esch M. Salcedo T.B. How to make a city climate-proof, addressing the urban heat island effect. Resour. Conserv. Recycling 2012 64 30 38 10.1016/j.resconrec.2011.06.004
    [Google Scholar]
  39. Gill S.E. Handley J.F. Ennos A.R. Pauleit S. Adapting cities for climate change: The role of the green infrastructure. Built Environ. 2007 33 1 115 133 10.2148/benv.33.1.115
    [Google Scholar]
  40. Feller U. Vaseva I.I. Extreme climatic events: Impacts of drought and high temperature on physiological processes in agronomically important plants. Front. Environ. Sci. 2014 2 39 10.3389/fenvs.2014.00039
    [Google Scholar]
  41. Qian W. Zhu Y. Chen Q. Wang S. Chen L. Liu T. Tang H. Yao H. Comprehensive metabolomic and lipidomic alterations in response to heat stress during seed germination and seedling growth of Arabidopsis. Front. Plant Sci. 2023 14 1132881 10.3389/fpls.2023.1132881 37063208
    [Google Scholar]
  42. Khan Z. Shahwar D. Role of heat shock proteins (HSPs) and heat stress tolerance in crop plants. Sustainable agriculture in the era of climate change 2020 211 234 10.1007/978‑3‑030‑45669‑6_9
    [Google Scholar]
  43. Jiang C. Bi Y. Mo J. Zhang R. Qu M. Feng S. Essemine J. Proteome and transcriptome reveal the involvement of heat shock proteins and antioxidant system in thermotolerance of Clematis florida. Sci. Rep. 2020 10 1 8883 10.1038/s41598‑020‑65699‑2 32483281
    [Google Scholar]
  44. Tewari K.A. Tripathy C.B. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol. 1998 117 3 851 858.45
    [Google Scholar]
  45. Dutta S. Mohanty S. Tripathy B.C. Role of temperature stress on chloroplast biogenesis and protein import in pea. Plant Physiol. 2009 150 2 1050 1061
    [Google Scholar]
  46. Bernfur K. Rutsdottir G. Emanuelsson C. The chloroplast‐localized small heat shock protein Hsp21 associates with the thylakoid membranes in heat‐stressed plants. Protein Sci. 2017 26 9 1773 1784 10.1002/pro.3213 28608391
    [Google Scholar]
  47. Rütgers M. Muranaka L.S. Mühlhaus T. Sommer F. Thoms S. Schurig J. Willmund F. Raffelt S.M. Schroda M. Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii. Plant Mol. Biol. 2017 95 6 579 591 10.1007/s11103‑017‑0672‑y 29094278
    [Google Scholar]
  48. Wang Z. Shen Y. Yang X. Pan Q. Ma G. Bao M. Zheng B. Duanmu D. Lin R. Larkin R.M. Ning G. Overexpression of particular MADS‐box transcription factors in heat‐stressed plants induces chloroplast biogenesis in petals. Plant Cell Environ. 2019 42 5 1545 1560 10.1111/pce.13472 30375658
    [Google Scholar]
  49. Ning G. Yan X. Chen H. Dong R. Zhang W. Ruan Y. Wang W. Bao M. Daniell H. Jin S. Genetic manipulation of Soc1 ‐like genes promotes photosynthesis in flowers and leaves and enhances plant tolerance to high temperature. Plant Biotechnol. J. 2021 19 1 8 10 10.1111/pbi.13432 32544290
    [Google Scholar]
  50. Lv Y. Shao G. Qiu J. Jiao G. Sheng Z. Xie L. Wu Y. Tang S. Wei X. Hu P. White Leaf and Panicle 2, encoding a PEP-associated protein, is required for chloroplast biogenesis under heat stress in rice. J. Exp. Bot. 2017 68 18 5147 5160 10.1093/jxb/erx332 29045742
    [Google Scholar]
  51. Wang G. Kong F. Zhang S. Meng X. Wang Y. Meng Q. A tomato chloroplast-targeted DnaJ protein protects Rubisco activity under heat stress. J. Exp. Bot. 2015 66 11 3027 3040 10.1093/jxb/erv102 25801077
    [Google Scholar]
  52. Stone S.L. The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front. Plant Sci. 2014 5 135 10.3389/fpls.2014.00135 24795732
    [Google Scholar]
  53. Scafaro A.P. Haynes P.A. Atwell B.J. Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. J. Exp. Bot. 2010 61 1 191 202 10.1093/jxb/erp294 19819927
    [Google Scholar]
  54. Shen H. Zhong X. Zhao F. Wang Y. Yan B. Li Q. Chen G. Mao B. Wang J. Li Y. Xiao G. He Y. Xiao H. Li J. He Z. Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nat. Biotechnol. 2015 33 9 996 1003 10.1038/nbt.3321 26280413
    [Google Scholar]
  55. Tammam A.A. Alsherbini A.A. Ali R.M. Vermicompost ameliorates heat stress in broad bean leaves by upregulating plastocyanin and chloroplastic ferredoxin-NADP reductase. Environ. Exp. Bot. 2022 a 194 104699
    [Google Scholar]
  56. Mondal S. Karmakar S. Panda D. Pramanik K. Bose B. Singhal R.K. Crucial plant processes under heat stress and tolerance through heat shock proteins. Plant Stress 2023 10 100227 10.1016/j.stress.2023.100227
    [Google Scholar]
  57. Yadav A. Singh J. Ranjan K. Kumar P. Khanna S. Gupta M. Sirohi A. Heat shock proteins: Master players for heat‐stress tolerance in plants during climate change. Heat stress tolerance in plants: Physiological, molecular and genetic perspectives 2020 189 211 10.1002/9781119432401.ch9
    [Google Scholar]
  58. Guimarães G.L. Pinheiro C. Oliveira A.S.F. Jover M.A. Valverde J. Guedes F.A.F. Azevedo H. Várzea V. Pajares M.A.J. The chloroplast protein HCF164 is predicted to be associated with Coffea SH9 resistance factor against Hemileia vastatrix. Sci. Rep. 2023 13 1 16019 10.1038/s41598‑023‑41950‑4 37749157
    [Google Scholar]
  59. Czaja M. Kołton A. Muras P. The complex issue of urban trees—Stress factor accumulation and ecological service possibilities. Forests 2020 11 9 932 10.3390/f11090932
    [Google Scholar]
  60. Dalal V.K. Tripathy B.C. Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant Cell Environ. 2012 35 9 1685 1703 10.1111/j.1365‑3040.2012.02520.x 22494411
    [Google Scholar]
  61. Tripathy B.C. Oelmüller R. Reactive oxygen species generation and signaling in plants. Plant Signal. Behav. 2012 7 12 1621 1633 10.4161/psb.22455 23072988
    [Google Scholar]
  62. Jain P. Pandey B. Rathore S.S. Prakash A. Singh P. Sachan A. Singh A.K. Crop plants, abiotic stress, reactive oxygen species production, signaling, and their consequences. Augmenting Crop Productivity in Stress Environment Springer Nature Singapore 2022 115 126 10.1007/978‑981‑16‑6361‑1_7
    [Google Scholar]
  63. Urban J. Matoušková M. Robb W. Jelínek B. Úradníček L. Effect of drought on photosynthesis of trees and shrubs in habitat corridors. Forests 2023 14 8 1521 10.3390/f14081521
    [Google Scholar]
  64. Yu X. James A.T. Yang A. Jones A. Porras M.O. Bétrix C.A. Ma H. Colgrave M.L. A comparative proteomic study of drought-tolerant and drought-sensitive soybean seedlings under drought stress. Crop Pasture Sci. 2016 67 5 528 540 10.1071/CP15314
    [Google Scholar]
  65. Ishiga Y. Ishiga T. Ikeda Y. Matsuura T. Mysore K.S. NADPH-dependent thioredoxin reductase C plays a role in nonhost disease resistance against Pseudomonas syringae pathogens by regulating chloroplast-generated reactive oxygen species. PeerJ 2016 4 e1938 10.7717/peerj.1938 27168965
    [Google Scholar]
  66. Ahmad P. Latef A.A.A.H. Rasool S. Akram N.A. Ashraf M. Gucel S. Role of proteomics in crop stress tolerance. Front. Plant Sci. 2016 7 1336 10.3389/fpls.2016.01336 27660631
    [Google Scholar]
  67. Gayen D. Barua P. Lande N.V. Varshney S. Sengupta S. Chakraborty S. Chakraborty N. Dehydration-responsive alterations in the chloroplast proteome and cell metabolomic profile of rice reveals key stress adaptation responses. Environ. Exp. Bot. 2019 160 12 24 10.1016/j.envexpbot.2019.01.003
    [Google Scholar]
  68. Xu Y.H. Liu R. Yan L. Liu Z.Q. Jiang S.C. Shen Y.Y. Wang X.F. Zhang D.P. Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. J. Exp. Bot. 2012 63 3 1095 1106 10.1093/jxb/err315 22143917
    [Google Scholar]
  69. Zhang C. Yang R. Zhang T. Zheng D. Li X. Zhang Z.B. Li L.G. Wu Z.Y. ZmTIFY16, a novel maize TIFY transcription factor gene, promotes root growth and development and enhances drought and salt tolerance in Arabidopsis and Zea mays. Plant Growth Regul. 2023 100 1 149 160 10.1007/s10725‑022‑00946‑2
    [Google Scholar]
  70. Ren Z. Fu J. Elwafa A.S.F. Ku L. Xie X. Liu Z. Shao J. Wen P. Aboud A.N.M. Su H. Wang T. Wei L. Analysis of the molecular mechanisms regulating how ZmEREB24 improves drought tolerance in maize (Zea mays) seedlings. Plant Physiol. Biochem. 2024 207 108292 10.1016/j.plaphy.2023.108292 38215602
    [Google Scholar]
  71. Yoo Y.H. Chandran N.A.K. Park J.C. Gho Y.S. Lee S.W. An G. Jung K.H. OsPhyB-mediating novel regulatory pathway for drought tolerance in rice root identified by a global RNA-Seq transcriptome analysis of rice genes in response to water deficiencies. Front. Plant Sci. 2017 8 580 10.3389/fpls.2017.00580 28491065
    [Google Scholar]
  72. Nawaz G. Lee K. Park S.J. Kim Y.O. Kang H. A chloroplast-targeted cabbage DEAD-box RNA helicase BrRH22 confers abiotic stress tolerance to transgenic Arabidopsis plants by affecting translation of chloroplast transcripts. Plant Physiol. Biochem. 2018 127 336 342 10.1016/j.plaphy.2018.04.007 29653436
    [Google Scholar]
  73. Han J. Gu L. Warren J.M. Guha A. Mclennan D.A. Zhang W. Zhang Y. The roles of photochemical and non-photochemical quenching in regulating photosynthesis depend on the phases of fluctuating light conditions. Tree Physiol. 2022 42 4 848 861 10.1093/treephys/tpab133 34617116
    [Google Scholar]
  74. Shi Y. Ke X. Yang X. Liu Y. Hou X. Plants response to light stress. J. Genet. Genomics 2022 49 8 735 747 10.1016/j.jgg.2022.04.017 35580763
    [Google Scholar]
  75. Björn L.O. Shevela D. Govindjee G. What is photosynthesis?—A broader and inclusive view. A closer look at photosynthesis Nova Science Publishers NY, USA 2023 1 43
    [Google Scholar]
  76. Guddimalli R. Somanaboina A.K. Palle S.R. Edupuganti S. Kummari D. Palakolanu S.R. Naravula J. Gandra J. Qureshi I.A. Marka N. Polavarapu R. Kavi Kishor P.B. Overexpression of RNA ‐binding bacterial chaperones in rice leads to stay‐green phenotype, improved yield and tolerance to salt and drought stresses. Physiol. Plant. 2021 173 4 1351 1368 10.1111/ppl.13369 33583030
    [Google Scholar]
  77. Xiao Y. Savitch L.V. Labbé C. Huner N.P. Dynamic redox-based regulation of the photosynthetic machinery in Arabidopsis thaliana under fluctuating light conditions. Plant Physiol. 2022 188 4 2305 2319
    [Google Scholar]
  78. Gao J. Liu Z. Zhao B. Liu P. Zhang J.W. Physiological and comparative proteomic analysis provides new insights into the effects of shade stress in maize (Zea mays L.). BMC Plant Biol. 2020 20 1 60 10.1186/s12870‑020‑2264‑2 32024458
    [Google Scholar]
  79. Abhijita S. Dalal V.K. Misra A.N. The effects of light quality and quantity on photosynthesis. A closer look at photosynthesis Dalal VK Misra AN Nova Science Publishers Hauppauge, USA 2023
    [Google Scholar]
  80. Bednarczyk D. Aviv-Sharon E. Savidor A. Levin Y. Charuvi D. Influence of short-term exposure to high light on photosynthesis and proteins involved in photo-protective processes in tomato leaves. Environ. Exp. Bot. 2020 179 104198 10.1016/j.envexpbot.2020.104198
    [Google Scholar]
  81. Chen M. Ji M. Wen B. Liu L. Li S. Chen X. Gao D. Li L. GOLDEN 2-LIKE transcription factors of plants. Front. Plant Sci. 2016 7 1509 10.3389/fpls.2016.01509 27757121
    [Google Scholar]
  82. Richter A.S. Nägele T. Grimm B. Kaufmann K. Schroda M. Leister D. Kleine T. Retrograde signaling in plants: A critical review focusing on the GUN pathway and beyond. Plant Commun. 2023 4 1 100511 10.1016/j.xplc.2022.100511 36575799
    [Google Scholar]
  83. Woodson J.D. Chory J. Coordination of gene expression between organellar and nuclear genomes. Nat. Rev. Genet. 2011 12 10 663 675 18368053
    [Google Scholar]
  84. Mustafa G. Akhtar M.S. Abdullah R. Global concern for salinity on various agro-ecosystems. Salt Str. Micr. Plant Int. Caus. Sol. 2019 1 1 19
    [Google Scholar]
  85. Witzel K. Weidner A. Surabhi G.K. Börner A. Mock H.P. Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J. Exp. Bot. 2009 60 12 3545 3557 10.1093/jxb/erp198 19671579
    [Google Scholar]
  86. Zörb C. Geilfus C.M. Mühling K.H. Dietz K.J. Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics 2009 9 18 4209 4220 19688749
    [Google Scholar]
  87. Wu X. Gong F. Cao D. Hu X. Wang W. Advances in crop proteomics: PTMs of proteins under abiotic stress. Plant Physiol. Biochem. 2016 146 55 70
    [Google Scholar]
  88. Frukh A. Siddiqi T.O. Khan M.I.R. Ahmad A. Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress. Plant Physiol. Biochem. 2020 146 55 70
    [Google Scholar]
  89. Jiang Y. Yang B. Harris N.S. Deyholos M.K. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J. Exp. Bot. 2007 58 13 3591 3607 10.1093/jxb/erm207 17916636
    [Google Scholar]
  90. Guo M. Li H. Li L. Cheng X. Gao W. Xu Y. Zhou C. Liu F. Liu X. Comparative proteomic analysis of Arabidopsis thaliana roots between wild type and its salt-tolerant mutant. J. Plant Interact. 2014 9 1 330 337 10.1080/17429145.2013.833653
    [Google Scholar]
  91. Turan S. Tripathy B.C. Salt‐stress induced modulation of chlorophyll biosynthesis during de‐etiolation of rice seedlings. Physiol. Plant. 2015 153 3 477 491 10.1111/ppl.12250 25132047
    [Google Scholar]
  92. Kandoi D. Tripathy B.C. Overexpression of chloroplastic Zea mays NADP-malic enzyme (ZmNADP-ME) confers tolerance to salt stress in Arabidopsis thaliana. Photosynth. Res. 2023 158 1 57 76 10.1007/s11120‑023‑01041‑x 37561272
    [Google Scholar]
  93. Ling Q. Jarvis P. Regulation of chloroplast protein import by the ubiquitin E3 ligase SP1 is important for stress tolerance in plants. Curr. Biol. 2015 25 19 2527 2534 10.1016/j.cub.2015.08.015 26387714
    [Google Scholar]
  94. Fan P. Feng J. Jiang P. Chen X. Bao H. Nie L. Jiang D. Lv S. Kuang T. Li Y. Coordination of carbon fixation and nitrogen metabolism in Salicornia europaea under salinity: Comparative proteomic analysis on chloroplast proteins. Proteomics 2011 11 22 4346 4367 10.1002/pmic.201100054 21905221
    [Google Scholar]
  95. Lakra N. Kaur C. Anwar K. Pareek S.S.L. Pareek A. Proteomics of contrasting rice genotypes: Identification of potential targets for raising crops for saline environment. Plant Cell Environ. 2018 41 5 947 969 10.1111/pce.12946 28337760
    [Google Scholar]
  96. Wang X. Oh M. Sakata K. Komatsu S. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses. J. Proteomics 2016 130 42 55 10.1016/j.jprot.2015.09.007 26376099
    [Google Scholar]
  97. Xiong Q. Cao C. Shen T. Zhong L. He H. Chen X. Comprehensive metabolomic and proteomic analysis in biochemical metabolic pathways of rice spikes under drought and submergence stress. Biochim. Biophys. Acta. Proteins Proteomics 2019 1867 3 237 247 10.1016/j.bbapap.2019.01.001 30611782
    [Google Scholar]
  98. Xu K. Xu X. Fukao T. Canlas P. Rodriguez M.R. Heuer S. Ismail A.M. Serres B.J. Ronald P.C. Mackill D.J. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 2006 442 7103 705 708 10.1038/nature04920 16900200
    [Google Scholar]
  99. Gui G. Zhang Q. Hu W. Liu F. Application of multiomics analysis to plant flooding response. Front. Plant Sci. 2024 15 1389379 10.3389/fpls.2024.1389379 39193215
    [Google Scholar]
  100. Agarwal S. Grover A. Molecular biology, biotechnology and genomics of flooding-associated low O2 stress response in plants. Crit. Rev. Plant Sci. 2006 25 1 1 21 10.1080/07352680500365232
    [Google Scholar]
  101. Kumar V. Wegener M. Knieper M. Kaya A. Viehhauser A. Dietz K.J. Strategies of molecular signal integration for optimized plant acclimation to stress combinations. Methods Mol Biol 2024 2832 3 29 10.1007/978‑1‑0716‑3973‑3_1
    [Google Scholar]
  102. Ghosh D. Xu J. Abiotic stress responses in plant roots: A proteomics perspective. Front. Plant Sci. 2014 5 6 10.3389/fpls.2014.00006 24478786
    [Google Scholar]
  103. Ezin V. Pena R.D.L. Ahanchede A. Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Braz. J. Plant Physiol. 2010 22 2 131 142 10.1590/S1677‑04202010000200007
    [Google Scholar]
  104. Rai R. Agrawal M. Agrawal S.B. Impact of heavy metals on physiological processes of plants: With special reference to photosynthetic system. Springer, Singapore 2016 127 140 10.1007/978‑981‑10‑2860‑1_6
    [Google Scholar]
  105. Kosakivska I.V. Babenko L.M. Romanenko K.O. Korotka I.Y. Potters G. Molecular mechanisms of plant adaptive responses to heavy metals stress. Cell Biol. Int. 2021 45 2 258 272 10.1002/cbin.11503 33200493
    [Google Scholar]
  106. Al-Obaidi J.R. Jamaludin A.A. Rahman N.A. Kamil A.E.I. How plants respond to heavy metal contamination: A narrative review of proteomic studies and phytoremediation applications. Planta 2024 259 5 103 10.1007/s00425‑024‑04378‑2 38551683
    [Google Scholar]
  107. Zhang H. Xu Z. Guo K. Huo Y. He G. Sun H. Guan Y. Xu N. Yang W. Sun G. Toxic effects of heavy metal Cd and Zn on chlorophyll, carotenoid metabolism and photosynthetic function in tobacco leaves revealed by physiological and proteomics analysis. Ecotoxicol. Environ. Saf. 2020 202 110856 10.1016/j.ecoenv.2020.110856 32629202
    [Google Scholar]
  108. Kaur H. Srivastava S. Goyal N. Walia S. Behavior of zinc in soils and recent advances on strategies for ameliorating zinc phyto-toxicity. Environ. Exp. Bot. 2024 220 105676 10.1016/j.envexpbot.2024.105676
    [Google Scholar]
  109. Li J. Zhang M. Sun J. Mao X. Wang J. Liu H. Zheng H. Li X. Zhao H. Zou D. Heavy metal stress-associated proteins in rice and Arabidopsis: Genome-wide identification, phylogenetics, duplication, and expression profiles analysis. Front. Genet. 2020 11 477 10.3389/fgene.2020.00477 32457808
    [Google Scholar]
  110. Cao D. Zhang H. Wang Y. Zheng L. Accumulation and distribution characteristics of zinc and cadmium in the hyperaccumulator plant Sedum plumbizincicola. Bull. Environ. Contam. Toxicol. 2014 93 2 171 176 10.1007/s00128‑014‑1284‑8 24789526
    [Google Scholar]
  111. Srivastava R.K. Pandey P. Rajpoot R. Rani A. Dubey R.S. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma 2014 251 5 1047 1065 10.1007/s00709‑014‑0614‑3 24482190
    [Google Scholar]
  112. Wu D. Saleem M. He T. He G. The mechanism of metal homeostasis in plants: A new view on the synergistic regulation pathway of membrane proteins, lipids and metal ions. Membranes 2021 11 12 984 10.3390/membranes11120984 34940485
    [Google Scholar]
  113. Billah M. Aktar S. Sikder R.K. Ahammed G.J. Hu W. Li F. Yang Z. Exploring regulatory roles of plant thylakoid-bound proteins involved in abiotic stress responses. J. Plant Growth Regul. 2024 43 5 1570 1591 10.1007/s00344‑023‑11207‑5
    [Google Scholar]
  114. Haider Z. Ahmad I. Zia S. Gan Y. Recent developments in rice molecular breeding for tolerance to heavy metal toxicity. Agriculture 2023 13 5 944 10.3390/agriculture13050944
    [Google Scholar]
  115. Shu H. Zhang J. Liu F. Bian C. Liang J. Liang J. Liang W. Lin Z. Shu W. Li J. Shi Q. Liao B. Comparative transcriptomic studies on a cadmium hyperaccumulator Viola baoshanensis and its non-tolerant counterpart V. inconspicua. Int. J. Mol. Sci. 2019 20 8 1906 10.3390/ijms20081906 30999673
    [Google Scholar]
  116. Zhang T. Xiao J. Zhao Y. Zhang Y. Jie Y. Shen D. Yue C. Huang J. Hua Y. Zhou T. Comparative physiological and transcriptomic analyses reveal ascorbate and glutathione coregulation of cadmium toxicity resistance in wheat genotypes. BMC Plant Biol. 2021 21 1 459 10.1186/s12870‑021‑03225‑w 34625028
    [Google Scholar]
  117. Tripathy B.C. Dalal V. Modulation of chlorophyll biosynthesis by environmental cues. Adv. Phot. Res. 2013 36 601 10.1007/978‑94‑007‑5724‑0_27
    [Google Scholar]
  118. Li Y. Feng H. Xian S. Wang J. Zheng X. Song X. Phytotoxic effects of polyethylene microplastics combined with cadmium on the photosynthetic performance of maize (Zea mays L.). Plant Physiol. Biochem. 2023 203 108065 10.1016/j.plaphy.2023.108065 37797385
    [Google Scholar]
  119. Zhao H. Guan J. Liang Q. Zhang X. Hu H. Zhang J. Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Sci. Rep. 2021 11 1 9913 10.1038/s41598‑021‑89322‑0 33972641
    [Google Scholar]
  120. Wang S. Wufuer R. Duo J. Li W. Pan X. Cadmium caused different toxicity to photosystem I and photosystem II of freshwater unicellular algae Chlorella pyrenoidosa (Chlorophyta). Toxics 2022 10 7 352 10.3390/toxics10070352 35878257
    [Google Scholar]
  121. Yang Y. Zhang L. Huang X. Zhou Y. Quan Q. Li Y. Zhu X. Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PLoS One 2020 15 3 e0228563 10.1371/journal.pone.0228563 32176700
    [Google Scholar]
  122. Grajek H. Rydzyński D. Cieślak P.A. Herman A. Maciejczyk M. Wieczorek Z. Cadmium ion-chlorophyll interaction – Examination of spectral properties and structure of the cadmium-chlorophyll complex and their relevance to photosynthesis inhibition. Chemosphere 2020 261 127434 10.1016/j.chemosphere.2020.127434 32717505
    [Google Scholar]
  123. Gonçalves A.C. Jr Schwantes D. Sousa B.R.F. Silva B.T.R. Guimarães V.F. Campagnolo M.A. Vasconcelos S.E. Zimmermann J. Phytoremediation capacity, growth and physiological responses of Crambe abyssinica Hochst on soil contaminated with Cd and Pb. J. Environ. Manage. 2020 262 110342 10.1016/j.jenvman.2020.110342 32250818
    [Google Scholar]
  124. Wang Y. Yang R. Zheng J. Shen Z. Xu X. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). Ecotoxicol. Environ. Saf. 2019 167 10 19 10.1016/j.ecoenv.2018.08.064 30292971
    [Google Scholar]
  125. Zhu T. Li L. Duan Q. Liu X. Chen M. Progress in our understanding of plant responses to the stress of heavy metal cadmium. Plant Signal. Behav. 2021 16 1 1836884 10.1080/15592324.2020.1836884 33084518
    [Google Scholar]
  126. Chen H.C. Zhang S.L. Wu K.J. Li R. He X.R. He D.N. Huang C. Wei H. The effects of exogenous organic acids on the growth, photosynthesis and cellular ultrastructure of Salix variegata Franch. Under Cd stress. Ecotoxicol. Environ. Saf. 2020 187 109790 10.1016/j.ecoenv.2019.109790 31639642
    [Google Scholar]
  127. Barbeoch P.L. Leonhardt N. Vavasseur A. Forestier C. Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. Plant J. 2002 32 4 539 548 10.1046/j.1365‑313X.2002.01442.x 12445125
    [Google Scholar]
  128. Kaya C. Akram N.A. Ashraf M. Alyemeni M.N. Ahmad P. Exogenously supplied silicon (Si) improves cadmium tolerance in pepper (Capsicum annuum L.) by up-regulating the synthesis of nitric oxide and hydrogen sulfide. J. Biotechnol. 2020 316 35 45 10.1016/j.jbiotec.2020.04.008 32315687
    [Google Scholar]
  129. Siddiqui M.H. Alamri S. Khan N.M. Corpas F.J. Al-Amri A.A. Alsubaie Q.D. Ali H.M. Kalaji H.M. Ahmad P. Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. J. Hazard. Mater. 2020 398 122882 10.1016/j.jhazmat.2020.122882 32516727
    [Google Scholar]
  130. Chen X. Tao H. Wu Y. Xu X. Effects of Cadmium on metabolism of photosynthetic pigment and photosynthetic system in Lactuca sativa L. revealed by physiological and proteomics analysis. Sci. Hortic. 2022 305 111371 10.1016/j.scienta.2022.111371
    [Google Scholar]
  131. Haisel D. Cyrusová T. Vaněk T. Podlipná R. The effect of nanoparticles on the photosynthetic pigments in cadmium—zinc interactions. Environ. Sci. Pollut. Res. Int. 2019 26 4 4147 4151 10.1007/s11356‑018‑04060‑7 30613887
    [Google Scholar]
  132. Manzoor N. Ahmed T. Noman M. Shahid M. Nazir M.M. Ali L. Alnusaire T.S. Li B. Schulin R. Wang G. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Sci. Total Environ. 2021 769 145221 10.1016/j.scitotenv.2021.145221 33736258
    [Google Scholar]
  133. Wang Y. Tan P. Chang L. Yue Z. Zeng C. Li M. Liu Z. Dong X. Yan M. Exogenous proline mitigates toxic effects of cadmium via the decrease of cadmium accumulation and reestablishment of redox homeostasis in Brassica juncea. BMC Plant Biol. 2022 22 1 182 10.1186/s12870‑022‑03538‑4 35395715
    [Google Scholar]
  134. Manzoor H. Mehwish Bukhat S. Rasul S. Rehmani M.I.A. Noreen S. Athar H.R. Zafar Z.U. Skalicky M. Soufan W. Brestic M. Rahman H.M. Ogbaga C.C. Sabagh E.A. Methyl jasmonate alleviated the adverse effects of cadmium stress in pea (Pisum sativum L.): A nexus of photosystem II activity and dynamics of redox balance. Front. Plant Sci. 2022 13 860664 10.3389/fpls.2022.860664 35401592
    [Google Scholar]
  135. Chen L. Hu W. Long C. Wang D. Exogenous plant growth regulator alleviate the adverse effects of U and Cd stress in sunflower (Helianthus annuus L.) and improve the efficacy of U and Cd remediation. Chemosphere 2021 262 127809 10.1016/j.chemosphere.2020.127809 32781331
    [Google Scholar]
  136. Lin S. Song X.F. Mao H.T. Li S.Q. Gan J.Y. Yuan M. Zhang Z.W. Yuan S. Zhang H.Y. Su Y.Q. Chen Y.E. Exogenous melatonin improved photosynthetic efficiency of photosystem II by reversible phosphorylation of thylakoid proteins in wheat under osmotic stress. Front. Plant Sci. 2022 13 966181 10.3389/fpls.2022.966181 35982696
    [Google Scholar]
  137. Zhang S. Chen H. He D. He X. Yan Y. Wu K. Wei H. Effects of exogenous organic acids on Cd tolerance mechanism of Salix variegata Franch. under Cd stress. Front. Plant Sci. 2020 11 594352 10.3389/fpls.2020.594352 33193554
    [Google Scholar]
  138. Sawada H. Komatsu S. Nanjo Y. Khan N.A. Kohno Y. Proteomic analysis of rice response involved in reduction of grain yield under elevated ozone stress. Environ. Exp. Bot. 2012 77 108 116 10.1016/j.envexpbot.2011.11.009
    [Google Scholar]
  139. Galant A. Koester R.P. Ainsworth E.A. Hicks L.M. Jez J.M. From climate change to molecular response: Redox proteomics of ozone‐induced responses in soybean. New Phytol. 2012 194 1 220 229 10.1111/j.1469‑8137.2011.04037.x 22272738
    [Google Scholar]
  140. Wang Y. Sang Z. Xu S. Xu Q. Zeng X. Jabu D. Yuan H. Comparative proteomics analysis of Tibetan hull-less barley under osmotic stress via data-independent acquisition mass spectrometry. Gigascience 2020 9 3 giaa019 10.1093/gigascience/giaa019 32126136
    [Google Scholar]
  141. Nirmal S. Plants and their interaction to environmental pollution: Damage detection, adaptation, tolerance, physiological and molecular responses. Husen A. Netherlands Elsevier Science 2022 253 264
    [Google Scholar]
  142. Zandalinas S.I. Fritschi F.B. Mittler R. Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends Plant Sci. 2021 26 6 588 599 10.1016/j.tplants.2021.02.011 33745784
    [Google Scholar]
  143. Singh H. Singh P. Agrawal S.B. Agrawal M. Implications of foliar particulate matter deposition on the physiology and nutrient allocation of dominant perennial species of the Indo-Gangetic Plains. Front. Plant Sci. 2022 13 939950 10.3389/fpls.2022.939950 35928714
    [Google Scholar]
  144. Roy A. Mandal M. Das S. Popek R. Rakwal R. Agrawal G.K. Awasthi A. Sarkar A. The cellular consequences of particulate matter pollutants in plants: Safeguarding the harmonious integration of structure and function. Sci. Total Environ. 2024 914 169763 10.1016/j.scitotenv.2023.169763 38181950
    [Google Scholar]
  145. Antenozio M.L. Caissutti C. Caporusso F.M. Marzi D. Brunetti P. Urban air pollution and plant tolerance: Omics responses to ozone, nitrogen oxides, and particulate matter. Plants 2024 13 15 2027 10.3390/plants13152027 39124144
    [Google Scholar]
  146. Yu J. Li Y. Qin Z. Guo S. Li Y. Miao Y. Song C. Chen S. Dai S. Plant chloroplast stress response: Insights from thiol redox proteomics. Antioxid. Redox Signal. 2020 33 1 35 57 10.1089/ars.2019.7823 31989831
    [Google Scholar]
  147. Rampitsch C. Srinivasan M. The application of proteomics to plant biology: A review. Botany 2006 84 6 883 892
    [Google Scholar]
  148. Hoyos R.G. Moreno F.L.P. Proteomics: A tool for the study of plant response to abiotic stress. Agron. Colomb. 2011 29 2 412 422
    [Google Scholar]
  149. Hashiguchi A. Komatsu S. Impact of post-translational modifications of crop proteins under abiotic stress. Proteomes 2016 4 4 42 10.3390/proteomes4040042 28248251
    [Google Scholar]
/content/journals/cp/10.2174/0115701646347647241211211906
Loading
/content/journals/cp/10.2174/0115701646347647241211211906
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test