Skip to content
2000
image of Two Novel Peptides from Buthotus saulcyi Scorpion Venom: Proteomic Analysis and Approaches

Abstract

Background and Objectives

Venomous scorpions play a crucial role in medicine and public health. scorpion is known as one of the most populous species in East Asia and Iran, while its venom proteome has still not been fully determined.

Aims

In the current research, the proteomic profile of scorpion venom to determine the structural and functional characteristics of its compounds used for treatment will be examined for the first time.

Method

2D-PAGE, HPLC, SDS-PAGE, sequencing, and MALDI-TOF MS techniques were used to investigate the properties of these peptides.

Result

The 2D-PAGE analysis of crude toxin from revealed a minimum of 96 protein spots, with isoelectric points ranging from 4 to 9 and molecular weights spanning from 3.6 to 205 kDa. Following this, HPLC was used to isolate 14 fractions of crude toxins, and the protein content of these fractions was measured. SDS-PAGE analysis identified 7 protein bands within the crude toxin fractions, with molecular weights ranging from 13 to 217 kDa. Further examination of fraction 7 through amino acid sequencing resulted in the identification of two protein bands labeled peptide 3 and peptide 4. Ultimately, these protein bands were extracted, and their molecular mass and amino acid sequences were analyzed using MALDI-TOF MS.

Conclusion

According to our results, the alignment of P3 and P4 protein sequences revealed the highest similarity to chrysophsin 2 and pheromone-bound protein 2, respectively.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646354270250114111820
2025-01-20
2025-04-26
Loading full text...

Full text loading...

References

  1. Petricevich V.L. Navarro L.B. Possani L.D. Therapeutic use of scorpion venom. Mol Asp Inflamm. 2013 9 209 231
    [Google Scholar]
  2. Ahmad Salarian A. Jalali A. Zare Mirakabadi A. Vatanpour H. H Shirazi F. Cytotoxic effects of two Iranian scorpions Odontobuthusdoriae and Bothutus saulcyi on five human cultured cell lines and fractions of toxic venom. Iran. J. Pharm. Res. 2012 11 1 357 367 24250459
    [Google Scholar]
  3. Jalali A. Vatanpour H. Hosseininasab Z. Rowan E.G. Harvey A.L. The effect of the venom of the yellow Iranian scorpion Odontobuthus doriae on skeletal muscle preparations in vitro. Toxicon 2007 50 8 1019 1026 10.1016/j.toxicon.2007.05.001 17976675
    [Google Scholar]
  4. Ghosh A. Roy R. Nandi M. Mukhopadhyay A. Scorpion venom–toxins that aid in drug development: A review. Int. J. Pept. Res. Ther. 2019 25 1 27 37 10.1007/s10989‑018‑9721‑x 32214927
    [Google Scholar]
  5. Petricevich V.L. Scorpion venom and the inflammatory response. Mediators Inflamm. 2010 2010 903295 10.1155/2010/903295 20300540
    [Google Scholar]
  6. Smith J.J. Jones A. Alewood P.F. Mass landscapes of seven scorpion species: The first analyses of Australian species with 1,5-DAN matrix. J. Venom Res. 2012 3 7 14 23236582
    [Google Scholar]
  7. Ortiz E. Gurrola G.B. Schwartz E.F. Possani L.D. Scorpion venom components as potential candidates for drug development. Toxicon 2015 93 125 135 10.1016/j.toxicon.2014.11.233 25432067
    [Google Scholar]
  8. Machado R.J.A. Estrela A.B. Nascimento A.K.L. Melo M.M.A. Torres-Rêgo M. Lima E.O. Rocha H.A.O. Carvalho E. Silva-Junior A.A. Fernandes-Pedrosa M.F. Characterization of TistH, a multifunctional peptide from the scorpion Tityus stigmurus: Structure, cytotoxicity and antimicrobial activity. Toxicon 2016 119 362 370 10.1016/j.toxicon.2016.06.002 27267248
    [Google Scholar]
  9. Laniado M.E. Fraser S.P. Djamgoz M.B.A. Voltage-gated K+ channel activity in human prostate cancer cell lines of markedly different metastatic potential: Distinguishing characteristics of PC-3 and LNCaP cells. Prostate 2001 46 4 262 274 10.1002/1097‑0045(20010301)46:4<262::AID‑PROS1032>3.0.CO;2‑F 11241548
    [Google Scholar]
  10. Fong-Coronado P.A. Ramirez V. Quintero-Hernández V. Balleza D. A critical review of short antimicrobial peptides from scorpion venoms, their physicochemical attributes, and potential for the development of new drugs. J. Membr. Biol. 2024 257 3-4 165 205 10.1007/s00232‑024‑00315‑2 38990274
    [Google Scholar]
  11. Xia Z. He D. Wu Y. Kwok H.F. Cao Z. Scorpion venom peptides: Molecular diversity, structural characteristics, and therapeutic use from channelopathies to viral infections and cancers. Pharmacol. Res. 2023 197 106978 10.1016/j.phrs.2023.106978 37923027
    [Google Scholar]
  12. Karataş A. Gharkheloo M.M. A contribution to the knowledge of Hottentotta saulcyi (Simon, 1880) (Scorpiones: Buthidae). Zool. Middle East 2006 38 1 85 92 10.1080/09397140.2006.10638169
    [Google Scholar]
  13. Rein J.O. Scorpions in Iraq. 2011
    [Google Scholar]
  14. Pirali-Kheirabadi K. Navidpour S. Fet V. Kovařík F. Soleglad M.E. Scorpions of Iran (Arachnida, Scorpiones). Part V. Chahar Mahal & bakhtiyari province. Euscorpius 2009 2009 78 1 23 10.18590/euscorpius.2009.vol2009.iss78.1
    [Google Scholar]
  15. Nikkhah M. Naderi-Manesh H. Sarbolouki M. Ranjbar B. Efficient in vitro refolding and characterization of a new peptide from the scorpion Buthotus saulcyi venom produced in Escherichia coli. Protein Pept. Lett. 2006 13 7 659 664 10.2174/092986606777790557 17018007
    [Google Scholar]
  16. Abd El-Aziz T.M. Soares A.G. Stockand J.D. Advances in venomics: Modern separation techniques and mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020 1160 122352 10.1016/j.jchromb.2020.122352 32971366
    [Google Scholar]
  17. Luan N. Shen W. Liu J. Wen B. Lin Z. Yang S. Lai R. Liu S. Rong M. A combinational strategy upon RNA sequencing and peptidomics unravels a set of novel toxin peptides in scorpion mesobuthus martensii. Toxins (Basel) 2016 8 10 286 10.3390/toxins8100286 27782050
    [Google Scholar]
  18. Ma R. Mahadevappa R. Kwok H.F. Venom-based peptide therapy: Insights into anti-cancer mechanism. Oncotarget 2017 8 59 100908 100930 10.18632/oncotarget.21740 29246030
    [Google Scholar]
  19. Zhang Y.Y. Wu L.C. Wang Z.P. Wang Z.X. Jia Q. Jiang G.S. Zhang W.D. Anti-proliferation effect of polypeptide extracted from scorpion venom on human prostate cancer cells in vitro. J. Clin. Med. Res. 2009 1 1 24 31 10.4021/jocmr2009.01.1220 22505961
    [Google Scholar]
  20. Alipour Y. Zargan J. Haji Nour Mohammadi A. Antibacterial effects of crude venom and their protein fractions of Hottentotta saulcyi scorpion. Koomesh 2022 24 3 376 387
    [Google Scholar]
  21. Jahangirian E. Zargan J. Rabbani H. Zamani J. Investigating the inhibitory and penetrating properties of three novel anticancer and antimicrobial scorpion peptides via molecular docking and molecular dynamic simulation. J. Biomol. Struct. Dyn. 2023 41 24 15354 15385 10.1080/07391102.2023.2188956 36927377
    [Google Scholar]
  22. Zargan J. Jahangirian E. Khan H.A. Ali S. Proteomic analysis of two novel peptides from the Odontobuthus doriae scorpion venom. J. Asian Nat. Prod. Res. 2024 1 22 10.1080/10286020.2024.2403612 39287957
    [Google Scholar]
  23. Jahangirian E. Zargan J. Investigating the antibacterial effects of 3 novel peptides isolated from the venom of Iranian odontobuthus doriae and buthotus saulcyi scorpions on Escherichia coli (UTI89) and enterococcus faecalis causing urinary tract infection. Int. J. Pept. Res. Ther. 2023 29 4 55 10.1007/s10989‑023‑10529‑y
    [Google Scholar]
  24. Cloudsley-Thompson J.L. Constantinou C. How does the scorpion Euscorpius flavicaudis (Deg.) manage to survive in Britain? Int. J. Biometeorol. 1983 27 2 87 92 10.1007/BF02185737
    [Google Scholar]
  25. Lowe G. Kutcher S.R. Edwards D. A powerful new light source for ultraviolet detection of scorpions in the field. Euscorpius 2003 2003 8 1 7 10.18590/euscorpius.2003.vol2003.iss8.1
    [Google Scholar]
  26. Borges A. Silva S. Op den Camp H.J.M. Velasco E. Alvarez M. Alfonzo M.J.M. Jorquera A. De Sousa L. Delgado O. In vitro leishmanicidal activity of Tityus discrepans scorpion venom. Parasitol. Res. 2006 99 2 167 173 10.1007/s00436‑006‑0133‑z 16538481
    [Google Scholar]
  27. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970 227 5259 680 685 10.1038/227680a0 5432063
    [Google Scholar]
  28. Caliskan F. García B.I. Coronas F.I.V. Batista C.V.F. Zamudio F.Z. Possani L.D. Characterization of venom components from the scorpion Androctonus crassicauda of Turkey: Peptides and genes. Toxicon 2006 48 1 12 22 10.1016/j.toxicon.2006.04.003 16762386
    [Google Scholar]
  29. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976 72 1-2 248 254 10.1016/0003‑2697(76)90527‑3 942051
    [Google Scholar]
  30. Ucar G. TAfi C. Cholinesterase inhibitory activities of the scorpion Mesobuthus gibbosus (Buthidae) venom peptides. FABAD J Pharm Sci. 2003 28 61 70
    [Google Scholar]
  31. Badhe R. Thomas A. Deshpande A.D. Salvi N. Waghmare A. The action of red scorpion (Mesobuthus tamulus Coconsis, Pocock) venom and its isolated protein fractions on blood sodium levels. J. Venom. Anim. Toxins Incl. Trop. Dis. 2007 3 1 10.1590/S1678‑91992007000100006
    [Google Scholar]
  32. Hames B.D. Gel electrophoresis of proteins: A practical approach Oxford University Press 1990 10.1093/oso/9780199636402.001.0001
    [Google Scholar]
  33. Lesse A.J. Campagnari A.A. Bittner W.E. Apicella M.A. Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Immunol. Methods 1990 126 1 109 117 10.1016/0022‑1759(90)90018‑Q 2106001
    [Google Scholar]
  34. Keskin N.A. Koç H. A study on venom proteins of Iurus dufoureius asiaticus Birula, 1903 (Scorpiones: Iuridae). Turkiye Parazitol Derg. 2006 30 1 59 61 17106859
    [Google Scholar]
  35. Schägger H. Tricine–SDS-PAGE. Nat. Protoc. 2006 1 1 16 22 10.1038/nprot.2006.4 17406207
    [Google Scholar]
  36. Daniel M. Bollag, Michael D. Rozycki. Edelstein, SJ Protein Methods 1996
    [Google Scholar]
  37. Giulian G.G. Moss R.L. Greaser M. Analytical isoelectric focusing using a high-voltage vertical slab polyacrylamide gel system. Anal. Biochem. 1984 142 2 421 436 10.1016/0003‑2697(84)90486‑X 6528977
    [Google Scholar]
  38. Switzer R.C. III Merril C.R. Shifrin S. A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal. Biochem. 1979 98 1 231 237 10.1016/0003‑2697(79)90732‑2 94518
    [Google Scholar]
  39. Dyason K. Brandt W. Prendini L. Verdonck F. Tytgat J. Plessis J. Müller G. Walt J. Determination of species‐specific components in the venom of Parabuthus scorpions from southern Africa using matrix‐assisted laser desorption time‐of‐flight mass spectrometry. Rapid Commun. Mass Spectrom. 2002 16 8 768 773 10.1002/rcm.637 11921261
    [Google Scholar]
  40. Iijima N. Tanimoto N. Emoto Y. Morita Y. Uematsu K. Murakami T. Nakai T. Purification and characterization of three isoforms of chrysophsin, a novel antimicrobial peptide in the gills of the red sea bream, Chrysophrys major. Eur. J. Biochem. 2003 270 4 675 686 10.1046/j.1432‑1033.2003.03419.x 12581207
    [Google Scholar]
  41. Hsu J.C. Lin L.C. Tzen J.T.C. Chen J.Y. Characteristics of the antitumor activities in tumor cells and modulation of the inflammatory response in RAW264.7 cells of a novel antimicrobial peptide, chrysophsin-1, from the red sea bream (Chrysophrys major). Peptides 2011 32 5 900 910 10.1016/j.peptides.2011.02.013 21349308
    [Google Scholar]
  42. Pelosi P. Odorant-Binding Proteins. Crit. Rev. Biochem. Mol. Biol. 1994 29 3 199 228 10.3109/10409239409086801 8070277
    [Google Scholar]
  43. Roy U. Shalini R. Vanitha S. Saha S.K. Srivastava R.C. A preliminary study of smelling agents using electrical potential oscillations at liquid-liquid interface. Indian J. Biotechnol. 2008 7 1
    [Google Scholar]
  44. Peng J. Gygi S.P. Proteomics: The move to mixtures. J. Mass Spectrom. 2001 36 10 1083 1091 10.1002/jms.229 11747101
    [Google Scholar]
  45. Catterall W.A. Cestèle S. Yarov-Yarovoy V. Yu F.H. Konoki K. Scheuer T. Voltage-gated ion channels and gating modifier toxins. Toxicon 2007 49 2 124 141 10.1016/j.toxicon.2006.09.022 17239913
    [Google Scholar]
  46. Meki A.R.A.M. Hasan H.A. Mohey El-Deen Z.M. Bakkar S. Dysregulation of apoptosis in scorpion envenomed children: its reflection on their outcome. Toxicon 2003 42 3 229 237 10.1016/S0041‑0101(03)00128‑4 14559073
    [Google Scholar]
  47. Schwartz E.F. Diego-Garcia E. Rodríguez de la Vega R.C. Possani L.D. Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones). BMC Genomics 2007 8 1 119 10.1186/1471‑2164‑8‑119 17506894
    [Google Scholar]
  48. Minton S.A.J. Venomous arachnids and myriapods. Venom Diseases 1974 27 65
    [Google Scholar]
  49. Tato P. Gavilanes M. Munoz L. Fletcher P. Molinari J.L. Epidemiological aspects of scorpionism in Mexico—1. Purification of neurotoxins from Centruroides limpidus limpidus venom. Toxins Science Direct 1978 639 646 10.1016/B978‑0‑08‑022640‑8.50065‑2
    [Google Scholar]
  50. Kovařík F. Yağmur E.A. Moradi M. Two new Hottentotta species from Iran, with a review of Hottentotta saulcyi (Scorpiones: Buthidae). Euscorpius 2018 2018 265 1 14 10.18590/euscorpius.2018.vol2018.iss265.1
    [Google Scholar]
  51. Possani L.D. Becerril B. Delepierre M. Tytgat J. Scorpion toxins specific for Na + ‐channels. Eur. J. Biochem. 1999 264 2 287 300 10.1046/j.1432‑1327.1999.00625.x 10491073
    [Google Scholar]
  52. Srinivasan K.N. Gopalakrishnakone P. Tan P.T. Chew K.C. Cheng B. Kini R.M. Koh J.L.Y. Seah S.H. Brusic V. SCORPION, a molecular database of scorpion toxins. Toxicon 2002 40 1 23 31 10.1016/S0041‑0101(01)00182‑9 11602275
    [Google Scholar]
  53. Batista C. Delpozo L. Zamudio F. Contreras S. Becerril B. Wanke E. Possani L. Proteomics of the venom from the Amazonian scorpion Tityus cambridgei and the role of prolines on mass spectrometry analysis of toxins. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004 803 1 55 66 10.1016/j.jchromb.2003.09.002 15025998
    [Google Scholar]
  54. Dehghani R. Djadid N.D. Shahbazzadeh D. Bigdelli S. Introducing Compsobuthus matthiesseni (Birula, 1905) scorpion as one of the major stinging scorpions in Khuzestan, Iran. Toxicon 2009 54 3 272 275 10.1016/j.toxicon.2009.04.011 19393258
    [Google Scholar]
  55. Dehghani R. Fathi B. Scorpion sting in Iran: A review. Toxicon 2012 60 5 919 933 10.1016/j.toxicon.2012.06.002 22750221
    [Google Scholar]
  56. Mohammadi Bavani M. Saeedi S. Saghafipour A. Spatial distribution of medically important scorpions in Iran: A review article. Shiraz E Med. J. 2020 22 5 e102201 10.5812/semj.102201
    [Google Scholar]
  57. Nejati J. Saghafipour A. Mozaffari E. Keyhani A. Jesri N. Scorpions and scorpionism in Iran’s central desert. Acta Trop. 2017 166 293 298 10.1016/j.actatropica.2016.12.003 27923555
    [Google Scholar]
  58. Boghozian A. Nazem H. Fazilati M. Hejazi S.H. Sheikh Sajjadieh M. Toxicity and protein composition of venoms of Hottentotta saulcyi, Hottentotta schach and Androctonus crassicauda, three scorpion species collected in Iran. Vet. Med. Sci. 2021 7 6 2418 2426 10.1002/vms3.593 34358414
    [Google Scholar]
  59. Wudayagiri R. Inceoglu B. Herrmann R. Derbel M. Choudary P.V. Hammock B.D. Isolation and characterization of a novel lepidopteran-selective toxin from the venom of South Indian red scorpion, Mesobuthus tamulus. BMC Biochem. 2001 2 1 16 10.1186/1471‑2091‑2‑16 11782289
    [Google Scholar]
  60. Chagot B. Pimentel C. Dai L. Pil J. Tytgat J. Nakajima T. Corzo G. Darbon H. Ferrat G. An unusual fold for potassium channel blockers: NMR structure of three toxins from the scorpion Opisthacanthus madagascariensis. Biochem. J. 2005 388 1 263 271 10.1042/BJ20041705 15631621
    [Google Scholar]
  61. Tiwari S.K. Srivastava S. Purification and characterization of plantaricin LR14: A novel bacteriocin produced by Lactobacillus plantarum LR/14. Appl. Microbiol. Biotechnol. 2008 79 5 759 767 10.1007/s00253‑008‑1482‑6 18496687
    [Google Scholar]
  62. Shalabi A. Zamudio F. Wu X. Scaloni A. Possani L.D. Villereal M.L. Tetrapandins, a new class of scorpion toxins that specifically inhibit store-operated calcium entry in human embryonic kidney-293 cells. J. Biol. Chem. 2004 279 2 1040 1049 10.1074/jbc.M308234200 14583617
    [Google Scholar]
  63. Possani L.D. Rodriguez dl.V.R.C. Scorpion venom peptides. Handbook of Biologically Active Peptides 2006
    [Google Scholar]
  64. Upadhyay U.R.R.K. Animal proteins and peptides: Anticancer and antimicrobial potential. Journal of Pharmacy Research. 3(12) Review article. J. Pharm. Res. 2010 3 3100
    [Google Scholar]
  65. Lima e Silva R. Shen J. Gong Y.Y. Seidel C.P. Hackett S.F. Kesavan K. Jacoby D.B. Campochiaro P.A. Agents that bind annexin A2 suppress ocular neovascularization. J. Cell. Physiol. 2010 225 3 855 864 10.1002/jcp.22296 20607799
    [Google Scholar]
  66. Gupta S.D. Gomes A. Debnath A. Saha A. Gomes A. Apoptosis induction in human leukemic cells by a novel protein Bengalin, isolated from Indian black scorpion venom: Through mitochondrial pathway and inhibition of heat shock proteins. Chem. Biol. Interact. 2010 183 2 293 303 10.1016/j.cbi.2009.11.006 19913524
    [Google Scholar]
  67. Pocock R.I. The scottish silurian scorpion. J. Cell Sci. 1901 s2-44 174 291 311 10.1242/jcs.s2‑44.174.291
    [Google Scholar]
  68. Kjellesvig-Waering E.N. A restudy of the fossil scorpions of the world. 1986 55 1 287
    [Google Scholar]
  69. Dunlop J.A. Webster M. Fossil Evidence, Terrestrialization and Arachnid Phylogeny. J. Arachnol. 1999 27 1 86 93
    [Google Scholar]
  70. Gasparini S. Gilquin B. Ménez A. Comparison of sea anemone and scorpion toxins binding to Kv1 channels: An example of convergent evolution. Toxicon 2004 43 8 901 908 10.1016/j.toxicon.2004.03.029 15208023
    [Google Scholar]
  71. Vogt R.G. Köhne A.C. Dubnau J.T. Prestwich G.D. Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar. J. Neurosci. 1989 9 9 3332 3346 10.1523/JNEUROSCI.09‑09‑03332.1989 2795166
    [Google Scholar]
  72. Li C.M. Haratipour P. Lingeman R.G. Perry J.P. Gu L. Hickey R.J. Malkas L.H. Novel peptide therapeutic approaches for cancer treatment. Cells 2021 10 11 2908 10.3390/cells10112908 34831131
    [Google Scholar]
  73. Díaz-Gómez J.L. Martín-Estal I. Rivera-Aboytes E. Gaxiola-Muñíz R.A. Puente-Garza C.A. García-Lara S. Castorena-Torres F. Biomedical applications of synthetic peptides derived from venom of animal origin: A systematic review. Biomed. Pharmacother. 2024 170 116015 10.1016/j.biopha.2023.116015 38113629
    [Google Scholar]
  74. Cooper B.M. Iegre J. Peptides as a platform for targeted therapeutics for cancer: Peptide–drug conjugates (PDCs). Chem. Soc. Rev. 2021 50 1480 1494 10.1039/D0CS00556H
    [Google Scholar]
/content/journals/cp/10.2174/0115701646354270250114111820
Loading
/content/journals/cp/10.2174/0115701646354270250114111820
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: scorpion ; proteomic ; Buthotus saulcyi ; venom ; MALDI-TOF/MS ; peptide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test