Skip to content
2000
image of Nanotechnology-Driven Approaches for Targeted Rectal Microbiome Modulation in Gastrointestinal Disorders

Abstract

The gastrointestinal tract hosts a complex ecosystem of microorganisms, with rectum playing a critical role in microbial diversity and health. This manuscript provides a comprehensive overview of rectal microbes, their functions, and the latest technological advancements in studying and manipulating these microorganisms for therapeutic purposes. Key microbial phyla in the rectum include Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria, each contributing to essential functions such as digestion, vitamin synthesis, and immune modulation. The growth mechanisms of these microbes are influenced by nutrient availability, anaerobic conditions, pH levels, and microbial interactions. Technological applications like probiotics, fecal microbiota transplantation, microbiome analysis, and prebiotics are explored for their potential to enhance gut health. Novel treatments incorporating nanoparticles offer targeted delivery, enhanced bioavailability, and controlled release of therapeutic agents, paving the way for advanced and personalized interventions in gastrointestinal medicine. Future directions include personalized medicine, microbiome-host interaction studies, disease mechanism investigations, and synthetic biology approaches, aiming to harness the full potential of rectal microbiota for disease prevention and health maintenance.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646355945250107043902
2025-01-08
2025-04-09
Loading full text...

Full text loading...

References

  1. Ruan W. Engevik M.A. Spinler J.K. Versalovic J. Healthy human gastrointestinal microbiome: Composition and function after a decade of exploration. Dig. Dis. Sci. 2020 65 3 695 705 10.1007/s10620‑020‑06118‑4 32067143
    [Google Scholar]
  2. Montassier E. Valdés-Mas R. Batard E. Zmora N. Dori-Bachash M. Suez J. Elinav E. Probiotics impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner. Nat. Microbiol. 2021 6 8 1043 1054 10.1038/s41564‑021‑00920‑0 34226711
    [Google Scholar]
  3. Morelli M. Kurek D. Ng C.P. Queiroz K. Gut-on-a-Chip models: Current and future perspectives for host–microbial interactions research. Biomedicines 2023 11 2 619 10.3390/biomedicines11020619 36831155
    [Google Scholar]
  4. Wen X. Qi L.M. Zhao K. Influence of gut bacteria on type 2 diabetes: Mechanisms and therapeutic strategy. World J. Diabetes 2025 16 1 10.4239/wjd.v16.i1.100376
    [Google Scholar]
  5. Zhan Q. Wang R. Thakur K. Feng J.Y. Zhu Y.Y. Zhang J.G. Wei Z.J. Unveiling of dietary and gut-microbiota derived B vitamins: Metabolism patterns and their synergistic functions in gut-brain homeostasis. Crit. Rev. Food Sci. Nutr. 2024 64 13 4046 4058 10.1080/10408398.2022.2138263 36271691
    [Google Scholar]
  6. Wang S. Mu L. Yu C. He Y. Hu X. Jiao Y. Xu Z. You S. Liu S.L. Bao H. Microbial collaborations and conflicts: Unraveling interactions in the gut ecosystem. Gut Microbes 2024 16 1 2296603 10.1080/19490976.2023.2296603 38149632
    [Google Scholar]
  7. Jensen B.A.H. Heyndrickx M. Jonkers D. Mackie A. Millet S. Naghibi M. Pærregaard S.I. Pot B. Saulnier D. Sina C. Sterkman L.G.W. Van den Abbeele P. Venlet N.V. Zoetendal E.G. Ouwehand A.C. Small intestine vs. colon ecology and physiology: Why it matters in probiotic administration. Cell Rep. Med. 2023 4 9 101190 10.1016/j.xcrm.2023.101190 37683651
    [Google Scholar]
  8. Wang J. Shan S. Li D. Zhang Z. Ma Q. Long-term influence of chloroxylenol on anaerobic microbial community: Performance, microbial interaction, and antibiotic resistance gene behaviors. Sci. Total Environ. 2023 897 165330 10.1016/j.scitotenv.2023.165330 37419339
    [Google Scholar]
  9. Jin R. Song J. Liu C. Lin R. Liang D. Aweya J.J. Weng W. Zhu L. Shang J. Yang S. Synthetic microbial communities: Novel strategies to enhance the quality of traditional fermented foods. Compr. Rev. Food Sci. Food Saf. 2024 23 4 e13388 10.1111/1541‑4337.13388 38865218
    [Google Scholar]
  10. Ma L. Li Y. Wei J. Li Z. Li H. Li Y. Zheng F. Liu Z. Tan D. The long-term application of controlled-release nitrogen fertilizer maintains a more stable bacterial community and nitrogen cycling functions than common urea in fluvo-aquic soil. Agronomy 2023 14 1 7 10.3390/agronomy14010007
    [Google Scholar]
  11. Nüse B. Holland T. Rauh M. Gerlach R.G. Mattner J. L-arginine metabolism as pivotal interface of mutual host–microbe interactions in the gut. Gut Microbes 2023 15 1 2222961 10.1080/19490976.2023.2222961 37358082
    [Google Scholar]
  12. Fofanova T.Y. Karandikar U.C. Auchtung J.M. Wilson R.L. Valentin A.J. Britton R.A. Grande-Allen K.J. Estes M.K. Hoffman K. Ramani S. Stewart C.J. Petrosino J.F. A novel system to culture human intestinal organoids under physiological oxygen content to study microbial-host interaction. PLoS One 2024 19 7 e0300666 10.1371/journal.pone.0300666 39052651
    [Google Scholar]
  13. Wang Y. Zhang Z. Lin L. Xing G. Jiang Y. Cao W. Zhang Y. Interspecies electron transfer and microbial interactions in a novel Fe(II)-mediated anammox coupled mixotrophic denitrification system. Bioresour. Technol. 2024 403 130852 10.1016/j.biortech.2024.130852 38761867
    [Google Scholar]
  14. Berrios L. Peay K.G. Field reduction of ectomycorrhizal fungi has cascading effects on soil microbial communities and reduces the abundance of ectomycorrhizal symbiotic bacteria. Mol. Ecol. 2025 34 1 e17585 10.1111/mec.17585 39524010
    [Google Scholar]
  15. Szajewska H. Scott K.P. de Meij T. Forslund-Startceva S.K. Knight R. Koren O. Little P. Johnston B.C. Łukasik J. Suez J. Tancredi D.J. Sanders M.E. Antibiotic-perturbed microbiota and the role of probiotics. Nat. Rev. Gastroenterol. Hepatol. 2024 ••• 1 18 10.1038/s41575‑024‑01023‑x 39663462
    [Google Scholar]
  16. Kelliher J.M. Johnson L.Y.D. Robinson A.J. Longley R. Hanson B.T. Cailleau G. Bindschedler S. Junier P. Chain P.S.G. Fabricated devices for performing bacterial-fungal interaction experiments across scales. Front. Microbiol. 2024 15 1380199 10.3389/fmicb.2024.1380199 39171270
    [Google Scholar]
  17. Vignesh A. Amal T.C. Selvakumar S. Vasanth K. Unraveling the role of medicinal plants and Gut microbiota in colon cancer: Towards microbiota- based strategies for prevention and treatment. Health Sci. Rep. 2023 9 100115 10.1016/j.hsr.2023.100115
    [Google Scholar]
  18. Khan M. Shah S. Shah W. Khan I. Ali H. Ali I. Ullah R. Wang X. Mehmood A. Wang Y. Gut microbiome as a treatment in colorectal cancer. Int. Rev. Immunol. 2024 43 4 229 247 10.1080/08830185.2024.2312294 38343353
    [Google Scholar]
  19. Zhang H. Shi Y. Lin C. He C. Wang S. Li Q. Sun Y. Li M. Overcoming cancer risk in inflammatory bowel disease: New insights into preventive strategies and pathogenesis mechanisms including interactions of immune cells, cancer signaling pathways, and gut microbiota. Front. Immunol. 2024 14 1338918 10.3389/fimmu.2023.1338918 38288125
    [Google Scholar]
  20. López-Espinosa J. Park P. Holcomb M. Godin B. Villapol S. Nanotechnology-driven therapies for neurodegenerative diseases: A comprehensive review. Ther. Deliv. 2024 15 12 997 1024 10.1080/20415990.2024.2401307 39297726
    [Google Scholar]
  21. Qi L. Chen Z. Wang D. Wang L. Soliman M.M. El-Bahy S.M. Guo Z. El-Bahy Z.M. Zhang M. Hu P. Zhao K. Structural characterization of red yeast rice-derived polysaccharide and its promotion of lipid metabolism and gut function in high-fat diet-induced mice. Int. J. Biol. Macromol. 2024 282 Pt 1 136744 10.1016/j.ijbiomac.2024.136744 39433195
    [Google Scholar]
  22. Zhang J. Liu M. Guo H. Gao S. Hu Y. Zeng G. Yang D. Nanotechnology‐driven strategies to enhance the treatment of drug‐resistant bacterial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024 16 3 e1968 10.1002/wnan.1968 38772565
    [Google Scholar]
  23. Jayashree P Kalpita M Judith T Bio-engineered gut microbiota for drug delivery: Novel propitious realm. Probiotics CRC Press Boca Raton 2024 251 281
    [Google Scholar]
  24. Xie L-W Lu H-Y Tang L-F Probiotic consortia protect the intestine against radiation injury by improving intestinal epithelial homeostasis. Int. J. Radiat. Oncol. Biol. Phys. 2024 Sep 1 120 1 189 204 10.1016/j.ijrobp.2024.03.003
    [Google Scholar]
  25. Liu T. Gu J. Fu C. Su L. Three-dimensional scaffolds for intestinal cell culture: Fabrication, utilization, and prospects. Tissue Eng. Part B Rev. 2024 30 2 158 175 10.1089/ten.teb.2023.0124 37646409
    [Google Scholar]
  26. Datta N. Johnson C. Kao D. Gurnani P. Alexander C. Polytarchou C. Monaghan T.M. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis. Pharmacol. Res. 2023 194 106870 10.1016/j.phrs.2023.106870 37499702
    [Google Scholar]
  27. Nazir A. Hussain F.H.N. Raza A. Advancing microbiota therapeutics: The role of synthetic biology in engineering microbial communities for precision medicine. Front. Bioeng. Biotechnol. 2024 12 1511149 10.3389/fbioe.2024.1511149 39698189
    [Google Scholar]
  28. Mehrabadi S. Assessment of microbiome signature for predicting prognosis of gastrointestinal cancers. Curr. Cancer Ther. Rev. 2024 21 10.2174/0115733947333326240925092332
    [Google Scholar]
  29. He T. Cheng X. Xing C. The gut microbial diversity of colon cancer patients and the clinical significance. Bioengineered 2021 12 1 7046 7060 10.1080/21655979.2021.1972077 34551683
    [Google Scholar]
  30. Jiao L. Kourkoumpetis T. Hutchinson D. Ajami N.J. Hoffman K. White D.L. Graham D.Y. Hair C. Shah R. Kanwal F. Jarbrink-Sehgal M. Husain N. Hernaez R. Hou J. Cole R. Velez M. Ketwaroo G. Kramer J. El-Serag H.B. Petrosino J.F. Spatial characteristics of colonic mucosa-associated gut microbiota in humans. Microb. Ecol. 2022 83 3 811 821 10.1007/s00248‑021‑01789‑6 34223947
    [Google Scholar]
  31. Rolinec M. Medo J. Gábor M. Miluchová M. Bíro D. Šimko M. Juráček M. Hanušovský O. Schubertová Z. Gálik B. The effect of coconut oil addition to feed of pigs on rectal microbial diversity and bacterial abundance. Animals 2020 10 10 1764 10.3390/ani10101764 33003372
    [Google Scholar]
  32. Mukhopadhya I. Martin J.C. Shaw S. McKinley A.J. Gratz S.W. Scott K.P. Comparison of microbial signatures between paired faecal and rectal biopsy samples from healthy volunteers using next-generation sequencing and culturomics. Microbiome 2022 10 1 171 10.1186/s40168‑022‑01354‑4 36242064
    [Google Scholar]
  33. Mitra A Biegert GWG Delgado AY Microbial diversity and composition is associated with patient-reported toxicity during chemoradiation therapy for cervical cancer. Int. J. Radiat. Oncol. Biol. Phys. 2020 107 1 163 171 10.1016/j.ijrobp.2019.12.040
    [Google Scholar]
  34. Yin X.F. Ye T. Chen H.L. Liu J. Mu X.F. Li H. Wang J. Hu Y.J. Cao H. Kang W.Q. The microbiome compositional and functional differences between rectal mucosa and feces. Microbiol. Spectr. 2024 12 8 e03549-23 10.1128/spectrum.03549‑23 38916335
    [Google Scholar]
  35. Wang Y. Li H. Gut microbiota modulation: A tool for the management of colorectal cancer. J. Transl. Med. 2022 20 1 178 10.1186/s12967‑022‑03378‑8 35449107
    [Google Scholar]
  36. Hanus M. Parada-Venegas D. Landskron G. Wielandt A.M. Hurtado C. Alvarez K. Hermoso M.A. López-Köstner F. De la Fuente M. Immune system, microbiota, and microbial metabolites: The unresolved triad in colorectal cancer microenvironment. Front. Immunol. 2021 12 612826 10.3389/fimmu.2021.612826 33841394
    [Google Scholar]
  37. Blyth G.A.D. Connors L. Fodor C. Cobo E.R. The network of colonic host defense peptides as an innate immune defense against enteropathogenic bacteria. Front. Immunol. 2020 11 965 10.3389/fimmu.2020.00965 32508838
    [Google Scholar]
  38. Santangelo B.E. Apgar M. Colorado A.S.B. Martin C.G. Sterrett J. Wall E. Joachimiak M.P. Hunter L.E. Lozupone C.A. Integrating biological knowledge for mechanistic inference in the host-associated microbiome. Front. Microbiol. 2024 15 1351678 10.3389/fmicb.2024.1351678 38638909
    [Google Scholar]
  39. Zhang Y. Thomas J.P. Korcsmaros T. Gul L. Integrating multi-omics to unravel host-microbiome interactions in inflammatory bowel disease. Cell Rep. Med. 2024 5 9 101738 10.1016/j.xcrm.2024.101738 39293401
    [Google Scholar]
  40. Gerasimova Y. Ali H. Nadeem U. Challenges for pathologists in implementing clinical microbiome diagnostic testing. J. Pathol. Clin. Res. 2024 10 5 e70002 10.1002/2056‑4538.70002 39289163
    [Google Scholar]
  41. Singh V Rastogi M. Future and challenges of microbiome engineering. Microbiome Engineering 1st ed CRC Press 2024 263 280 10.1201/9781003394662‑17
    [Google Scholar]
  42. Patel N. Dinesh S. Sharma S. From gut to glucose: A comprehensive review on functional foods and dietary interventions for diabetes management. Curr. Diabetes Rev. 2024 20 5 e111023222081 10.2174/0115733998266653231005072450 37861021
    [Google Scholar]
  43. Khan I. Bai Y. Zha L. Ullah N. Ullah H. Shah S.R.H. Sun H. Zhang C. Mechanism of the gut microbiota colonization resistance and enteric pathogen infection. Front. Cell. Infect. Microbiol. 2021 11 716299 10.3389/fcimb.2021.716299 35004340
    [Google Scholar]
  44. Maynard C. Weinkove D. Bacteria increase host micronutrient availability: Mechanisms revealed by studies in C. elegans. Genes Nutr. 2020 15 1 4 10.1186/s12263‑020‑00662‑4 32138646
    [Google Scholar]
  45. Bajinka O. Tan Y. Abdelhalim K.A. Özdemir G. Qiu X. Extrinsic factors influencing gut microbes, the immediate consequences and restoring eubiosis. AMB Express 2020 10 1 130 10.1186/s13568‑020‑01066‑8 32710186
    [Google Scholar]
  46. Mohammadi M. Mirzaei H. Motallebi M. The role of anaerobic bacteria in the development and prevention of colorectal cancer: A review study. Anaerobe 2022 73 102501 10.1016/j.anaerobe.2021.102501 34906686
    [Google Scholar]
  47. Kasper S.H. Morell-Perez C. Wyche T.P. Sana T.R. Lieberman L.A. Hett E.C. Colorectal cancer-associated anaerobic bacteria proliferate in tumor spheroids and alter the microenvironment. Sci. Rep. 2020 10 1 5321 10.1038/s41598‑020‑62139‑z 32210258
    [Google Scholar]
  48. Dalal N. Jalandra R. Bayal N. Yadav A.K. Harshulika Sharma M. Makharia G.K. Kumar P. Singh R. Solanki P.R. Kumar A. Gut microbiota-derived metabolites in CRC progression and causation. J. Cancer Res. Clin. Oncol. 2021 147 11 3141 3155 10.1007/s00432‑021‑03729‑w 34273006
    [Google Scholar]
  49. Bell HN Rebernick RJ Goyert J Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance. Cancer Cell 2022 40 2 185 200 10.1016/j.ccell.2021.12.001
    [Google Scholar]
  50. Colquhoun C. Duncan M. Grant G. Inflammatory bowel diseases: Host-microbial-environmental interactions in dysbiosis. Diseases 2020 8 2 13 10.3390/diseases8020013 32397606
    [Google Scholar]
  51. Xing J. Fang Y. Zhang W. Zhang H. Tang D. Wang D. Bacterial driver–passenger model in biofilms: A new mechanism in the development of colorectal cancer. Clin. Transl. Oncol. 2022 24 5 784 795 10.1007/s12094‑021‑02738‑y 35000132
    [Google Scholar]
  52. Mirzaei R. Mirzaei H. Alikhani M.Y. Sholeh M. Arabestani M.R. Saidijam M. Karampoor S. Ahmadyousefi Y. Moghadam M.S. Irajian G.R. Hasanvand H. Yousefimashouf R. Bacterial biofilm in colorectal cancer: What is the real mechanism of action? Microb. Pathog. 2020 142 104052 10.1016/j.micpath.2020.104052 32045645
    [Google Scholar]
  53. Vestby L.K. Grønseth T. Simm R. Nesse L.L. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 2020 9 2 59 10.3390/antibiotics9020059 32028684
    [Google Scholar]
  54. Singh V. Shirbhate E. Kore R. Vishwakarma S. Parveen S. Veerasamy R. Tiwari A.K. Rajak H. Microbial metabolites-induced epigenetic modifications for inhibition of colorectal cancer: Current status and future perspectives. Mini Rev. Med. Chem. 2025 25 1 76 93 10.2174/0113895575320344240625080555 38982701
    [Google Scholar]
  55. Jain P. Mohapatra S. Farooq U. Hassan N. Mirza M.A. Iqbal Z. An overview of the dichotomous role of microbiota in cancer progression and management. Curr. Cancer Drug Targets 2025 25 1 38 48 10.2174/0115680096282503240124104029 38409691
    [Google Scholar]
  56. Song Q. Gao Y. Liu K. Tang Y. Man Y. Wu H. Gut microbial and metabolomics profiles reveal the potential mechanism of fecal microbiota transplantation in modulating the progression of colitis-associated colorectal cancer in mice. J. Transl. Med. 2024 22 1 1028 10.1186/s12967‑024‑05786‑4 39548468
    [Google Scholar]
  57. Ciernikova S Sevcikova A Drgona L Modulating the gut microbiota by probiotics, prebiotics, postbiotics, and fecal microbiota transplantation: An emerging trend in cancer patient care. Biochim. Biophys. Acta BBA - Rev. Cancer 2023 2023 188990
    [Google Scholar]
  58. Lang T. Zhu R. Zhu X. Yan W. Li Y. Zhai Y. Wu T. Huang X. Yin Q. Li Y. Combining gut microbiota modulation and chemotherapy by capecitabine-loaded prebiotic nanoparticle improves colorectal cancer therapy. Nat. Commun. 2023 14 1 4746 10.1038/s41467‑023‑40439‑y 37550297
    [Google Scholar]
  59. Yoo S. Jung S.C. Kwak K. Kim J.S. The role of prebiotics in modulating gut microbiota: Implications for human health. Int. J. Mol. Sci. 2024 25 9 4834 10.3390/ijms25094834 38732060
    [Google Scholar]
  60. Zhong Y. Liu Z. Wang Y. Cai S. Qiao Z. Hu X. Wang T. Yi J. Preventive methods for colorectal cancer through dietary interventions: A focus on gut microbiota modulation. Food Rev. Int. 2024 ••• 1 29 10.1080/87559129.2024.2414908
    [Google Scholar]
  61. Gao J. Li J. Luo Z. Wang H. Ma Z. Nanoparticle-based drug delivery systems for inflammatory bowel disease treatment. Drug Des. Devel. Ther. 2024 18 2921 2949 10.2147/DDDT.S461977 39055164
    [Google Scholar]
  62. Abavisani M. Faraji N. Faraji S. Ebadpour N. Kesharwani P. Sahebkar A. A comprehensive review on utilizing CRISPR/Cas system for microbiome modification. Biochem. Eng. J. 2024 211 109443 10.1016/j.bej.2024.109443
    [Google Scholar]
  63. Wolfe W. Xiang Z. Yu X. Li P. Chen H. Yao M. Fei Y. Huang Y. Yin Y. Xiao H. The challenge of applications of probiotics in gastrointestinal diseases. Adv. Gut Microbiome Res. 2023 2023 1 1 10 10.1155/2023/1984200
    [Google Scholar]
  64. Baral K.C. Bajracharya R. Lee S.H. Han H.K. Advancements in the pharmaceutical applications of probiotics: Dosage forms and formulation technology. Int. J. Nanomedicine 2021 16 7535 7556 10.2147/IJN.S337427 34795482
    [Google Scholar]
  65. Almeida C. Oliveira R. Baylina P. Fernandes R. Teixeira F.G. Barata P. Current trends and challenges of fecal microbiota transplantation—an easy method that works for all? Biomedicines 2022 10 11 2742 10.3390/biomedicines10112742 36359265
    [Google Scholar]
  66. Chen C-C Chiu C-H Current and future applications of fecal microbiota transplantation for children. Biomed. J. 2022 45 1 11 18
    [Google Scholar]
  67. Yi Y Shen L Shi W Gut microbiome components predict response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: A prospective, longitudinal study. Clin. Cancer Res. 2021 27 5 1329 1340
    [Google Scholar]
  68. Wei L.Q. Cheong I.H. Yang G.H. Li X.G. Kozlakidis Z. Ding L. Liu N.N. Wang H. The application of high-throughput technologies for the study of microbiome and cancer. Front. Genet. 2021 12 699793 10.3389/fgene.2021.699793 34394190
    [Google Scholar]
  69. Cunningham M. Azcarate-Peril M.A. Barnard A. Benoit V. Grimaldi R. Guyonnet D. Holscher H.D. Hunter K. Manurung S. Obis D. Petrova M.I. Steinert R.E. Swanson K.S. van Sinderen D. Vulevic J. Gibson G.R. Shaping the future of probiotics and prebiotics. Trends Microbiol. 2021 29 8 667 685 10.1016/j.tim.2021.01.003 33551269
    [Google Scholar]
  70. Yamamoto Y. Kanayama N. Nakayama Y. Matsushima N. Current status, issues and future prospects of personalized medicine for each disease. J. Pers. Med. 2022 12 3 444 10.3390/jpm12030444 35330444
    [Google Scholar]
  71. Yang S-R. Schultheis A.M. Yu H. Precision medicine in non-small cell lung cancer: Current applications and future directions. Seminars in cancer biology. Elsevier 2022
    [Google Scholar]
  72. Elemento O. The future of precision medicine: Towards a more predictive personalized medicine. Emerg. Top. Life Sci. 2020 4 2 175 177 10.1042/ETLS20190197 32856697
    [Google Scholar]
  73. Huang G. Khan R. Zheng Y. Lee P.C. Li Q. Khan I. Exploring the role of gut microbiota in advancing personalized medicine. Front. Microbiol. 2023 14 1274925 10.3389/fmicb.2023.1274925 38098666
    [Google Scholar]
  74. Basha O.M. Hafez R.A. Salem S.M. Anis R.H. Hanafy A.S. Impact of gut microbiome alteration in ulcerative colitis patients on disease severity and outcome. Clin. Exp. Med. 2022 23 5 1763 1772 10.1007/s10238‑022‑00917‑x 36344781
    [Google Scholar]
  75. Napolitano M. Fasulo E. Ungaro F. Massimino L. Sinagra E. Danese S. Mandarino F.V. Gut dysbiosis in irritable bowel syndrome: A narrative review on correlation with disease subtypes and novel therapeutic implications. Microorganisms 2023 11 10 2369 10.3390/microorganisms11102369 37894027
    [Google Scholar]
  76. Kwon H. Nam E.H. Kim H. Jo H. Bang W.Y. Lee M. Shin H. Kim D. Kim J. Kim H. Lee J. Jung Y.H. Yang J. Won D.D. Shin M. Effect of Lacticaseibacillus rhamnosus IDCC 3201 on irritable bowel syndrome with constipation: A randomized, double-blind, and placebo-controlled trial. Sci. Rep. 2024 14 1 22384 10.1038/s41598‑024‑72887‑x 39333245
    [Google Scholar]
  77. Ma T. Shen X. Shi X. Sakandar H.A. Quan K. Li Y. Jin H. Kwok L-Y. Zhang H. Sun Z. Targeting gut microbiota and metabolism as the major probiotic mechanism - An evidence-based review. Trends Food Sci. Technol. 2023 138 178 198 10.1016/j.tifs.2023.06.013
    [Google Scholar]
  78. Lopes S.A. Roque-Borda C.A. Duarte J.L. Di Filippo L.D. Borges Cardoso V.M. Pavan F.R. Chorilli M. Meneguin A.B. Delivery strategies of probiotics from nano- and microparticles: Trends in the treatment of inflammatory bowel disease—an overview. Pharmaceutics 2023 15 11 2600 10.3390/pharmaceutics15112600 38004578
    [Google Scholar]
  79. Kok C.R. Rose D. Hutkins R. Predicting personalized responses to dietary fiber interventions: Opportunities for modulation of the gut microbiome to improve health. Annu. Rev. Food Sci. Technol. 2023 14 1 157 182 10.1146/annurev‑food‑060721‑015516 36446139
    [Google Scholar]
  80. Shin Y.C. Than N. Min S. Shin W. Kim H.J. Modelling host–microbiome interactions in organ-on-a-chip platforms. Nature Reviews Bioengineering 2023 2 2 175 191 10.1038/s44222‑023‑00130‑9
    [Google Scholar]
  81. McKenzie N.D. Hong H. Ahmad S. Holloway R.W. The gut microbiome and cancer immunotherapeutics: A review of emerging data and implications for future gynecologic cancer research. Crit. Rev. Oncol. Hematol. 2021 157 103165 10.1016/j.critrevonc.2020.103165 33227575
    [Google Scholar]
  82. Manrique P Montero I Fernandez-Gosende M Past, present, and future of microbiome-based therapies. Microbiome Res. Rep. 2024 3 2 10.20517/mrr.2023.80
    [Google Scholar]
  83. Tsigalou C. Konstantinidis T. Aloizou A-M. Future therapeutic prospects in dealing with autoimmune diseases: Treatment based on the microbiome model. Role of Microorganisms in Pathogenesis and Management of Autoimmune Diseases: Volume II: Kidney, Central Nervous System, Eye, Blood, Blood Vessels & Bowel Springer 2023 489 520
    [Google Scholar]
  84. Loganathan T. Priya Doss C G. The influence of machine learning technologies in gut microbiome research and cancer studies - A review. Life Sci. 2022 311 Pt A 121118 10.1016/j.lfs.2022.121118 36404489
    [Google Scholar]
  85. Ezzamouri B. Shoaie S. Ledesma-Amaro R. Synergies of systems biology and synthetic biology in human microbiome studies. Front. Microbiol. 2021 12 681982 10.3389/fmicb.2021.681982 34531833
    [Google Scholar]
  86. Kim K. Kang M. Cho B.K. Systems and synthetic biology-driven engineering of live bacterial therapeutics. Front. Bioeng. Biotechnol. 2023 11 1267378 10.3389/fbioe.2023.1267378 37929193
    [Google Scholar]
  87. Rathi R. Sanshita Kumar A. Vishvakarma V. Huanbutta K. Singh I. Sangnim T. Advancements in rectal drug delivery systems: Clinical trials, and patents perspective. Pharmaceutics 2022 14 10 2210 10.3390/pharmaceutics14102210 36297645
    [Google Scholar]
  88. Terreni M. Taccani M. Pregnolato M. New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives. Molecules 2021 26 9 2671 10.3390/molecules26092671 34063264
    [Google Scholar]
  89. Fong W. Li Q. Yu J. Gut microbiota modulation: A novel strategy for prevention and treatment of colorectal cancer. Oncogene 2020 39 26 4925 4943 10.1038/s41388‑020‑1341‑1 32514151
    [Google Scholar]
  90. Pilmis B. Le Monnier A. Zahar J.R. Gut microbiota, antibiotic therapy and antimicrobial resistance: A narrative review. Microorganisms 2020 8 2 269 10.3390/microorganisms8020269 32079318
    [Google Scholar]
  91. Chlebicz-Wójcik A. Śliżewska K. Probiotics, prebiotics, and synbiotics in the irritable bowel syndrome treatment: A review. Biomolecules 2021 11 8 1154 10.3390/biom11081154 34439821
    [Google Scholar]
  92. Alam Z. Shang X. Effat K. Kanwal F. He X. Li Y. Xu C. Niu W. War A.R. Zhang Y. The potential role of prebiotics, probiotics, and synbiotics in adjuvant cancer therapy especially colorectal cancer. J. Food Biochem. 2022 46 10 e14302 10.1111/jfbc.14302 35816322
    [Google Scholar]
  93. Secombe K.R. Van Sebille Y.Z.A. Mayo B.J. Coller J.K. Gibson R.J. Bowen J.M. Diarrhea induced by small molecule tyrosine kinase inhibitors compared with chemotherapy: Potential role of the microbiome. Integr. Cancer Ther. 2020 19 1534735420928493 10.1177/1534735420928493 32493068
    [Google Scholar]
  94. Shah S.A. Bousvaros A. Stevens A.C. Immunomodulating agents in gastrointestinal disease. Immune Modulating Agents. CRC Press 2020 267 299 10.1201/9781003064671‑15
    [Google Scholar]
  95. Reens A.L. Cabral D.J. Liang X. Norton J.E. Jr Therien A.G. Hazuda D.J. Swaminathan G. Immunomodulation by the commensal microbiome during immune-targeted interventions: Focus on cancer immune checkpoint inhibitor therapy and vaccination. Front. Immunol. 2021 12 643255 10.3389/fimmu.2021.643255 34054810
    [Google Scholar]
  96. Cristofori F. Dargenio V.N. Dargenio C. Miniello V.L. Barone M. Francavilla R. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: A door to the body. Front. Immunol. 2021 12 578386 10.3389/fimmu.2021.578386 33717063
    [Google Scholar]
  97. Ding X. Li Q. Li P. Chen X. Xiang L. Bi L. Zhu J. Huang X. Cui B. Zhang F. Fecal microbiota transplantation: A promising treatment for radiation enteritis? Radiother. Oncol. 2020 143 12 18 10.1016/j.radonc.2020.01.011 32044171
    [Google Scholar]
  98. Svensson C.K. Cold F. Ribberholt I. Zangenberg M. Mirsepasi-Lauridsen H.C. Petersen A.M. Helms M. The efficacy of faecal microbiota transplant and rectal bacteriotherapy in patients with recurrent clostridioides difficile infection: A retrospective cohort study. Cells 2022 11 20 3272 10.3390/cells11203272 36291139
    [Google Scholar]
  99. Hegelmaier T. Lebbing M. Duscha A. Tomaske L. Tönges L. Holm J.B. Bjørn Nielsen H. Gatermann S.G. Przuntek H. Haghikia A. Interventional influence of the intestinal microbiome through dietary intervention and bowel cleansing might improve motor symptoms in Parkinson’s disease. Cells 2020 9 2 376 10.3390/cells9020376 32041265
    [Google Scholar]
  100. Sasson AN Ananthakrishnan AN Raman M Diet in treatment of inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 2021 19 3 425 435 10.1016/j.cgh.2019.11.054
    [Google Scholar]
  101. Limketkai BN Godoy-Brewer G Parian AM Dietary interventions for the treatment of inflammatory bowel diseases: An updated systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2023 21 10 2508 2525 10.1016/j.cgh.2022.11.026
    [Google Scholar]
  102. Langhorst J. Schöls M. Cinar Z. Eilert R. Kofink K. Paul A. Zempel C. Elsenbruch S. Lauche R. Ahmed M. Haller D. Cramer H. Dobos G. Koch A.K. Comprehensive lifestyle-modification in patients with ulcerative colitis–a randomized controlled trial. J. Clin. Med. 2020 9 10 3087 10.3390/jcm9103087 32987894
    [Google Scholar]
  103. Perillo F. Amoroso C. Strati F. Giuffrè M.R. Díaz-Basabe A. Lattanzi G. Facciotti F. Gut microbiota manipulation as a tool for colorectal cancer management: Recent advances in its use for therapeutic purposes. Int. J. Mol. Sci. 2020 21 15 5389 10.3390/ijms21155389 32751239
    [Google Scholar]
  104. Saeed M. Shoaib A. Kandimalla R. Microbe-based therapies for colorectal cancer: Advantages and limitations. Seminars in cancer biology. Elsevier 2022
    [Google Scholar]
  105. Oka A. Sartor R.B. Microbial-based and microbial-targeted therapies for inflammatory bowel diseases. Dig. Dis. Sci. 2020 65 3 757 788 10.1007/s10620‑020‑06090‑z 32006212
    [Google Scholar]
  106. Wang Z.H. Huang W. Zhang S. Chu M. Yin N. Zhu C. Zhang Z. Shi J. Liu J. Self‐thermophoretic nanoparticles enhance intestinal mucus penetration and reduce pathogenic bacteria interception in colorectal cancer. Adv. Funct. Mater. 2023 33 17 2212013 10.1002/adfm.202212013
    [Google Scholar]
  107. Koul B. Poonia A.K. Yadav D. Jin J.O. Microbe-mediated biosynthesis of nanoparticles: Applications and future prospects. Biomolecules 2021 11 6 886 10.3390/biom11060886 34203733
    [Google Scholar]
  108. De Anda-Flores Y. Carvajal-Millan E. Campa-Mada A. Lizardi-Mendoza J. Rascon-Chu A. Tanori-Cordova J. Martínez-López A.L. Polysaccharide-based nanoparticles for colon-targeted drug delivery systems. Polysaccharides 2021 2 3 626 647 10.3390/polysaccharides2030038
    [Google Scholar]
  109. Ganguly D. Choudhury A. Majumdar S. Nanotechnology approaches for colon targeted drug delivery system: A review. J. Young Pharm. 2023 15 2 233 238 10.5530/jyp.2023.15.32
    [Google Scholar]
  110. Xu B. Shaoyong W. Wang L. Yang C. Chen T. Jiang X. Yan R. Jiang Z. Zhang P. Jin M. Wang Y. Gut-targeted nanoparticles deliver specifically targeted antimicrobial peptides against Clostridium perfringens infections. Sci. Adv. 2023 9 39 eadf8782 10.1126/sciadv.adf8782 37774026
    [Google Scholar]
  111. Alkushi A.G. Abdelfattah-Hassan A. Eldoumani H. Elazab S.T. Mohamed S.A.M. Metwally A.S. S El-Shetry E. Saleh A.A. ElSawy N.A. Ibrahim D. Probiotics-loaded nanoparticles attenuated colon inflammation, oxidative stress, and apoptosis in colitis. Sci. Rep. 2022 12 1 5116 10.1038/s41598‑022‑08915‑5 35332200
    [Google Scholar]
  112. Alkushi A.G. Elazab S.T. Abdelfattah-Hassan A. Mahfouz H. Salem G.A. Sheraiba N.I. Mohamed E.A.A. Attia M.S. El-Shetry E.S. Saleh A.A. ElSawy N.A. Ibrahim D. Multi-strain-probiotic-loaded nanoparticles reduced Colon inflammation and orchestrated the expressions of tight junction, NLRP3 Inflammasome and Caspase-1 genes in DSS-induced colitis model. Pharmaceutics 2022 14 6 1183 10.3390/pharmaceutics14061183 35745756
    [Google Scholar]
  113. Bhalla P. Rengaswamy R. Karunagaran D. Suraishkumar G.K. Sahoo S. Metabolic modeling of host–microbe interactions for therapeutics in colorectal cancer. NPJ Syst. Biol. Appl. 2022 8 1 1 10.1038/s41540‑021‑00210‑9 35046399
    [Google Scholar]
  114. Lazar V. Holban A.M. Curutiu C. Ditu L.M. Modulation of gut microbiota by essential oils and inorganic nanoparticles: Impact in nutrition and health. Front. Nutr. 2022 9 920413 10.3389/fnut.2022.920413 35873448
    [Google Scholar]
  115. Abed O.A. Attlassy Y. Xu J. Han K. Moon J.J. Emerging nanotechnologies and microbiome engineering for the treatment of inflammatory bowel disease. Mol. Pharm. 2022 19 12 4393 4410 10.1021/acs.molpharmaceut.2c00222 35878420
    [Google Scholar]
  116. Bai X. Huang Z. Duraj-Thatte A.M. Ebert M.P. Zhang F. Burgermeister E. Liu X. Scott B.M. Li G. Zuo T. Engineering the gut microbiome. Nature Reviews Bioengineering 2023 1 9 665 679 10.1038/s44222‑023‑00072‑2
    [Google Scholar]
  117. Li B. Zu M. Jiang A. Cao Y. Wu J. Shahbazi M.A. Shi X. Reis R.L. Kundu S.C. Xiao B. Magnetic natural lipid nanoparticles for oral treatment of colorectal cancer through potentiated antitumor immunity and microbiota metabolite regulation. Biomaterials 2024 307 122530 10.1016/j.biomaterials.2024.122530 38493672
    [Google Scholar]
  118. Ma L. Ma Y. Gao Q. Liu S. Zhu Z. Shi X. Dai F. Reis R.L. Kundu S.C. Cai K. Xiao B. Mulberry leaf lipid nanoparticles: A naturally targeted crispr/cas9 oral delivery platform for alleviation of colon diseases. Small 2024 20 25 2307247 10.1002/smll.202307247 38243871
    [Google Scholar]
  119. Kim B. Seo H.W. Lee K. Yong D. Park Y.K. Lee Y. Lee S. Kim D.W. Kim D. Ryu C.M. Lipid nanoparticle‐mediated CRISPR‐Cas13a delivery for the control of bacterial infection. Adv. Healthc. Mater. 2024 2403281 10.1002/adhm.202403281 39580667
    [Google Scholar]
  120. Liu J. Zhou Y. Lyu Q. Targeted protein delivery based on stimuli‐triggered nanomedicine. Exploration. Wiley Online Library 2024
    [Google Scholar]
  121. Chen H. Li B. Shi S. Zhou T. Wang X. Wang Z. Zhou X. Wang M. Shi W. Ren L. Au–Fe3O4 nanozyme coupled with CRISPR-Cas12a for sensitive and visual antibiotic resistance diagnosing. Anal. Chim. Acta 2023 1251 341014 10.1016/j.aca.2023.341014 36925313
    [Google Scholar]
  122. Tiwari A. Ika Krisnawati D. Susilowati E. Mutalik C. Kuo T.R. Next-generation probiotics and chronic diseases: A review of current research and future directions. J. Agric. Food Chem. 2024 72 50 27679 27700 10.1021/acs.jafc.4c08702 39588716
    [Google Scholar]
  123. Pandey A. Mishra A.K. Immunomodulation, toxicity, and therapeutic potential of nanoparticles. BioTech 2022 11 3 42 10.3390/biotech11030042 36134916
    [Google Scholar]
  124. Silveira M.J. Castro F. Oliveira M.J. Sarmento B. Immunomodulatory nanomedicine for colorectal cancer treatment: A landscape to be explored? Biomater. Sci. 2021 9 9 3228 3243 10.1039/D1BM00137J 33949441
    [Google Scholar]
  125. Zhuang Y.P. Zhou H.L. Chen H.B. Zheng M.Y. Liang Y.W. Gu Y.T. Li W.T. Qiu W.L. Zhou H.G. Gut microbiota interactions with antitumor immunity in colorectal cancer: From understanding to application. Biomed. Pharmacother. 2023 165 115040 10.1016/j.biopha.2023.115040 37364479
    [Google Scholar]
  126. Liu H Wang J He T Butyrate: A double-edged sword for health? Adv. Nutr. 2018 9 1 21 29 10.1093/advances/nmx009
    [Google Scholar]
  127. Rolland A. Douard V. Lapaque N. Role of pattern recognition receptors and microbiota-derived ligands in obesity. Front. Microbiomes. 2024 3 1324476 10.3389/frmbi.2024.1324476
    [Google Scholar]
  128. Ansaldo E. Farley T.K. Belkaid Y. Control of immunity by the microbiota. Annu. Rev. Immunol. 2021 39 1 449 479 10.1146/annurev‑immunol‑093019‑112348 33902310
    [Google Scholar]
  129. Wang X. Zhang P. Zhang X. Probiotics regulate gut microbiota: An effective method to improve immunity. Molecules 2021 26 19 6076 10.3390/molecules26196076 34641619
    [Google Scholar]
  130. Mar J.S. Ota N. Pokorzynski N.D. Peng Y. Jaochico A. Sangaraju D. Skippington E. Lekkerkerker A.N. Rothenberg M.E. Tan M.W. Yi T. Keir M.E. IL-22 alters gut microbiota composition and function to increase aryl hydrocarbon receptor activity in mice and humans. Microbiome 2023 11 1 47 10.1186/s40168‑023‑01486‑1 36894983
    [Google Scholar]
  131. Zhang P. Li Y. Tang W. Zhao J. Jing L. McHugh K.J. Theranostic nanoparticles with disease-specific administration strategies. Nano Today 2022 42 101335 10.1016/j.nantod.2021.101335
    [Google Scholar]
  132. Debasmita D. Ghosh S.S. Chattopadhyay A. Living gut bacteria functionalized with gold nanoclusters and drug for facile cancer theranostics. ACS Appl. Bio Mater. 2023 6 2 628 639 10.1021/acsabm.2c00911 36651899
    [Google Scholar]
  133. Mittal R. Patel A.P. Jhaveri V.M. Kay S.I.S. Debs L.H. Parrish J.M. Pan D.R. Nguyen D. Mittal J. Jayant R.D. Recent advancements in nanoparticle based drug delivery for gastrointestinal disorders. Expert Opin. Drug Deliv. 2018 15 3 301 318 10.1080/17425247.2018.1420055 29272976
    [Google Scholar]
  134. Narayana S. Gowda B.H.J. Hani U. Shimu S.S. Paul K. Das A. Ashique S. Ahmed M.G. Tarighat M.A. Abdi G. Inorganic nanoparticle-based treatment approaches for colorectal cancer: Recent advancements and challenges. J. Nanobiotechnology 2024 22 1 427 10.1186/s12951‑024‑02701‑3 39030546
    [Google Scholar]
  135. Lu L. Chen G. Qiu Y. Li M. Liu D. Hu D. Gu X. Xiao Z. Nanoparticle-based oral delivery systems for colon targeting: Principles and design strategies. Sci. Bull. 2016 61 9 670 681 10.1007/s11434‑016‑1056‑4
    [Google Scholar]
  136. Dudhat K.R. Patel H.V. Mori D.D. Design, development, and in vitro characterization of pirfenidone-loaded biodegradable nanoparticles for idiopathic pulmonary fibrosis. J. Pharm. Innov. 2023 18 4 1908 1925 10.1007/s12247‑023‑09763‑0
    [Google Scholar]
  137. Dudhat K. Harnessing metal nanoparticles: Revolutionizing cancer therapy through targeted drug delivery and tumor microenvironment modulation. Nano 2024 19 10 2430008 10.1142/S1793292024300081
    [Google Scholar]
  138. El-Gendy A.O. Nawaf K.T. Ahmed E. Samir A. Hamblin M.R. Hassan M. Mohamed T. Preparation of zinc oxide nanoparticles using laser-ablation technique: Retinal epithelial cell (ARPE-19) biocompatibility and antimicrobial activity when activated with femtosecond laser. J. Photochem. Photobiol. B 2022 234 112540 10.1016/j.jphotobiol.2022.112540 35973287
    [Google Scholar]
  139. Zorraquín-Peña I. Cueva C. Bartolomé B. Moreno-Arribas M.V. Silver nanoparticles against foodborne bacteria. Effects at intestinal level and health limitations. Microorganisms 2020 8 1 132 10.3390/microorganisms8010132 31963508
    [Google Scholar]
  140. Anik M.I. Mahmud N. Al Masud A. Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. Nano Select 2022 3 4 792 828 10.1002/nano.202100255
    [Google Scholar]
  141. Naser S.S. Ghosh B. Simnani F.Z. Singh D. Choudhury A. Nandi A. Sinha A. Jha E. Panda P.K. Suar M. Verma S.K. Emerging trends in the application of green synthesized biocompatible ZnO nanoparticles for translational paradigm in cancer therapy. Journal of Nanotheranostics 2023 4 3 248 279 10.3390/jnt4030012
    [Google Scholar]
  142. Soltau Missio Pinheiro L.D. Sentena N.Z. Sangoi G.G. Vizzotto B.S. de Oliveira Pinto E. Pavoski G. Romano Espinosa D.C. Machado A.K. Leonardo da Silva W. Copper nanoparticles from acid ascorbic: Biosynthesis, characterization, in vitro safety profile and antimicrobial activity. Mater. Chem. Phys. 2023 307 128110 10.1016/j.matchemphys.2023.128110
    [Google Scholar]
  143. Pillai R.R. Sreelekshmi P.B. Meera A.P. Thomas S. Biosynthesized iron oxide nanoparticles: Cytotoxic evaluation against human colorectal cancer cell lines. Mater. Today Proc. 2022 50 187 195 10.1016/j.matpr.2022.01.151
    [Google Scholar]
  144. Choukaife H. Seyam S. Alallam B. Doolaanea A.A. Alfatama M. Current advances in chitosan nanoparticles based oral drug delivery for colorectal cancer treatment. Int. J. Nanomedicine 2022 17 3933 3966 10.2147/IJN.S375229 36105620
    [Google Scholar]
  145. Yang C. Merlin D. Lipid-based drug delivery nanoplatforms for colorectal cancer therapy. Nanomaterials 2020 10 7 1424 10.3390/nano10071424 32708193
    [Google Scholar]
  146. Spirescu V.A. Chircov C. Grumezescu A.M. Andronescu E. Polymeric nanoparticles for antimicrobial therapies: An up-to-date overview. Polymers 2021 13 5 724 10.3390/polym13050724 33673451
    [Google Scholar]
  147. Janjua T.I. Cao Y. Kleitz F. Linden M. Yu C. Popat A. Silica nanoparticles: A review of their safety and current strategies to overcome biological barriers. Adv. Drug Deliv. Rev. 2023 203 115115 10.1016/j.addr.2023.115115 37844843
    [Google Scholar]
  148. Jing W. Zhu M. Wang F. Zhao X. Dong S. Xu Y. Wang S. Yang J. Wang K. Liu W. Hyaluronic acid-melatonin nanoparticles improve the dysregulated intestinal barrier, microbiome and immune response in mice with dextran sodium sulfate-induced colitis. J. Biomed. Nanotechnol. 2022 18 1 175 184 10.1166/jbn.2022.3232 35180910
    [Google Scholar]
  149. Dudhat K. Emerging trends in transdermal drug delivery: Nanoparticle formulations and technologies for enhanced skin penetration and drug efficiency. Pharm. Nanotechnol. 2024 13 10.2174/0122117385331393241111073911 39660524
    [Google Scholar]
  150. Park J.C. Lee G.T. Seo J.H. Mannose-functionalized core@shell nanoparticles and their interactions with bacteria. J. Mater. Sci. 2017 52 3 1534 1545 10.1007/s10853‑016‑0448‑9
    [Google Scholar]
  151. Dudhat K.R. v Patel H. Novel nanoparticulate systems for idiopathic pulmonary fibrosis: A review. Asian J. Pharm. Clin. Res. 2020 13 11 3 11 10.22159/ajpcr.2020.v13i11.39035
    [Google Scholar]
  152. Huang M. Ma Y. Qian J. Sokolova I.M. Zhang C. Waiho K. Fang J.K.H. Ma X. Wang Y. Hu M. Combined effects of norfloxacin and polystyrene nanoparticles on the oxidative stress and gut health of the juvenile horseshoe crab Tachypleus tridentatus. J. Hazard. Mater. 2024 468 133801 10.1016/j.jhazmat.2024.133801 38377908
    [Google Scholar]
  153. Chen C. Beloqui A. Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv. Drug Deliv. Rev. 2023 203 115117 10.1016/j.addr.2023.115117 37898337
    [Google Scholar]
  154. Dudhat K. Patel H. Preparation and evaluation of pirfenidone loaded chitosan nanoparticles pulmonary delivery for idiopathic pulmonary fibrosis. Fut. J. Pharm. Sci. 2022 8 1 29 10.1186/s43094‑022‑00419‑3
    [Google Scholar]
  155. Pirojiya H. Dudhat K. Niosomes: A revolution in sustainable and targeted drug delivery-green synthesis, precision medicine, and beyond. Regen. Eng. Transl. Med. 2024 ••• 1 37 10.1007/s40883‑024‑00373‑x
    [Google Scholar]
  156. Dholakiya A. Dudhat K. Patel J. Mori D. An integrated QbD based approach of SMEDDS and liquisolid compacts to simultaneously improve the solubility and processability of hydrochlorthiazide. J. Drug Deliv. Sci. Technol. 2021 61 102162 10.1016/j.jddst.2020.102162
    [Google Scholar]
  157. Ejazi S.A. Louisthelmy R. Maisel K. Mechanisms of nanoparticle transport across intestinal tissue: An oral delivery perspective. ACS Nano 2023 17 14 13044 13061 10.1021/acsnano.3c02403 37410891
    [Google Scholar]
  158. Perumal K. Ahmad S. Mohd-Zahid M.H. Nanoparticles and gut microbiota in colorectal cancer. Front. Nanotechnol. 2021 3 681760 10.3389/fnano.2021.681760
    [Google Scholar]
  159. Niu X. Meng Y. Cui J. Li R. Ding X. Niu B. Chang G. Xu N. Li G. Wang Y. Wang L. Hepatic stellate cell- and liver microbiome-specific delivery system for dihydrotanshinone i to ameliorate liver fibrosis. ACS Nano 2023 17 23 23608 23625 10.1021/acsnano.3c06626 37995097
    [Google Scholar]
  160. Dangi P. Chaudhary N. Chaudhary V. Virdi A.S. Kajla P. Khanna P. Jha S.K. Jha N.K. Alkhanani M.F. Singh V. Haque S. Nanotechnology impacting probiotics and prebiotics: A paradigm shift in nutraceuticals technology. Int. J. Food Microbiol. 2023 388 110083 10.1016/j.ijfoodmicro.2022.110083 36708610
    [Google Scholar]
  161. Ul Ain N. Naveed M. Aziz T. Shabbir M.A. Al Asmari F. Abdi G. Sameeh M.Y. Alhhazmi A.A. Mix-match synthesis of nanosynbiotics from probiotics and prebiotics to counter gut dysbiosis via AI integrated formulation profiling. Sci. Rep. 2024 14 1 18397 10.1038/s41598‑024‑69515‑z 39117977
    [Google Scholar]
  162. Ashaolu T.J. Emerging applications of nanotechnologies to probiotics and prebiotics. Int. J. Food Sci. Technol. 2021 56 8 3719 3725 10.1111/ijfs.15020
    [Google Scholar]
  163. Vijayaram S. Razafindralambo H. Sun Y.Z. Piccione G. Multisanti C.R. Faggio C. Synergistic interaction of nanoparticles and probiotic delivery: A review. J. Fish Dis. 2024 47 5 e13916 10.1111/jfd.13916 38226408
    [Google Scholar]
  164. Dhaval M. Vaghela P. Patel K. Sojitra K. Patel M. Patel S. Dudhat K. Shah S. Manek R. Parmar R. Lipid-based emulsion drug delivery systems — A comprehensive review. Drug Deliv. Transl. Res. 2022 12 7 1616 1639 10.1007/s13346‑021‑01071‑9 34609731
    [Google Scholar]
  165. Zhao Y. Jiang Q. Roles of the polyphenol–gut microbiota interaction in alleviating colitis and preventing colitis-associated colorectal cancer. Adv. Nutr. 2021 12 2 546 565 10.1093/advances/nmaa104 32905583
    [Google Scholar]
  166. Dahiya D. Singh NIGAM P. Inclusion of dietary-fibers in nutrition provides prebiotic substrates to probiotics for the synthesis of beneficial metabolites SCFA to sustain gut health minimizing risk of IBS, IBD, CRC. Recent Progress in Nutrition 2023 3 3 1 15 10.21926/rpn.2303017
    [Google Scholar]
  167. Malik R. Patil S. Nanotechnology: Regulatory outlook on nanomaterials and nanomedicines in United States, Europe and India. Appl. Clin. Res. Clin. Trials Regul. Aff. 2020 7 3 225 236 10.2174/2213476X06666191129094236
    [Google Scholar]
  168. Shahzad M. Hameed H. Amjad A. Khan M.A. Qureshi I.S. Hameed A. Saeed A. Munir R. An updated landscape on nanopharmaceutical delivery for mitigation of colon cancer. Naunyn Schmiedebergs Arch. Pharmacol. 2024 ••• 1 19 10.1007/s00210‑024‑03482‑0 39361171
    [Google Scholar]
  169. Sinha A. Roy S. Prospective therapeutic targets and recent advancements in the treatment of inflammatory bowel disease. Immunopharmacol. Immunotoxicol. 2024 46 4 550 563 10.1080/08923973.2024.2381756 39013809
    [Google Scholar]
  170. Kiran N.S. Yashaswini C. Maheshwari R. Bhattacharya S. Prajapati B.G. Advances in precision medicine approaches for colorectal cancer: From molecular profiling to targeted therapies. ACS Pharmacol. Transl. Sci. 2024 7 4 967 990 10.1021/acsptsci.4c00008 38633600
    [Google Scholar]
  171. Hashemi M. Abbaszadeh S. Rashidi M. Amini N. Talebi Anaraki K. Motahhary M. Khalilipouya E. Harif Nashtifani A. Shafiei S. Ramezani Farani M. Nabavi N. Salimimoghadam S. Aref A.R. Raesi R. Taheriazam A. Entezari M. Zha W. STAT3 as a newly emerging target in colorectal cancer therapy: Tumorigenesis, therapy response, and pharmacological/nanoplatform strategies. Environ. Res. 2023 233 116458 10.1016/j.envres.2023.116458 37348629
    [Google Scholar]
  172. Gu X. Minko T. Targeted nanoparticle-based diagnostic and treatment options for pancreatic cancer. Cancers 2024 16 8 1589 10.3390/cancers16081589 38672671
    [Google Scholar]
  173. Parsana H. Chotaliya M. Dudhat K. Formulation and evaluation of itraconazole novel nanosuspension-based in situ gelling system for vaginal candidiasis using 24 factorial design. Bionanoscience 2023 13 4 1870 1884 10.1007/s12668‑023‑01169‑z
    [Google Scholar]
  174. Fernandes M.R. Aggarwal P. Costa R.G.F. Cole A.M. Trinchieri G. Targeting the gut microbiota for cancer therapy. Nat. Rev. Cancer 2022 22 12 703 722 10.1038/s41568‑022‑00513‑x 36253536
    [Google Scholar]
  175. Dhaval M. Makwana J. Sakariya E. Dudhat K. Drug nanocrystals: A comprehensive review with current regulatory guidelines. Curr. Drug Deliv. 2020 17 6 470 482 10.2174/1567201817666200512104833 32394834
    [Google Scholar]
  176. Younis M.A. Tawfeek H.M. Abdellatif A.A.H. Abdel-Aleem J.A. Harashima H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv. Drug Deliv. Rev. 2022 181 114083 10.1016/j.addr.2021.114083 34929251
    [Google Scholar]
  177. Murthy S. Anbazhagan M. Maddipatla S.C. Kolachala V.L. Dodd A. Pelia R. Cutler D.J. Matthews J.D. Kugathasan S. Single-cell transcriptomics of rectal organoids from individuals with perianal fistulizing Crohn’s disease reveals patient-specific signatures. Sci. Rep. 2024 14 1 26142 10.1038/s41598‑024‑75947‑4 39477985
    [Google Scholar]
  178. McNerney M.P. Doiron K.E. Ng T.L. Chang T.Z. Silver P.A. Theranostic cells: Emerging clinical applications of synthetic biology. Nat. Rev. Genet. 2021 22 11 730 746 10.1038/s41576‑021‑00383‑3 34234299
    [Google Scholar]
  179. Guo L. Ding J. Zhou W. Harnessing bacteria for tumor therapy: Current advances and challenges. Chin. Chem. Lett. 2024 35 2 108557 10.1016/j.cclet.2023.108557
    [Google Scholar]
  180. Lamas B. Martins Breyner N. Houdeau E. Impacts of foodborne inorganic nanoparticles on the gut microbiota-immune axis: potential consequences for host health. Part. Fibre Toxicol. 2020 17 1 19 10.1186/s12989‑020‑00349‑z 32487227
    [Google Scholar]
  181. Gangadoo S. Nguyen H. Rajapaksha P. Zreiqat H. Latham K. Cozzolino D. Chapman J. Truong V.K. Inorganic nanoparticles as food additives and their influence on the human gut microbiota. Environ. Sci. Nano 2021 8 6 1500 1518 10.1039/D1EN00025J
    [Google Scholar]
  182. Zhou P. Wang L. An S. Wang C. Jiang Q. Li X. Fabrication of quercetin-loaded nanoparticles based on Hohenbuehelia serotina polysaccharides and their modulatory effects on intestinal function and gut microbiota in vivo. Innov. Food Sci. Emerg. Technol. 2022 78 102993 10.1016/j.ifset.2022.102993
    [Google Scholar]
  183. Liu T. Chai S. Li M. Chen X. Xie Y. Zhao Z. Xie J. Yu Y. Gao F. Zhu F. Yang L. A nanoparticle-based sonodynamic therapy reduces Helicobacter pylori infection in mouse without disrupting gut microbiota. Nat. Commun. 2024 15 1 844 10.1038/s41467‑024‑45156‑8 38286999
    [Google Scholar]
  184. Jayaseelan C. Achiraman S. Saravanan D. Nanotechnological intervention for harnessing microbiome potential. Progress in Soil Microbiome Research. Springer 2024 319 338 10.1007/978‑3‑031‑71487‑0_14
    [Google Scholar]
  185. Anand U. Carpena M. Kowalska-Góralska M. Garcia-Perez P. Sunita K. Bontempi E. Dey A. Prieto M.A. Proćków J. Simal-Gandara J. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. Sci. Total Environ. 2022 821 153472 10.1016/j.scitotenv.2022.153472 35093375
    [Google Scholar]
  186. Wang Y. Mo Y. Sun Y. Li J. An Y. Feng N. Liu Y. Intestinal nanoparticle delivery and cellular response: A review of the bidirectional nanoparticle-cell interplay in mucosa based on physiochemical properties. J. Nanobiotechnology 2024 22 1 669 10.1186/s12951‑024‑02930‑6 39487532
    [Google Scholar]
  187. Yang M. Zhang Y. Ma Y. Yan X. Gong L. Zhang M. Zhang B. Nanoparticle-based therapeutics of inflammatory bowel diseases: A narrative review of the current state and prospects. Journal of Bio-X Research 2020 3 4 157 173 10.1097/JBR.0000000000000078
    [Google Scholar]
  188. Das B.K. Sarma A. Goswami A.K. Gut-health pharmacology: Integrating microbiota insights with natural product based therapies. Biochemical and Molecular Pharmacology in Drug Discovery. Elsevier 2024 377 399 10.1016/B978‑0‑443‑16013‑4.00018‑X
    [Google Scholar]
/content/journals/cp/10.2174/0115701646355945250107043902
Loading
/content/journals/cp/10.2174/0115701646355945250107043902
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test