Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Introduction

is a well-known, multidrug-resistant bacteria that poses a serious risk to public health everywhere. The discovery of novel antibacterial drugs has become an urgent need due to the emergence of multi-drug resistance strains and the lack of appropriate antibiotics. To develop effective treatments for infections, this work explores the evolutionary analysis of Outer Membrane Proteins (OMPs), specifically OMP33-36.

Methods

The structural data and sequence information of OMP33-36 were retrieved from Protein Data Bank and UniProt, respectively. A range of bio-computational techniques including ConSurf web server, MEGA XI, and BioEdit were exploited to carry out hydrophobicity analysis, entropy, sequence alignment, and functional conserved site identification. By revealing close relatives of , phylogenetic research clarified the evolutionary relationship of OMPs among 70 bacterial species. Six remarkably conserved areas in OMPs from various bacterial species were found through a conserved domain search using BioEdit.

Results

This study has explored the evolutionary dynamics and intricacies in functional regions of OMPs.

Conclusion

The outcomes of this study highlight the significant understanding of the structural and evolutionary aspects of OMP, which will help in the development of effective and precise therapy for infections. The construction of OMPs targeted inhibitors lowers the possibility of off-target effects on human cells.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646354315241231094038
2025-01-08
2025-06-20
Loading full text...

Full text loading...

References

  1. AuckenH. BerlauJ. MalnickH. PittT. Distribution of Acinetobacter species on skin of healthy humans.Eur. J. Clin. Microbiol. Infect. Dis.199918317918310.1007/s100960050254 10357050
    [Google Scholar]
  2. AroraD. JindalN. RomitK.R. Emerging antibiotic resistance in Pseudomonas aeruginosa.Int. J. Pharm. Pharm. Sci.201138284
    [Google Scholar]
  3. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics.2017Available from: https://remed.org/wp-content/uploads/2017/03/lobal-priority-list-of-antibiotic-resistant-bacteria-2017.pdf
  4. Antibiotic resistance threats in the United States, 2019.2019Available from: https://stacks.cdc.gov/view/cdc/82532
  5. RiceL.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE.J. Infect. Dis.200819781079108110.1086/533452 18419525
    [Google Scholar]
  6. KyriakidisI. VasileiouE. PanaZ.D. TragiannidisA. Acinetobacter baumannii antibiotic resistance mechanisms.Pathogens202110337310.3390/pathogens10030373 33808905
    [Google Scholar]
  7. SmithS.G.J. MahonV. LambertM.A. FaganR.P. A molecular Swiss army knife: OmpA structure, function and expression.FEMS Microbiol. Lett.2007273111110.1111/j.1574‑6968.2007.00778.x 17559395
    [Google Scholar]
  8. McConnellM.J. ActisL. PachónJ. Acinetobacter baumannii: Human infections, factors contributing to pathogenesis and animal models.FEMS Microbiol. Rev.201337213015510.1111/j.1574‑6976.2012.00344.x 22568581
    [Google Scholar]
  9. ChoiC.H. LeeE.Y. LeeY.C. ParkT.I. KimH.J. HyunS.H. KimS.A. LeeS.K. LeeJ.C. Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells.Cell. Microbiol.2005781127113810.1111/j.1462‑5822.2005.00538.x 16008580
    [Google Scholar]
  10. LeeJ.S. ChoiC.H. KimJ.W. LeeJ.C. Acinetobacter baumannii outer membrane protein a induces dendritic cell death through mitochondrial targeting.J. Microbiol.201048338739210.1007/s12275‑010‑0155‑1 20571958
    [Google Scholar]
  11. SugawaraE. NikaidoH. OmpA is the principal nonspecific slow porin of Acinetobacter baumannii.J. Bacteriol.2012194154089409610.1128/JB.00435‑12 22636785
    [Google Scholar]
  12. SmaniY. FàbregaA. RocaI. Sánchez-EncinalesV. VilaJ. PachónJ. Role of OmpA in the multidrug resistance phenotype of Acinetobacter baumannii.Antimicrob. Agents Chemother.20145831806180810.1128/AAC.02101‑13 24379205
    [Google Scholar]
  13. SmaniY. Dominguez-HerreraJ. PachónJ. Association of the outer membrane protein Omp33 with fitness and virulence of Acinetobacter baumannii.J. Infect. Dis.2013208101561157010.1093/infdis/jit386 23908480
    [Google Scholar]
  14. RumboC. TomásM. Fernández MoreiraE. SoaresN.C. CarvajalM. SantillanaE. BeceiroA. RomeroA. BouG. The Acinetobacter baumannii Omp33-36 porin is a virulence factor that induces apoptosis and modulates autophagy in human cells.Infect. Immun.201482114666468010.1128/IAI.02034‑14 25156738
    [Google Scholar]
  15. CamarenaL. BrunoV. EuskirchenG. PoggioS. SnyderM. Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing.PLoS Pathog.201064e100083410.1371/journal.ppat.1000834 20368969
    [Google Scholar]
  16. Flores-DíazM. Monturiol-GrossL. NaylorC. Alape-GirónA. FliegerA. Bacterial sphingomyelinases and phospholipases as virulence factors.Microbiol. Mol. Biol. Rev.201680359762810.1128/MMBR.00082‑15 27307578
    [Google Scholar]
  17. VetrivelU. SubramanianG. DorairajS. A novel in silico approach to identify potential therapeutic targets in human bacterial pathogens.HUGO J.201151-4253410.1007/s11568‑011‑9152‑7 23205162
    [Google Scholar]
  18. BarhD. TiwariS. JainN. AliA. SantosA.R. MisraA.N. AzevedoV. KumarA. In silico subtractive genomics for target identification in human bacterial pathogens.Drug Dev. Res.201172216217710.1002/ddr.20413
    [Google Scholar]
  19. SchmidM.B. Crystallizing new approaches for antimicrobial drug discovery.Biochem. Pharmacol.20067171048105610.1016/j.bcp.2005.12.024 16458857
    [Google Scholar]
  20. SalemmeF.R. SpurlinoJ. BoneR. Serendipity meets precision: The integration of structure-based drug design and combinatorial chemistry for efficient drug discovery.Structure19975331932410.1016/S0969‑2126(97)00189‑5 9083110
    [Google Scholar]
  21. HuymenM.A. Diaz-LazcozY. BorkP. Differential genome display.Trends Genet.1997131038939010.1016/S0168‑9525(97)01255‑9 9351339
    [Google Scholar]
  22. HuynenM. DandekarT. BorkP. Differential genome analysis applied to the species-specific features of Helicobacter pylori.FEBS Lett.199842611510.1016/S0014‑5793(98)00276‑2 9598967
    [Google Scholar]
  23. KyteJ. DoolittleR.F. A simple method for displaying the hydropathic character of a protein.J. Mol. Biol.1982157110513210.1016/0022‑2836(82)90515‑0 7108955
    [Google Scholar]
  24. FieldsF.R. LeeS.W. McConnellM.J. Using bacterial genomes and essential genes for the development of new antibiotics.Biochem. Pharmacol.2017134748610.1016/j.bcp.2016.12.002 27940263
    [Google Scholar]
  25. PayneD.J. GwynnM.N. HolmesD.J. PomplianoD.L. Drugs for bad bugs: Confronting the challenges of antibacterial discovery.Nat. Rev. Drug Discov.200761294010.1038/nrd2201 17159923
    [Google Scholar]
  26. SerralF. CastelloF.A. SosaE.J. PardoA.M. PalumboM.C. ModenuttiC. PalominoM.M. LazarowskiA. AuzmendiJ. RamosP.I.P. NicolásM.F. TurjanskiA.G. MartíM.A. Fernández Do PortoD. From genome to drugs: New approaches in antimicrobial discovery.Front. Pharmacol.20211264706010.3389/fphar.2021.647060 34177572
    [Google Scholar]
  27. DwivediM. Dharshini KottaisamyC.P. RajD.S. Insights into evolutionary and conservancy analytics on human insulin receptor proteins.Lett. Drug Des. Discov.202320553654410.2174/1570180819666220510140605
    [Google Scholar]
  28. ManiA. DwivediM. An evolutionary account of GPI anchored proteins.Eur. J. Exp. Biol.201111148155
    [Google Scholar]
  29. DwivediM. GuptaD. Evolutionary Inferences on Lysosomal Membrane Proteins (LMPs) defective in metabolic disorders.Cystinosin and Sialin. Adv. Appl. Sci. Res.201452353358
    [Google Scholar]
  30. DwivediM. GuptaD. A comparative genomics based evaluation on evolutionary aspect of cystinosin: The protein defective in cystinosis.J. Comput.201136130134
    [Google Scholar]
  31. CoudertE. GehantS. de CastroE. PozzatoM. BaratinD. NetoT. SigristC.J.A. RedaschiN. BridgeA. BridgeA.J. AimoL. Argoud-PuyG. AuchinclossA.H. AxelsenK.B. BansalP. BaratinD. NetoT.M.B. BlatterM-C. BollemanJ.T. BoutetE. BreuzaL. GilB.C. Casals-CasasC. EchioukhK.C. CoudertE. CucheB. de CastroE. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GaudetP. GehantS. GerritsenV. GosA. GruazN. HuloC. Hyka-NouspikelN. JungoF. KerhornouA. Le MercierP. LieberherrD. MassonP. MorgatA. MuthukrishnanV. PaesanoS. PedruzziI. PilboutS. PourcelL. PouxS. PozzatoM. PruessM. RedaschiN. RivoireC. SigristC.J.A. SonessonK. SundaramS. BatemanA. MartinM-J. OrchardS. MagraneM. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. A-Jee, H.B.; Cukura, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Garmiri, P.; da Costa Gonzales, L.J.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Joshi, V.; Jyothi, D.; Kandasaamy, S.; Lock, A.; Luciani, A.; Lugaric, M.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Pundir, S.; Qi, G.; Raj, S.; Raposo, P.; Rice, D.L.; Saidi, R.; Santos, R.; Speretta, E.; Stephenson, J.; Totoo, P.; Turner, E.; Tyagi, N.; Vasudev, P.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y. Annotation of biologically relevant ligands in UniProtKB using ChEBI.Bioinformatics2023391btac79310.1093/bioinformatics/btac793 36484697
    [Google Scholar]
  32. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  33. Abellón-RuizJ. ZahnM. BasléA. van den BergB. Crystal structure of the Acinetobacter baumannii outer membrane protein Omp33.Acta Crystallogr. D Struct. Biol.201874985286010.1107/S205979831800904X 30198896
    [Google Scholar]
  34. XuD. ZhangY. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization.Biophys. J.2011101102525253410.1016/j.bpj.2011.10.024 22098752
    [Google Scholar]
  35. JahangiriA. RasooliI. OwliaP. FooladiA.A.I. SalimianJ. An integrative in silico approach to the structure of Omp33-36 in Acinetobacter baumannii.Comput. Biol. Chem.201872778610.1016/j.compbiolchem.2018.01.003 29414099
    [Google Scholar]
  36. ChennaR. SugawaraH. KoikeT. LopezR. GibsonT.J. HigginsD.G. ThompsonJ.D. Multiple sequence alignment with the Clustal series of programs.Nucleic Acids Res.200331133497350010.1093/nar/gkg500 12824352
    [Google Scholar]
  37. AlzohairyA. BioEdit: An important software for molecular biology.GERF Bull. Biosci.201126061
    [Google Scholar]
  38. HallT.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.Nucl. Acids Symp. Ser.1999419598
    [Google Scholar]
  39. EisenbergD. WilcoxW. McLachlanA.D. Hydrophobicity and amphiphilicity in protein structure.J. Cell. Biochem.1986311111710.1002/jcb.240310103 3722276
    [Google Scholar]
  40. SaitouN. NeiM. The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol. Biol. Evol.19874440642510.1093/oxfordjournals.molbev.a040454 3447015
    [Google Scholar]
  41. KumarS. StecherG. LiM. KnyazC. TamuraK. MEGA X: Molecular evolutionary genetics analysis across computing platforms.Mol. Biol. Evol.20183561547154910.1093/molbev/msy096 29722887
    [Google Scholar]
  42. ZuckerkandlE. PaulingL. Evolutionary Divergence and Convergence in Proteins. Evolving Genes and Proteins; Bryson, V. VogelH.J. Academic Press19659716610.1016/B978‑1‑4832‑2734‑4.50017‑6
    [Google Scholar]
  43. FelsensteinJ. Confidence limits on phylogenies: An approach using the bootstrap.Evolution198539478379110.2307/2408678 28561359
    [Google Scholar]
  44. NeiM. KumarS. Molecular evolution and Phylogenetics.New YorkOxford University Press200010.1093/oso/9780195135848.001.0001
    [Google Scholar]
  45. TamuraK. StecherG. KumarS. MEGA11: Molecular evolutionary genetics analysis Version 11.Mol. Biol. Evol.20213873022302710.1093/molbev/msab120 33892491
    [Google Scholar]
  46. MüllerI. A History of Thermodynamics: The Doctrine of Energy and Entropy.Berlin/Heidelberg, GermanySpringer2007
    [Google Scholar]
  47. CoverT.M. ThomasJ.A. Elements of Information Theory.Hoboken, NJ, USAJohn Wiley & Sons, Inc.200510.1002/047174882X
    [Google Scholar]
  48. EbelingW. Physical Approaches to Biological Evolution.Berlin/Heidelberg, GermanySpringer2011Vol. 191142143
    [Google Scholar]
  49. GibbsJ.W. Elementary Principles in Statistical Mechanics.New York, NY, USAGale1902
    [Google Scholar]
  50. BoltzmannL. On the relation of a general mechanical theorem to the second law of thermodynamics.WiesbadenWTB Scientific Pocket Books197010.1007/978‑3‑322‑84986‑1_5
    [Google Scholar]
  51. AbbottI. CerqueiraG.M. BhuiyanS. PelegA.Y. Carbapenem resistance in Acinetobacter baumannii: Laboratory challenges, mechanistic insights and therapeutic strategies.Expert Rev. Anti Infect. Ther.201311439540910.1586/eri.13.21 23566149
    [Google Scholar]
  52. HowardA. O’DonoghueM. FeeneyA. SleatorR.D. Acinetobacter baumannii.Virulence20123324325010.4161/viru.19700 22546906
    [Google Scholar]
  53. BrownE.D. WrightG.D. Antibacterial drug discovery in the resistance era.Nature2016529758633634310.1038/nature17042 26791724
    [Google Scholar]
  54. ManchandaV. SanchaitaS. SinghN.P. Multidrug resistant Acinetobacter.J. Glob. Infect. Dis.20102329130410.4103/0974‑777X.68538 20927292
    [Google Scholar]
  55. SmaniY. Docobo-PérezF. McConnellM.J. PachónJ. Acinetobacter baumannii-induced lung cell death: Role of inflammation, oxidative stress and cytosolic calcium.Microb. Pathog.201150522423210.1016/j.micpath.2011.01.008 21288481
    [Google Scholar]
  56. YoonE.J. KimJ.O. KimD. LeeH. YangJ.W. LeeK.J. JeongS.H. Klebsiella pneumoniae Carbapenemase Producers in South Korea between 2013 and 2015.Front. Microbiol.201895610.3389/fmicb.2018.00056 29422888
    [Google Scholar]
  57. YarivB. YarivE. KesselA. MasratiG. ChorinA.B. MartzE. MayroseI. PupkoT. Ben-TalN. Using evolutionary data to make sense of macromolecules with a “face-lifted” ConSurf.Protein Sci.2023323e458210.1002/pro.4582 36718848
    [Google Scholar]
/content/journals/cp/10.2174/0115701646354315241231094038
Loading
/content/journals/cp/10.2174/0115701646354315241231094038
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Acinetobacter baumannii; ESKAPE pathogen; evolutionary; infection; OMP33-36; therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test