Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background

Hantavirus illness is characterized by increased vascular permeability and hemorrhagic fever with renal syndrome or cardiopulmonary syndrome.

Methods

In this study, the domain search approach, a bioinformatics method, was utilized to understand more about hantavirus E protein structures.

Results

Activities of Ca2+ binding domain, C-type lectin, Dockerin, glycosyl hydrolase (cellulase), PI3K, threonine kinase, PTEN, GTPase, PPM, flippase, and other domains were identified in Hantavirus membrane glycoprotein E.

Conclusion

According to the results in this current study, the activation of EF-hand promotes the lectin activity of E protein, which then binds to fibrocystin in the form of cohesin-dockerin. The glycosyl hydrolase activity of E protein hydrolyzes glycosidic linkages, destroying the protective capsule of cells (fibrocystin) so that it may bind to receptors such as integrins. Additionally, the enzyme activities of PTEN and PI3K permit the E protein to insert and anchor on the cell membrane. Moreover, the GTPase, SecA, and flipase activities of E proteins mediate the creation of fusion pores and the release of genetic materials. The aggressive invasion of Hantavirus causes tissue damage and bleeding, resulting in severe blood vessel leakage.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646320190241231083203
2025-01-07
2025-06-23
Loading full text...

Full text loading...

References

  1. DrebotM.A. ArtsobH. WerkerD. Hantavirus pulmonary syndrome in Canada, 1989-1999.Can. Commun. Dis. Rep.20002686569 10851764
    [Google Scholar]
  2. SargianouM. WatsonD.C. ChraP. PapaA. StarakisI. GogosC. PanosG. Hantavirus infections for the clinician: From case presentation to diagnosis and treatment.Crit. Rev. Microbiol.201238431732910.3109/1040841X.2012.673553 22553984
    [Google Scholar]
  3. MittlerE. DieterleM.E. KleinfelterL.M. SloughM.M. ChandranK. JangraR.K. Chapter Six - Hantavirus entry: Perspectives and recent advances. Advances in Virus Research; Kielian, M.; Mettenleiter, T.C.; Roossinck, M.J., Eds.;Academic Press: New York2019104185224
    [Google Scholar]
  4. ClementJ. MaesP. Van RanstM. Hemorrhagic Fever with Renal Syndrome in the New, and Hantavirus Pulmonary Syndrome in the old world: Paradi(se)gm lost or regained?Virus Res.2014187555810.1016/j.virusres.2013.12.036 24440318
    [Google Scholar]
  5. CrnčevićN. RifatbegovićZ. HukićM. DeumićS. PramenkovićE. SelimagićA. GavrankapetanovićI. AvdićM. Atypical viral infections in gastroenterology.Diseases20221048710.3390/diseases10040087 36278586
    [Google Scholar]
  6. GorbunovaE. GavrilovskayaI.N. MackowE.R. Pathogenic hantaviruses Andes virus and Hantaan virus induce adherens junction disassembly by directing vascular endothelial cadherin internalization in human endothelial cells.J. Virol.201084147405741110.1128/JVI.00576‑10 20463083
    [Google Scholar]
  7. GavrilovskayaI.N. GorbunovaE.E. MackowN.A. MackowE.R. Hantaviruses direct endothelial cell permeability by sensitizing cells to the vascular permeability factor VEGF, while angiopoietin 1 and sphingosine 1-phosphate inhibit hantavirus-directed permeability.J. Virol.200882125797580610.1128/JVI.02397‑07 18367532
    [Google Scholar]
  8. SpiropoulouC.F. SrikiatkhachornA. The role of endothelial activation in dengue hemorrhagic fever and hantavirus pulmonary syndrome.Virulence20134652553610.4161/viru.25569 23841977
    [Google Scholar]
  9. DalrympleN.A. MackowE.R. Virus interactions with endothelial cell receptors: implications for viral pathogenesis.Curr. Opin. Virol.2014713414010.1016/j.coviro.2014.06.006 25063986
    [Google Scholar]
  10. MackowE.R. GorbunovaE.E. DalrympleN.A. GavrilovskayaI.N. Role of vascular and lymphatic endothelial cells in hantavirus pulmonary syndrome suggests targeted therapeutic approaches.Lymphat. Res. Biol.201311312813510.1089/lrb.2013.0006 24024573
    [Google Scholar]
  11. LöberC. AnheierB. LindowS. KlenkH.D. FeldmannH. The Hantaan virus glycoprotein precursor is cleaved at the conserved pentapeptide WAASA.Virology2001289222422910.1006/viro.2001.1171 11689045
    [Google Scholar]
  12. BattistiA.J. ChuY.K. ChipmanP.R. KaufmannB. JonssonC.B. RossmannM.G. Structural studies of Hantaan virus.J. Virol.201185283584110.1128/JVI.01847‑10 21068243
    [Google Scholar]
  13. SerrisA. StassR. BignonE.A. MuenaN.A. ManuguerraJ.C. JangraR.K. LiS. ChandranK. TischlerN.D. HuiskonenJ.T. ReyF.A. Guardado-CalvoP. The hantavirus surface glycoprotein lattice and its fusion control mechanism.Cell20201832442456.e1610.1016/j.cell.2020.08.023 32937107
    [Google Scholar]
  14. HepojokiJ. StrandinT. VaheriA. LankinenH. Interactions and oligomerization of hantavirus glycoproteins.J. Virol.201084122724210.1128/JVI.00481‑09 19828613
    [Google Scholar]
  15. GalloG. KotlikP. RoingeardP. MonotM. ChevreuxG. UlrichR.G. TordoN. ErmonvalM. Diverse susceptibilities and responses of human and rodent cells to orthohantavirus infection reveal different levels of cellular restriction.PLoS Negl. Trop. Dis.20221610e001084410.1371/journal.pntd.0010844 36223391
    [Google Scholar]
  16. MayorJ. TorrianiG. RothenbergerS. EnglerO. T-cell immunoglobulin and mucin (TIM) contributes to the infection of human airway epithelial cells by pseudotype viruses containing Hantaan virus glycoproteins.Virology2020543546210.1016/j.virol.2020.02.002 32056847
    [Google Scholar]
  17. GeimonenE. LaMonicaR. SpringerK. FarooquiY. GavrilovskayaI.N. MackowE.R. Hantavirus pulmonary syndrome-associated hantaviruses contain conserved and functional ITAM signaling elements.J. Virol.20037721638164310.1128/JVI.77.2.1638‑1643.2003 12502882
    [Google Scholar]
  18. RissanenI. StassR. KrummS.A. SeowJ. HulswitR.J.G. PaesenG.C. HepojokiJ. VapalahtiO. LundkvistÅ. ReynardO. VolchkovV. DooresK.J. HuiskonenJ.T. BowdenT.A. Molecular rationale for antibody-mediated targeting of the hantavirus fusion glycoprotein.eLife20209e5824210.7554/eLife.5824233349334
    [Google Scholar]
  19. Cifuentes-MuñozN. Salazar-QuirozN. TischlerN. Hantavirus Gn and Gc envelope glycoproteins: key structural units for virus cell entry and virus assembly.Viruses2014641801182210.3390/v6041801 24755564
    [Google Scholar]
  20. TorrianiG. MayorJ. ZimmerG. KunzS. RothenbergerS. EnglerO. Macropinocytosis contributes to hantavirus entry into human airway epithelial cells.Virology2019531576810.1016/j.virol.2019.02.013 30852272
    [Google Scholar]
  21. MirS. Hantavirus induced kidney disease.Front. Med.2022879534010.3389/fmed.2021.795340 35118091
    [Google Scholar]
  22. KrautkrämerE. ZeierM. Hantavirus causing hemorrhagic fever with renal syndrome enters from the apical surface and requires decay-accelerating factor (DAF/CD55).J. Virol.20088294257426410.1128/JVI.02210‑07 18305044
    [Google Scholar]
  23. JangraR.K. HerbertA.S. LiR. JaeL.T. KleinfelterL.M. SloughM.M. BarkerS.L. Guardado-CalvoP. Román-SosaG. DieterleM.E. KuehneA.I. MuenaN.A. WirchnianskiA.S. NyakaturaE.K. FelsJ.M. NgM. MittlerE. PanJ. BharrhanS. WecA.Z. LaiJ.R. SidhuS.S. TischlerN.D. ReyF.A. MoffatJ. BrummelkampT.R. WangZ. DyeJ.M. ChandranK. Protocadherin-1 is essential for cell entry by New World hantaviruses.Nature2018563773255956310.1038/s41586‑018‑0702‑1 30464266
    [Google Scholar]
  24. PetterssonL. Transmission and pathogenesis of hantavirus.SwedenUmeå Universitet201531
    [Google Scholar]
  25. BauherrS. LarsbergF. PetrichA. SperberH.S. Klose-GrzelkaV. LucknerM. AzabW. SchadeM. HöferC.T. LehmannM.J. WitkowskiP.T. KrügerD.H. HerrmannA. SchwarzerR. Macropinocytosis and clathrin-dependent endocytosis play pivotal roles for the infectious entry of puumala virus.J. Virol.20209414e00184e2010.1128/JVI.00184‑20 32350075
    [Google Scholar]
  26. MirM.A. Hantaviruses.Clin. Lab. Med.2010301679110.1016/j.cll.2010.01.004 20513542
    [Google Scholar]
  27. JinM. ParkJ. LeeS. ParkB. ShinJ. SongK.J. AhnT.I. HwangS.Y. AhnB.Y. AhnK. Hantaan virus enters cells by clathrin-dependent receptor-mediated endocytosis.Virology20022941606910.1006/viro.2001.1303 11886265
    [Google Scholar]
  28. ChiangC.F. FlintM. LinJ.M.S. SpiropoulouC.F. Endocytic pathways used by Andes virus to enter primary human lung endothelial cells.PLoS One20161110e016476810.1371/journal.pone.0164768 27780263
    [Google Scholar]
  29. OginoM. YoshimatsuK. EbiharaH. ArakiK. LeeB.H. OkumuraM. ArikawaJ. Cell fusion activities of Hantaan virus envelope glycoproteins.J. Virol.20047819107761078210.1128/JVI.78.19.10776‑10782.2004 15367644
    [Google Scholar]
  30. ZhengF. MaL. ShaoL. WangG. ChenF. ZhangY. YangS. Envelope glycoproteins of hantavirus can mediate cell-cell fusion independently.New Microbiol.2007302101107 17619252
    [Google Scholar]
  31. MeierK. ThorkelssonS.R. QueminE.R.J. RosenthalM. Hantavirus replication cycle: An updated structural virology perspective.Viruses2021138156110.3390/v13081561 34452426
    [Google Scholar]
  32. LozachP.Y. ManciniR. BittoD. MeierR. OestereichL. ÖverbyA.K. PetterssonR.F. HeleniusA. Entry of bunyaviruses into mammalian cells.Cell Host Microbe20107648849910.1016/j.chom.2010.05.007 20542252
    [Google Scholar]
  33. WillenskyS. Bar-RogovskyH. BignonE.A. TischlerN.D. ModisY. DessauM. Crystal structure of glycoprotein C from a hantavirus in the post-fusion conformation.PLoS Pathog.20161210e100594810.1371/journal.ppat.1005948 27783673
    [Google Scholar]
  34. TischlerN.D. GonzalezA. Perez-AcleT. RosemblattM. ValenzuelaP.D.T. Hantavirus Gc glycoprotein: evidence for a class II fusion protein.J. Gen. Virol.200586112937294710.1099/vir.0.81083‑0 16227214
    [Google Scholar]
  35. RissanenI. StassR. ZeltinaA. LiS. HepojokiJ. HarlosK. GilbertR.J.C. HuiskonenJ.T. BowdenT.A. Structural Transitions of the Conserved and Metastable Hantaviral Glycoprotein Envelope.J. Virol.20179121e00378e1710.1128/JVI.00378‑17 28835498
    [Google Scholar]
  36. Guardado-CalvoP. BignonE.A. StettnerE. JeffersS.A. Pérez-VargasJ. Pehau-ArnaudetG. TortoriciM.A. JestinJ.L. EnglandP. TischlerN.D. ReyF.A. Mechanistic insight into bunyavirus-induced membrane fusion from structure-function analyses of the hantavirus envelope glycoprotein Gc.PLoS Pathog.20161210e100581310.1371/journal.ppat.1005813 27783711
    [Google Scholar]
  37. WhiteJ.M. DelosS.E. BrecherM. SchornbergK. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme.Crit. Rev. Biochem. Mol. Biol.200843318921910.1080/10409230802058320 18568847
    [Google Scholar]
  38. KassonP.M. ZomorodianA. ParkS. SinghalN. GuibasL.J. PandeV.S. Persistent voids: a new structural metric for membrane fusion.Bioinformatics200723141753175910.1093/bioinformatics/btm250 17488753
    [Google Scholar]
  39. LlinásR. SteinbergI.Z. WaltonK. Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse.Biophys. J.198133332335110.1016/S0006‑3495(81)84899‑0 6261850
    [Google Scholar]
  40. AlshammariA. Identification of novel inhibitors against hantaviruses through 2D fingerprinting and molecular modeling approaches.Front. Immunol.202314111332110.3389/fimmu.2023.1113321 36845113
    [Google Scholar]
  41. KassonP.M. PandeV.S. Control of membrane fusion mechanism by lipid composition: predictions from ensemble molecular dynamics.PLOS Comput. Biol.2007311e22010.1371/journal.pcbi.0030220 18020701
    [Google Scholar]
  42. NeumannS. LangoschD. Conserved conformational dynamics of membrane fusion protein transmembrane domains and flanking regions indicated by sequence statistics.Proteins20117982418242710.1002/prot.23063 21633971
    [Google Scholar]
  43. JesúsT. RogelioL. AbrahamC. UrielL. J- DanielG. AlfonsoM.T. LiliaB.B. Prediction of antiviral peptides derived from viral fusion proteins potentially active against herpes simplex and influenza A viruses.Bioinformation201281887087410.6026/97320630008870 23144542
    [Google Scholar]
  44. NoorF. AshfaqU.A. AsifM. AdeelM.M. AlshammariA. AlharbiM. Comprehensive computational analysis reveals YXXΦ[I/L/M/F/V] motif and YXXΦ-like tetrapeptides across HFRS causing Hantaviruses and their association with viral pathogenesis and host immune regulation.Front. Immunol.202213103160810.3389/fimmu.2022.1031608 36275660
    [Google Scholar]
  45. KerrS.A. JacksonE.L. LunguO.I. MeyerA.G. DemoginesA. EllingtonA.D. GeorgiouG. WilkeC.O. SawyerS.L. Computational and Functional Analysis of the Virus-Receptor Interface Reveals Host Range Trade-Offs in New World Arenaviruses.J. Virol.20158922116431165310.1128/JVI.01408‑15 26355089
    [Google Scholar]
  46. GarryC.E. GarryR.F. Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of Bunyaviruses are class II viral fusion protein (beta-penetrenes).Theor. Biol. Med. Model.2004111010.1186/1742‑4682‑1‑10 15544707
    [Google Scholar]
  47. GarryR.F. DashS. Proteomics computational analyses suggest that hepatitis C virus E1 and pestivirus E2 envelope glycoproteins are truncated class II fusion proteins.Virology2003307225526510.1016/S0042‑6822(02)00065‑X 12667795
    [Google Scholar]
  48. GarryC.E. GarryR.F. Proteomics computational analyses suggest that the bornavirus glycoprotein is a class III viral fusion protein (γ penetrene).Virol. J.20096114510.1186/1743‑422X‑6‑145 19765297
    [Google Scholar]
  49. Cifuentes-MuñozN. BarrigaG.P. ValenzuelaP.D.T. TischlerN.D. Aromatic and polar residues spanning the candidate fusion peptide of the Andes virus Gc protein are essential for membrane fusion and infection.J. Gen. Virol.201192355256310.1099/vir.0.027235‑0 21123541
    [Google Scholar]
  50. AlmanaaT.N. MubarakA. SajjadM. UllahA. HassanM. WaheedY. IrfanM. KhanS. AhmadS. Design and validation of a novel multi-epitopes vaccine against hantavirus.J. Biomol. Struct. Dyn.20244284185419510.1080/07391102.2023.2219324 37261466
    [Google Scholar]
  51. JoshiA. RayN.M. SinghJ. UpadhyayA.K. KaushikV. T-cell epitope-based vaccine designing against Orthohantavirus: a causative agent of deadly cardio-pulmonary disease.Netw. Model. Anal. Health Inform. Bioinform.2022111210.1007/s13721‑021‑00339‑x 34900515
    [Google Scholar]
  52. KochanG. EscorsD. GonzálezJ.M. CasasnovasJ.M. EstebanM. Membrane cell fusion activity of the vaccinia virus A17-A27 protein complex.Cell. Microbiol.2008101149164 17708756
    [Google Scholar]
  53. LiuR. LvY. SunW. LiM. GeN. ZhuC. DingY. LiuZ. MaR. HuangY. HouS. YingQ. GuT. WangF. NieL. WangY. HuangW. ShuJ. WuX. Investigation of a subunit protein vaccine for HFRS based on a consensus sequence between envelope glycoproteins of HTNV and SEOV.Virus Res.202333419914910.1016/j.virusres.2023.199149 37329903
    [Google Scholar]
  54. LiuR. MaH. ShuJ. ZhangQ. HanM. LiuZ. JinX. ZhangF. WuX. Vaccines and therapeutics against hantaviruses.Front. Microbiol.202010298910.3389/fmicb.2019.02989 32082263
    [Google Scholar]
  55. BatemanA. MartinM-J. OrchardS. MagraneM. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. Bye-A-JeeH. CukuraA. DennyP. DoganT. EbenezerT.G. FanJ. GarmiriP. da Costa GonzalesL.J. Hatton-EllisE. HusseinA. IgnatchenkoA. InsanaG. IshtiaqR. JoshiV. JyothiD. KandasaamyS. LockA. LucianiA. LugaricM. LuoJ. LussiY. MacDougallA. MadeiraF. MahmoudyM. MishraA. MoulangK. NightingaleA. PundirS. QiG. RajS. RaposoP. RiceD.L. SaidiR. SantosR. SperettaE. StephensonJ. TotooP. TurnerE. TyagiN. VasudevP. WarnerK. WatkinsX. ZaruR. ZellnerH. BridgeA.J. AimoL. Argoud-PuyG. AuchinclossA.H. AxelsenK.B. BansalP. BaratinD. Batista NetoT.M. BlatterM-C. BollemanJ.T. BoutetE. BreuzaL. GilB.C. Casals-CasasC. EchioukhK.C. CoudertE. CucheB. de CastroE. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GaudetP. GehantS. GerritsenV. GosA. GruazN. HuloC. Hyka-NouspikelN. JungoF. KerhornouA. Le MercierP. LieberherrD. MassonP. MorgatA. MuthukrishnanV. PaesanoS. PedruzziI. PilboutS. PourcelL. PouxS. PozzatoM. PruessM. RedaschiN. RivoireC. SigristC.J.A. SonessonK. SundaramS. WuC.H. ArighiC.N. ArminskiL. ChenC. ChenY. HuangH. LaihoK. McGarveyP. NataleD.A. RossK. VinayakaC.R. WangQ. WangY. ZhangJ. UniProt: the universal protein knowledgebase in 2023.Nucleic Acids Res.202351D1D523D53110.1093/nar/gkac1052 36408920
    [Google Scholar]
  56. KawasakiH. KretsingerR.H. Calcium-binding proteins. 1: EF-hands.Protein Profile199414343517 8528904
    [Google Scholar]
  57. DaviesG. HenrissatB. Structures and mechanisms of glycosyl hydrolases.Structure19953985385910.1016/S0969‑2126(01)00220‑9 8535779
    [Google Scholar]
  58. MarineoS. CusimanoM.G. LimauroD. CoticchioG. PugliaA.M. The histidinol phosphate phosphatase involved in histidine biosynthetic pathway is encoded by SCO5208 (hisN) in Streptomyces coelicolor A3(2).Curr. Microbiol.200856161310.1007/s00284‑007‑9014‑7 17851715
    [Google Scholar]
  59. WalkerE.H. PerisicO. RiedC. StephensL. WilliamsR.L. Structural insights into phosphoinositide 3-kinase catalysis and signalling.Nature1999402675931332010.1038/46319 10580505
    [Google Scholar]
  60. LeeJ.O. YangH. GeorgescuM.M. Di CristofanoA. MaehamaT. ShiY. DixonJ.E. PandolfiP. PavletichN.P. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association.Cell199999332333410.1016/S0092‑8674(00)81663‑3 10555148
    [Google Scholar]
  61. DasA.K. HelpsN.R. CohenP.T. BarfordD. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution.EMBO J.199615246798680910.1002/j.1460‑2075.1996.tb01071.x 9003755
    [Google Scholar]
  62. FordM.G.J. JenniS. NunnariJ. The crystal structure of dynamin.Nature2011477736656156610.1038/nature10441 21927001
    [Google Scholar]
  63. LillR. CunninghamK. BrundageL.A. ItoK. OliverD. WicknerW. SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli.EMBO J.19898396196610.1002/j.1460‑2075.1989.tb03458.x 2542029
    [Google Scholar]
  64. BaiL. YouQ. JainB.K. DuanH.D. KovachA. GrahamT.R. LiH. Transport mechanism of P4 ATPase phosphatidylcholine flippases.eLife20209e6216310.7554/eLife.6216333320091
    [Google Scholar]
  65. DumasJ.J. ZhuZ. ConnollyJ.L. LambrightD.G. Structural basis of activation and GTP hydrolysis in Rab proteins.Structure199974413s210.1016/S0969‑2126(99)80054‑9 10196122
    [Google Scholar]
  66. JonssonC.B. FigueiredoL.T.M. VapalahtiO. A global perspective on hantavirus ecology, epidemiology, and disease.Clin. Microbiol. Rev.201023241244110.1128/CMR.00062‑09 20375360
    [Google Scholar]
  67. IsraeliS. AmslerK. ZheleznovaN. WilsonP.D. Abnormalities in focal adhesion complex formation, regulation, and function in human autosomal recessive polycystic kidney disease epithelial cells.Am. J. Physiol. Cell Physiol.20102984C831C84610.1152/ajpcell.00032.2009 19923420
    [Google Scholar]
  68. ZieglerW.H. SoetjeB. MartenL.P. WieseJ. BuruteM. HaffnerD. Fibrocystin is essential to cellular control of adhesion and epithelial morphogenesis.Int. J. Mol. Sci.20202114514010.3390/ijms21145140 32698519
    [Google Scholar]
  69. ShiW. YangA.M. Caroli disease: an update on pathogenesis.Chin. Med. J.2021134232844284610.1097/CM9.0000000000001827 34711722
    [Google Scholar]
  70. FranchiF. PetersonK.M. QuandtK. DomnickD. KlineT.L. OlthoffM. ParviziM. TolosaE.J. TorresV.E. HarrisP.C. Fernandez-ZapicoM.E. Rodriguez-PorcelM.G. Impaired hedgehog-gli1 pathway activity underlies the vascular phenotype of polycystic kidney disease.Hypertension20207661889189710.1161/HYPERTENSIONAHA.120.15483 33012205
    [Google Scholar]
  71. JarrellK.F. DingY. MeyerB.H. AlbersS.V. KaminskiL. EichlerJ. N-linked glycosylation in Archaea: a structural, functional, and genetic analysis.Microbiol. Mol. Biol. Rev.201478230434110.1128/MMBR.00052‑13 24847024
    [Google Scholar]
  72. KrylovaN.V. SilchenkoA.S. PottA.B. ErmakovaS.P. IunikhinaO.V. RasinA.B. In Vitro anti-orthohantavirus activity of the high-and low-molecular-weight fractions of fucoidan from the brown alga fucus evanescens.Mar. Drugs2021191057710.3390/md19100577 34677476
    [Google Scholar]
  73. OndaM. HakamataW. Antiviral activity and mechanism of action of endoplasmic reticulum glucosidase inhibitors: a mini review.Trends Glycosci. Glycotechnol.201830176E139E14510.4052/tigg.1753.1E
    [Google Scholar]
  74. CaputoA.T. AlonziD.S. MartiL. RecaI.B. KiappesJ.L. StruweW.B. CrossA. BasuS. LoweE.D. DarlotB. SantinoA. RoversiP. ZitzmannN. Structures of mammalian ER α-glucosidase II capture the binding modes of broad-spectrum iminosugar antivirals.Proc. Natl. Acad. Sci. USA201611332E4630E463810.1073/pnas.1604463113 27462106
    [Google Scholar]
  75. WarfieldK.L. AlonziD.S. HillJ.C. CaputoA.T. RoversiP. KiappesJ.L. SheetsN. DucharsM. DwekR.A. BigginsJ. BarnardD. ShrestaS. TrestonA.M. ZitzmannN. Targeting endoplasmic reticulum α-glucosidase I with a single-dose iminosugar treatment protects against lethal influenza and dengue virus infections.J. Med. Chem.20206384205421410.1021/acs.jmedchem.0c00067 32227946
    [Google Scholar]
  76. LiZ. WangF. YingQ. KongD. ZhangX. DongY. LiuY. ZhaiD. ChenZ. JiaM. XueX. LiM. WuX. In vitro anti-hantavirus activity of protein kinase inhibitor 8g1 targeting AKT/mTOR/EIF4e signaling pathway.Front. Microbiol.20221388025810.3389/fmicb.2022.880258 35847100
    [Google Scholar]
  77. LahonA. AryaR.P. BanerjeaA.C. Dengue virus dysregulates master transcription factors and PI3K/AKT/mTOR signaling pathway in megakaryocytes.Front. Cell. Infect. Microbiol.20211171520810.3389/fcimb.2021.715208 34513730
    [Google Scholar]
  78. McNultyS. FlintM. NicholS.T. SpiropoulouC.F. Host mTORC1 signaling regulates andes virus replication.J. Virol.201387291292210.1128/JVI.02415‑12 23135723
    [Google Scholar]
  79. YuH. JiangW. DuH. XingY. BaiG. ZhangY. LiY. JiangH. ZhangY. WangJ. WangP. BaiX. Involvement of the Akt/NF-κB pathways in the HTNV-mediated increase of IL-6, CCL5, ICAM-1, and VCAM-1 in HUVECs.PLoS One201494e9381010.1371/journal.pone.0093810 24714064
    [Google Scholar]
  80. ZhangY. LiuB. MaY. YiJ. ZhangC. ZhangY. XuZ. WangJ. YangK. YangA. ZhuangR. JinB. Hantaan virus infection induces CXCL10 expression through TLR3, RIG-I, and MDA-5 pathways correlated with the disease severity.Mediators Inflamm.20142014111110.1155/2014/697837 24701034
    [Google Scholar]
  81. Rosselli-MuraiL.K. YatesJ.A. YoshidaS. BourgJ. HoK.K.Y. WhiteM. PrisbyJ. TanX. AltemusM. BaoL. WuZ.F. VeatchS.L. SwansonJ.A. MerajverS.D. LiuA.P. Loss of PTEN promotes formation of signaling-capable clathrin-coated pits.J. Cell Sci.20181318jcs20892610.1242/jcs.208926 29588397
    [Google Scholar]
  82. WorbyC.A. DixonJ.E. Pten. Annu. Rev. Biochem.201483164166910.1146/annurev‑biochem‑082411‑113907 24905788
    [Google Scholar]
  83. HamadaK. SasakiT. KoniP.A. NatsuiM. KishimotoH. SasakiJ. YajimaN. HorieY. HasegawaG. NaitoM. MiyazakiJ. SudaT. ItohH. NakaoK. MakT.W. NakanoT. SuzukiA. The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis.Genes Dev.200519172054206510.1101/gad.1308805 16107612
    [Google Scholar]
  84. SerraH. ChiviteI. Angulo-UrarteA. SolerA. SutherlandJ.D. Arruabarrena-AristorenaA. RagabA. LimR. MalumbresM. FruttigerM. PotenteM. SerranoM. FabraÀ. ViñalsF. CasanovasO. PandolfiP.P. BigasA. CarracedoA. GerhardtH. GrauperaM. PTEN mediates Notch-dependent stalk cell arrest in angiogenesis.Nat. Commun.201561793510.1038/ncomms8935 26228240
    [Google Scholar]
  85. BasquinC. MalardéV. MellorP. AndersonD.H. Meas-YedidV. Olivo-MarinJ.C. Dautry-VarsatA. SauvonnetN. The signalling factor PI3K is a specific regulator of the clathrin-independent dynamin-dependent endocytosis of IL-2 receptors.J. Cell Sci.201312651099110810.1242/jcs.110932 23345407
    [Google Scholar]
  86. GorbunovaE.E. MackowE.R. Binding of the andes virus nucleocapsid protein to rhogdi induces the release and activation of the permeability factor RhoA.J. Virol.20219517e00396e2110.1128/JVI.00396‑21 34133221
    [Google Scholar]
  87. ChenL. GuoD. The functions of tumor suppressor PTEN in innate and adaptive immunity.Cell. Mol. Immunol.201714758158910.1038/cmi.2017.30 28603282
    [Google Scholar]
  88. WuC. XueY. WangP. LinL. LiuQ. LiN. XuJ. CaoX. IFN-γ primes macrophage activation by increasing phosphatase and tensin homolog via downregulation of miR-3473b.J. Immunol.201419363036304410.4049/jimmunol.1302379 25092892
    [Google Scholar]
  89. KuoH.M. LinC.Y. LamH.C. LinP.R. ChanH.H. TsengJ.C. SunC.K. HsuT.F. WuC.C. YangC.Y. HsuC.M. TaiM.H. PTEN overexpression attenuates angiogenic processes of endothelial cells by blockade of endothelin-1/endothelin B receptor signaling.Atherosclerosis2012221234134910.1016/j.atherosclerosis.2010.08.067 22341591
    [Google Scholar]
  90. ShenY. ZhangL. UtamaB. WangJ. GanY. WangX. WangJ. ChenL. VercellottiG. CoselliJ. MehtaJ.L. WangX.L. Human cytomegalovirus inhibits Akt-mediated eNOS activation through upregulating PTEN (phosphatase and tensin homolog deleted on chromosome 10).Cardiovasc. Res.200669250251110.1016/j.cardiores.2005.10.007 16316638
    [Google Scholar]
/content/journals/cp/10.2174/0115701646320190241231083203
Loading
/content/journals/cp/10.2174/0115701646320190241231083203
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Cellulase; GTPase; lipid phosphatase; PI3K; PTEN; SecA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test