Skip to content
2000
image of A Novel Platform for Protein Post-translational Modifications based on a High-density Antibody Array

Abstract

Background

Post-Translational Modifications (PTMs) are covalent modifications of amino acids added to proteins that can significantly affect proteins’ structures and functions. PTMS are, therefore, important biomarkers due to their regulation of various bioactivities. Protein array is a robust tool for detecting and quantifying proteins with high throughput, small sample requirement, and high sensitivity.

Objectives

On the basis of a high-density array, we developed a new platform to detect the PTM level, such as phosphorylation and acetylation, and changes in larger scales using an anti-PTM antibody.

Methods

THP-1 cells treated with phorbol 12-myristate 13-acetate (PMA) and lipopolysaccharide (LPS) were used for testing the new system and quantifying the phosphorylation and acetylation level change. The proteins whose phosphorylation and acetylation levels changed significantly were screened and compared with reported phenotypic change.

Results

By using antibodies against phosphorylation and acetylation, the PTM change for the same protein can be detected. Based on the proteins whose PTM is significantly different before and after treatment, it was found that the enriched pathways and biological progress agreed with the stimulation of PMA and LPS.

Conclusion

Our results supported the idea that this platform can be used to effectively compare the phosphorylation and acetylation level changes among samples and screen for biomarkers on the proteomic scale.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646339978241125111554
2025-01-21
2025-04-11
Loading full text...

Full text loading...

References

  1. Macek B. Forchhammer K. Hardouin J. Weber-Ban E. Grangeasse C. Mijakovic I. Protein post-translational modifications in bacteria. Nat. Rev. Microbiol. 2019 17 11 651 664 10.1038/s41579‑019‑0243‑0 31485032
    [Google Scholar]
  2. Dutta H. Jain N. Post-translational modifications and their implications in cancer. Front. Oncol. 2023 13 1240115 10.3389/fonc.2023.1240115 37795435
    [Google Scholar]
  3. Consortium U. The universal protein resource (UniProt) 2009. Nucleic Acids Res. 2009 37 Suppl 1 D169 D174 10.1093/nar/gkn664 18836194
    [Google Scholar]
  4. Khoury G.A. Baliban R.C. Floudas C.A. Proteome-wide post-translational modification statistics: Frequency analysis and curation of the swiss-prot database. Sci. Rep. 2011 1 1 90 10.1038/srep00090 22034591
    [Google Scholar]
  5. Garcia B.A. Post-translational Modifications That Modulate Enzyme Activity Academic Press 2019 626
    [Google Scholar]
  6. Ellgaard L. McCaul N. Chatsisvili A. Braakman I. Co‐and post‐translational protein folding in the ER. Traffic 2016 17 6 615 638 10.1111/tra.12392 26947578
    [Google Scholar]
  7. Warden S.M. Richardson C. O’Donnell J. Stapleton D. Kemp B.E. Witters L.A. Post-translational modifications of the β-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. Biochem. J. 2001 354 2 275 283 10.1042/bj3540275 11171104
    [Google Scholar]
  8. Lecker S.H. Goldberg A.L. Mitch W.E. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J. Am. Soc. Nephrol. 2006 17 7 1807 1819 10.1681/ASN.2006010083 16738015
    [Google Scholar]
  9. Cruickshank M.N. Besant P. Ulgiati D. The impact of histone post-translational modifications on developmental gene regulation. Amino Acids 2010 39 5 1087 1105 10.1007/s00726‑010‑0530‑6 20204433
    [Google Scholar]
  10. Méndez-Acuña L. Di Tomaso M.V. Palitti F. Martínez-López W. Histone post-translational modifications in DNA damage response. Cytogenet. Genome Res. 2010 128 1-3 28 36 10.1159/000296275 20407219
    [Google Scholar]
  11. Deribe Y.L. Pawson T. Dikic I. Post-translational modifications in signal integration. Nat. Struct. Mol. Biol. 2010 17 6 666 672 10.1038/nsmb.1842 20495563
    [Google Scholar]
  12. Chen L. Liu S. Tao Y. Regulating tumor suppressor genes: Post-translational modifications. Signal Transduct. Target. Ther. 2020 5 1 90 10.1038/s41392‑020‑0196‑9 32532965
    [Google Scholar]
  13. Russell C.L. Koncarevic S. Ward M.A. Post-translational modifications in Alzheimer’s disease and the potential for new biomarkers. J. Alzheimers Dis. 2014 41 2 345 364 10.3233/JAD‑132312 24662105
    [Google Scholar]
  14. Zhang X. Maity T. Kashyap M.K. Bansal M. Venugopalan A. Singh S. Awasthi S. Marimuthu A. Charles Jacob H.K. Belkina N. Pitts S. Cultraro C.M. Gao S. Kirkali G. Biswas R. Chaerkady R. Califano A. Pandey A. Guha U. Quantitative tyrosine phosphoproteomics of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor-treated lung adenocarcinoma cells reveals potential novel biomarkers of therapeutic response. Mol. Cell. Proteomics 2017 16 5 891 910 10.1074/mcp.M117.067439 28331001
    [Google Scholar]
  15. Guha U. Chaerkady R. Marimuthu A. Patterson A.S. Kashyap M.K. Harsha H.C. Sato M. Bader J.S. Lash A.E. Minna J.D. Pandey A. Varmus H.E. Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS. Proc. Natl. Acad. Sci. USA 2008 105 37 14112 14117 10.1073/pnas.0806158105 18776048
    [Google Scholar]
  16. Li Z. Li S. Luo M. Jhong J.H. Li W. Yao L. Pang Y. Wang Z. Wang R. Ma R. Yu J. Huang Y. Zhu X. Cheng Q. Feng H. Zhang J. Wang C. Hsu J.B.K. Chang W.C. Wei F.X. Huang H.D. Lee T.Y. dbPTM in 2022: An updated database for exploring regulatory networks and functional associations of protein post-translational modifications. Nucleic Acids Res. 2022 50 D1 D471 D479 10.1093/nar/gkab1017 34788852
    [Google Scholar]
  17. Kitamura N. Galligan J.J. A global view of the human post-translational modification landscape. Biochem. J. 2023 480 16 1241 1265 10.1042/BCJ20220251 37610048
    [Google Scholar]
  18. Ramazi S. Zahiri J. Post-translational modifications in proteins: Resources, tools and prediction methods. Database (Oxford) 2021 2021 baab012 10.1093/database/baab012 33826699
    [Google Scholar]
  19. Wilson J.J. Burgess R. Mao Y.Q. Luo S. Tang H. Jones V.S. Weisheng B. Huang R.Y. Chen X. Huang R.P. Antibody arrays in biomarker discovery. Adv. Clin. Chem. 2015 69 255 324 10.1016/bs.acc.2015.01.002 25934364
    [Google Scholar]
  20. Hermann J. Schurgers L. Jankowski V. Identification and characterization of post-translational modifications: Clinical implications. Mol. Aspects Med. 2022 86 101066 10.1016/j.mam.2022.101066 35033366
    [Google Scholar]
  21. Villafañez F. Gottifredi V. Soria G. Development and optimization of a miniaturized western blot-based screening platform to identify regulators of post-translational modifications. High Throughput 2019 8 2 15 10.3390/ht8020015 31163614
    [Google Scholar]
  22. Dai B. Dahmani F. Cichocki J.A. Swanson L.C. Rasmussen T.P. Detection of post-translational modifications on native intact nucleosomes by ELISA. J. Vis. Exp. 2011 50 2593 21540828
    [Google Scholar]
  23. Huang R. Jiang W. Yang J. Mao Y.Q. Zhang Y. Yang W. Yang D. Burkholder B. Huang R.F. Huang R.P. A biotin label-based antibody array for high-content profiling of protein expression. Cancer Genomics Proteomics 2010 7 3 129 141 20551245
    [Google Scholar]
  24. Lockhart D.J. Winzeler E.A. Genomics, gene expression and DNA arrays. Nature 2000 405 6788 827 836 10.1038/35015701 10866209
    [Google Scholar]
  25. Shalon D. Smith S.J. Brown P.O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 1996 6 7 639 645 10.1101/gr.6.7.639 8796352
    [Google Scholar]
  26. Schröder C. Alhamdani M.S. Fellenberg K. Bauer A. Jacob A. Hoheisel J.D. Robust protein profiling with complex antibody microarrays in a dual-colour mode. Protein Microarrays Humana Press Korf U. 2011 203 221 10.1007/978‑1‑61779‑286‑1_14
    [Google Scholar]
  27. Schröder C. Jacob A. Tonack S. Radon T.P. Sill M. Zucknick M. Rüffer S. Costello E. Neoptolemos J.P. Crnogorac-Jurcevic T. Bauer A. Fellenberg K. Hoheisel J.D. Dual-color proteomic profiling of complex samples with a microarray of 810 cancer-related antibodies. Mol. Cell. Proteomics 2010 9 6 1271 1280 10.1074/mcp.M900419‑MCP200 20164060
    [Google Scholar]
  28. R: A language and environment for statistical computing. 2013 Available from: https://www.scirp.org/reference/referencespapers?referenceid=1061517
  29. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  30. Tsuchiya S. Yamabe M. Yamaguchi Y. Kobayashi Y. Konno T. Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP‐1). Int. J. Cancer 1980 26 2 171 176 10.1002/ijc.2910260208 6970727
    [Google Scholar]
  31. Abraham R.T. Weiss A. Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat. Rev. Immunol. 2004 4 4 301 308 10.1038/nri1330 15057788
    [Google Scholar]
  32. Pshenichnikov S. Omelyanchik A. Efremova M. Lunova M. Gazatova N. Malashchenko V. Khaziakhmatova O. Litvinova L. Perov N. Panina L. Peddis D. Lunov O. Rodionova V. Levada K. Control of oxidative stress in Jurkat cells as a model of leukemia treatment. J. Magn. Magn. Mater. 2021 523 167623 10.1016/j.jmmm.2020.167623
    [Google Scholar]
  33. Soto-Mercado V. Mendivil-Perez M. Jimenez-Del-Rio M. Fox J.E. Velez-Pardo C. Cannabinoid CP55940 selectively induces apoptosis in Jurkat cells and in ex vivo T-cell acute lymphoblastic leukemia through H2O2 signaling mechanism. Leuk. Res. 2020 95 106389 10.1016/j.leukres.2020.106389 32540572
    [Google Scholar]
  34. Jingu D. Iino M. Kawasaki J. Urano E. Kusakari S. Hayashi Y. Matozaki T. Ohnishi H. Protein tyrosine phosphatase Shp2 positively regulates cold stress-induced tyrosine phosphorylation of SIRPα in neurons. Biochem. Biophys. Res. Commun. 2021 569 72 78 10.1016/j.bbrc.2021.06.084 34237430
    [Google Scholar]
  35. Sharma K. D’Souza R.C.J. Tyanova S. Schaab C. Wiśniewski J.R. Cox J. Mann M. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 2014 8 5 1583 1594 10.1016/j.celrep.2014.07.036 25159151
    [Google Scholar]
  36. Chanput W. Mes J.J. Wichers H.J. THP-1 cell line: An in vitro cell model for immune modulation approach. Int. Immunopharmacol. 2014 23 1 37 45 10.1016/j.intimp.2014.08.002 25130606
    [Google Scholar]
  37. Bosshart H. Heinzelmann M. THP-1 cells as a model for human monocytes. Ann. Transl. Med. 2016 4 21 438 10.21037/atm.2016.08.53 27942529
    [Google Scholar]
  38. Daigneault M. Preston J.A. Marriott H.M. Whyte M.K.B. Dockrell D.H. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One 2010 5 1 e8668 10.1371/journal.pone.0008668 20084270
    [Google Scholar]
  39. Weinstein S.L. Gold M.R. DeFranco A.L. Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages. Proc. Natl. Acad. Sci. USA 1991 88 10 4148 4152 10.1073/pnas.88.10.4148 1709735
    [Google Scholar]
  40. Rosen A. Nairn A.C. Greengard P. Cohn Z.A. Aderem A. Bacterial lipopolysaccharide regulates the phosphorylation of the 68K protein kinase C substrate in macrophages. J. Biol. Chem. 1989 264 16 9118 9121 10.1016/S0021‑9258(18)60499‑5 2722820
    [Google Scholar]
  41. Newton A.C. Protein kinase C: Structure, function, and regulation. J. Biol. Chem. 1995 270 48 28495 28498 10.1074/jbc.270.48.28495 7499357
    [Google Scholar]
  42. Newton A.C. Protein kinase C: Perfectly balanced. Crit. Rev. Biochem. Mol. Biol. 2018 53 2 208 230 10.1080/10409238.2018.1442408 29513138
    [Google Scholar]
  43. Spitaler M. Cantrell D.A. Protein kinase C and beyond. Nat. Immunol. 2004 5 8 785 790 10.1038/ni1097 15282562
    [Google Scholar]
  44. Sokol R.J. Hudson G. James N.T. Frost I.J. Wales J. Human macrophage development: A morphometric study. J. Anat. 1987 151 27 35 3654357
    [Google Scholar]
  45. Phuangbubpha P. Thara S. Sriboonaied P. Saetan P. Tumnoi W. Charoenpanich A. Optimizing THP-1 macrophage culture for an immune-responsive human intestinal model. Cells 2023 12 10 1427 10.3390/cells12101427 37408263
    [Google Scholar]
  46. Kounalakis N.S. Corbett S.A. Lipopolysaccharide transiently activates THP-1 cell adhesion. J. Surg. Res. 2006 135 1 137 143 10.1016/j.jss.2005.12.018 16488432
    [Google Scholar]
  47. Schwende H. Fitzke E. Ambs P. Dieter P. Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. J. Leukoc. Biol. 1996 59 4 555 561 10.1002/jlb.59.4.555 8613704
    [Google Scholar]
  48. Yang M. Tang M. Ma X. Yang L. He J. Peng X. Guo G. Zhou L. Luo N. Yuan Z. Tong A. AP-57/C10orf99 is a new type of mutifunctional antimicrobial peptide. Biochem. Biophys. Res. Commun. 2015 457 3 347 352 10.1016/j.bbrc.2014.12.115 25585381
    [Google Scholar]
  49. Chen J. Lu J. Chen Z. Liu Z. Sun Y. He S. Mi Y. Gao Y. Shen D. Lin Q. SPINK5 inhibits esophageal squamous cell carcinoma metastasis via immune activity. J. Gene Med. 2024 26 3 e3667 10.1002/jgm.3667 38442944
    [Google Scholar]
  50. Qi W. Ebbert K.V. Craig A.W. Greer P.A. McCafferty D.M. Absence of Fer protein tyrosine kinase exacerbates endotoxin induced intestinal epithelial barrier dysfunction in vivo. Gut 2005 54 8 1091 1097 10.1136/gut.2004.061887 16009680
    [Google Scholar]
  51. Chamaillard M. Hashimoto M. Horie Y. Masumoto J. Qiu S. Saab L. Ogura Y. Kawasaki A. Fukase K. Kusumoto S. Valvano M.A. Foster S.J. Mak T.W. Nuñez G. Inohara N. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 2003 4 7 702 707 10.1038/ni945 12796777
    [Google Scholar]
  52. Sun Y.V. Hu Y.J. Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Adv. Genet. 2016 93 147 190 10.1016/bs.adgen.2015.11.004 26915271
    [Google Scholar]
  53. Hasin Y. Seldin M. Lusis A. Multi-omics approaches to disease. Genome Biol. 2017 18 1 83 10.1186/s13059‑017‑1215‑1 28476144
    [Google Scholar]
  54. Chen C. Wang J. Pan D. Wang X. Xu Y. Yan J. Wang L. Yang X. Yang M. Liu G.P. Applications of multi‐omics analysis in human diseases. MedComm 2023 4 4 e315 10.1002/mco2.315 37533767
    [Google Scholar]
  55. Sharma J. Balakrishnan L. Kaushik S. Kashyap M.K. Editorial: Multi-omics approaches to study signaling pathways. Front. Bioeng. Biotechnol. 2020 8 829 10.3389/fbioe.2020.00829 33014991
    [Google Scholar]
  56. Leutert M. Entwisle S.W. Villén J. Decoding post-translational modification crosstalk with proteomics. Mol. Cell. Proteomics 2021 20 100129 10.1016/j.mcpro.2021.100129 34339852
    [Google Scholar]
/content/journals/cp/10.2174/0115701646339978241125111554
Loading
/content/journals/cp/10.2174/0115701646339978241125111554
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: phosphorylation ; acetylation ; Post-translational modification ; antibody array ; proteomics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test