Skip to content
2000
image of Identification of Novel Biomarkers for Post-Kasai Portoenterostomy in Biliary Atresia through Shotgun Proteomics Analysis

Abstract

Introduction

Biliary Atresia (BA) causes neonatal cholestasis jaundice. The primary therapeutic treatment for BA is the Kasai portoenterostomy. Current diagnostic approaches for BA are imprecise and time-consuming, making early diagnosis crucial for successful treatment outcomes.

Objective

This study aims to analyze proteins from Peripheral Blood Mononuclear Cells (PBMCs) obtained from children with BA compared with healthy children

Methods and Study Design

We employed a large-scale, total shotgun quantitative serum proteomics approach to analyze the protein from PBMC samples from a discovery cohort. This approach allowed for the simultaneous identification and quantification of multiple proteins, enabling the detection of disease-specific protein expression patterns. The study is proteomic-based study.

Results

We identified 24 proteins, by Liquid Chromatography-Mass Spectrometry (LC-MS) analysis that exhibited high discriminatory power for five subjects with BA post-Kasai operation compared to ten healthy controls. ATP2A3, LIN28B, SLC25A3, ITGB3, COX5A, and HLA-B identified proteins of upregulation were predicted to associate with BA post-Kasai operation.

Discussion

Our findings highlight the utility of proteomic techniques in BA research. The identified proteomic markers offer promise for improving BA diagnostic accuracy and timeliness, leading to enhanced treatment outcomes for affected children.

Conclusion

Proteomic analysis revealed a set of potential biomarkers for early and accurate diagnosis of biliary atresia. These biomarkers hold significant clinical value and have the potential to transform the management of biliary atresia by facilitating timely intervention and improving patient outcomes.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646310318240830093016
2024-09-13
2025-01-18
Loading full text...

Full text loading...

References

  1. Stein J.E. Vacanti J.P. Biliary atresia and other disorders of the extrahepatic biliary tree. Liver Disease in Children. Suchy F.J. London Mosby 1994 426 442
    [Google Scholar]
  2. Vij M. Rela M. Biliary atresia: pathology, etiology and pathogenesis. Future Sci. OA 2020 6 5 FSO466 10.2144/fsoa‑2019‑0153 32518681
    [Google Scholar]
  3. Mack C.L. Tucker R.M. Sokol R.J. Karrer F.M. Kotzin B.L. Whitington P.F. Miller S.D. Biliary atresia is associated with CD4+ Th1 cell-mediated portal tract inflammation. Pediatr. Res. 2004 56 1 79 87 10.1203/01.PDR.0000130480.51066.FB 15128911
    [Google Scholar]
  4. Bezerra J.A. Tiao G. Ryckman F.C. Alonso M. Sabla G.E. Shneider B. Sokol R.J. Aronow B.J. Genetic induction of proinflammatory immunity in children with biliary atresia. Lancet 2002 360 9346 1653 1659 10.1016/S0140‑6736(02)11603‑5 12457789
    [Google Scholar]
  5. Feldman A.G. Mack C.L. Biliary Atresia. J. Pediatr. Gastroenterol. Nutr. 2015 61 2 167 175 10.1097/MPG.0000000000000755 25658057
    [Google Scholar]
  6. Jiang J. Wang J. Shen Z. Lu X. Chen G. Huang Y. Dong R. Zheng S. Serum MMP-7 in the Diagnosis of Biliary Atresia. Pediatrics 2019 144 5 e20190902 10.1542/peds.2019‑0902 31604829
    [Google Scholar]
  7. Yang Y. Jin Z. Dong R. Zheng C. Huang Y. Zheng Y. Shen Z. Chen G. Luo X. Zheng S. MicroRNA-29b/142-5p contribute to the pathogenesis of biliary atresia by regulating the IFN-γ gene. Cell Death Dis. 2018 9 5 545 10.1038/s41419‑018‑0605‑y 29748604
    [Google Scholar]
  8. Lertudomphonwanit C. Mourya R. Fei L. Zhang Y. Gutta S. Yang L. Bove K.E. Shivakumar P. Bezerra J.A. Large-scale proteomics identifies MMP-7 as a sentinel of epithelial injury and of biliary atresia Sci Transl Med. 2017 9 417 eaan8462
    [Google Scholar]
  9. He L. Ip D.K.M. Tam G. Lui V.C.H. Tam P.K.H. Chung P.H.Y. Biomarkers for the diagnosis and post-Kasai portoenterostomy prognosis of biliary atresia: a systematic review and meta-analysis. Sci. Rep. 2021 11 1 11692 10.1038/s41598‑021‑91072‑y 34083585
    [Google Scholar]
  10. Behairy O.G. Elsadek A.E. Behiry E.G. Elhenawy I.A. Shalan N.H. Sayied K.R. Clinical Value of Serum Interleukin‐33 Biomarker in Infants With Neonatal Cholestasis. J. Pediatr. Gastroenterol. Nutr. 2020 70 3 344 349 10.1097/MPG.0000000000002565 31764415
    [Google Scholar]
  11. Zheng H. Miyakawa T. Sawano Y. Yamagoe S. Tanokura M. Crystallization and preliminary X-ray analysis of human leukocyte cell-derived chemotaxin 2 (LECT2). Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2013 69 3 316 319 10.1107/S1744309113003758 23519812
    [Google Scholar]
  12. Kong M. Xiang B. Identifying Biomarkers to Predict the Prognosis of Biliary Atresia by Weighted Gene Co-Expression Network Analysis. Front. Genet. 2021 12 760182 10.3389/fgene.2021.760182 34899846
    [Google Scholar]
  13. Rozanova S. Barkovits K. Nikolov M. Schmidt C. Urlaub H. Marcus K. Quantitative Mass Spectrometry-Based Proteomics: An Overview. Quantitative Methods in Proteomics. Marcus K. Eisenacher M. Sitek B. New York, NY Springer US 2021 85 116 10.1007/978‑1‑0716‑1024‑4_8
    [Google Scholar]
  14. Alexovič M. Lindner J.R. Bober P. Longuespée R. Sabo J. Davalieva K. Human peripheral blood mononuclear cells: A review of recent proteomic applications. Proteomics 2022 22 15-16 2200026 10.1002/pmic.202200026 35348286
    [Google Scholar]
  15. Lowry O. Rosebrough N. Farr A.L. Randall R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951 193 1 265 275 10.1016/S0021‑9258(19)52451‑6 14907713
    [Google Scholar]
  16. Tyanova S. Temu T. Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016 11 12 2301 2319 10.1038/nprot.2016.136 27809316
    [Google Scholar]
  17. Tyanova S. Temu T. Sinitcyn P. Carlson A. Hein M.Y. Geiger T. Mann M. Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016 13 9 731 740 10.1038/nmeth.3901 27348712
    [Google Scholar]
  18. Pang Z. Zhou G. Ewald J. Chang L. Hacariz O. Basu N. Xia J. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 2022 17 8 1735 1761 10.1038/s41596‑022‑00710‑w 35715522
    [Google Scholar]
  19. Mi H. Muruganujan A. Ebert D. Huang X. Thomas P.D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019 47 D1 D419 D426 10.1093/nar/gky1038 30407594
    [Google Scholar]
  20. Szklarczyk D. Santos A. von Mering C. Jensen L.J. Bork P. Kuhn M. STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016 44 D1 D380 D384 10.1093/nar/gkv1277 26590256
    [Google Scholar]
/content/journals/cp/10.2174/0115701646310318240830093016
Loading
/content/journals/cp/10.2174/0115701646310318240830093016
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test