Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Introduction

Biliary Atresia (BA) causes neonatal cholestasis jaundice. The primary therapeutic treatment for BA is the Kasai portoenterostomy. Current diagnostic approaches for BA are imprecise and time-consuming, making early diagnosis crucial for successful treatment outcomes.

Objective

This study aims to analyze proteins from Peripheral Blood Mononuclear Cells (PBMCs) obtained from children with BA compared with healthy children

Methods and Study Design

We employed a large-scale, total shotgun quantitative serum proteomics approach to analyze the protein from PBMC samples from a discovery cohort. This approach allowed for the simultaneous identification and quantification of multiple proteins, enabling the detection of disease-specific protein expression patterns. The study is proteomic-based study.

Results

We identified 24 proteins, by Liquid Chromatography-Mass Spectrometry (LC-MS) analysis that exhibited high discriminatory power for five subjects with BA post-Kasai operation compared to ten healthy controls. ATP2A3, LIN28B, SLC25A3, ITGB3, COX5A, and HLA-B identified proteins of upregulation were predicted to associate with BA post-Kasai operation.

Discussion

Our findings highlight the utility of proteomic techniques in BA research. The identified proteomic markers offer promise for improving BA diagnostic accuracy and timeliness, leading to enhanced treatment outcomes for affected children.

Conclusion

Proteomic analysis revealed a set of potential biomarkers for early and accurate diagnosis of biliary atresia. These biomarkers hold significant clinical value and have the potential to transform the management of biliary atresia by facilitating timely intervention and improving patient outcomes.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646310318240830093016
2024-09-23
2025-06-23
Loading full text...

Full text loading...

References

  1. SteinJ.E. VacantiJ.P. Biliary atresia and other disorders of the extrahepatic biliary tree.Liver Disease in Children. SuchyF.J. LondonMosby1994426442
    [Google Scholar]
  2. VijM. RelaM. Biliary atresia: pathology, etiology and pathogenesis.Future Sci. OA202065FSO46610.2144/fsoa‑2019‑015332518681
    [Google Scholar]
  3. MackC.L. TuckerR.M. SokolR.J. KarrerF.M. KotzinB.L. WhitingtonP.F. MillerS.D. Biliary atresia is associated with CD4+ Th1 cell-mediated portal tract inflammation.Pediatr. Res.2004561798710.1203/01.PDR.0000130480.51066.FB15128911
    [Google Scholar]
  4. BezerraJ.A. TiaoG. RyckmanF.C. AlonsoM. SablaG.E. ShneiderB. SokolR.J. AronowB.J. Genetic induction of proinflammatory immunity in children with biliary atresia.Lancet200236093461653165910.1016/S0140‑6736(02)11603‑512457789
    [Google Scholar]
  5. FeldmanA.G. MackC.L. Biliary Atresia.J. Pediatr. Gastroenterol. Nutr.201561216717510.1097/MPG.000000000000075525658057
    [Google Scholar]
  6. JiangJ. WangJ. ShenZ. LuX. ChenG. HuangY. DongR. ZhengS. Serum MMP-7 in the Diagnosis of Biliary Atresia.Pediatrics20191445e2019090210.1542/peds.2019‑090231604829
    [Google Scholar]
  7. YangY. JinZ. DongR. ZhengC. HuangY. ZhengY. ShenZ. ChenG. LuoX. ZhengS. MicroRNA-29b/142-5p contribute to the pathogenesis of biliary atresia by regulating the IFN-γ gene.Cell Death Dis.20189554510.1038/s41419‑018‑0605‑y29748604
    [Google Scholar]
  8. LertudomphonwanitC. MouryaR. FeiL. ZhangY. GuttaS. YangL. BoveK.E. ShivakumarP. BezerraJ.A. Large-scale proteomics identifies MMP-7 as a sentinel of epithelial injury and of biliary atresiaSci Transl Med.20179417eaan8462
    [Google Scholar]
  9. HeL. IpD.K.M. TamG. LuiV.C.H. TamP.K.H. ChungP.H.Y. Biomarkers for the diagnosis and post-Kasai portoenterostomy prognosis of biliary atresia: A systematic review and meta-analysis.Sci. Rep.20211111169210.1038/s41598‑021‑91072‑y34083585
    [Google Scholar]
  10. BehairyO.G. ElsadekA.E. BehiryE.G. ElhenawyI.A. ShalanN.H. SayiedK.R. Clinical Value of Serum Interleukin-33 Biomarker in Infants With Neonatal Cholestasis.J. Pediatr. Gastroenterol. Nutr.202070334434910.1097/MPG.000000000000256531764415
    [Google Scholar]
  11. ZhengH. MiyakawaT. SawanoY. YamagoeS. TanokuraM. Crystallization and preliminary X-ray analysis of human leukocyte cell-derived chemotaxin 2 (LECT2).Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.201369331631910.1107/S174430911300375823519812
    [Google Scholar]
  12. KongM. XiangB. Identifying Biomarkers to Predict the Prognosis of Biliary Atresia by Weighted Gene Co-Expression Network Analysis.Front. Genet.20211276018210.3389/fgene.2021.76018234899846
    [Google Scholar]
  13. RozanovaS. BarkovitsK. NikolovM. SchmidtC. UrlaubH. MarcusK. Quantitative Mass Spectrometry-Based Proteomics: An Overview.Quantitative Methods in Proteomics. MarcusK. EisenacherM. SitekB. New York, NYSpringer US20218511610.1007/978‑1‑0716‑1024‑4_8
    [Google Scholar]
  14. AlexovičM. LindnerJ.R. BoberP. LonguespéeR. SaboJ. DavalievaK. Human peripheral blood mononuclear cells: A review of recent proteomic applications.Proteomics20222215-16220002610.1002/pmic.20220002635348286
    [Google Scholar]
  15. LowryO. RosebroughN. FarrA.L. RandallR. Protein measurement with the Folin phenol reagent.J. Biol. Chem.1951193126527510.1016/S0021‑9258(19)52451‑614907713
    [Google Scholar]
  16. TyanovaS. TemuT. CoxJ. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics.Nat. Protoc.201611122301231910.1038/nprot.2016.13627809316
    [Google Scholar]
  17. TyanovaS. TemuT. SinitcynP. CarlsonA. HeinM.Y. GeigerT. MannM. CoxJ. The Perseus computational platform for comprehensive analysis of (prote)omics data.Nat. Methods201613973174010.1038/nmeth.390127348712
    [Google Scholar]
  18. PangZ. ZhouG. EwaldJ. ChangL. HacarizO. BasuN. XiaJ. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data.Nat. Protoc.20221781735176110.1038/s41596‑022‑00710‑w35715522
    [Google Scholar]
  19. MiH. MuruganujanA. EbertD. HuangX. ThomasP.D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools.Nucleic Acids Res.201947D1D419D42610.1093/nar/gky103830407594
    [Google Scholar]
  20. SzklarczykD. SantosA. von MeringC. JensenL.J. BorkP. KuhnM. STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data.Nucleic Acids Res.201644D1D380D38410.1093/nar/gkv127726590256
    [Google Scholar]
/content/journals/cp/10.2174/0115701646310318240830093016
Loading
/content/journals/cp/10.2174/0115701646310318240830093016
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test