Skip to content
2000
image of Elucidation of EhSec1 and Interaction with EhSyntaxin1A /1B of Entamoeba Histolytica via Docking and Molecular Simulations

Abstract

Aims

This study aims to gain insights into the Sec1 binding mechanism and the corresponding amino acids responsible for interacting with the amoebic SNARE proteins, Syntaxin1A/1B, which would enable to create a platform for further exploration of the functions and applications of Sec1 in managing amoebiasis.

Background

Parasitic protozoa have long been responsible for increasing the burden on healthcare. However, the enteric protozoan , is dangerously neglected despite accounting for the greatest number of deaths from parasitic infection, closely after malaria and schistosomiasis. launches its attack secretion of tissue degrading arsenal through vesicular transport. Sec1/Munc18-1 -like (SM) proteins are one of the key players of the vesicle transport system and, along with their interacting partners, play crucial roles in this transport machinery. This provides the basis for exploring the uncharacterized SM protein in and its roles in vesicle transport.

Objective

This study aims to decode the novel SM protein, Sec1, by performing detailed sequence and structure analysis and delving into the protein interaction studies with its partner SNARE proteins (Syntaxins) through molecular dynamic simulations and docking. The interactions will be compared with crystal structure exhibiting co-complexes of Sec1_Syntaxin to further highlight the role of Sec1 amino acids in interacting with amoebic SNAREs, Syntaxin 1A/1B.

Method

The objectives were fulfilled by performing rigorous studies on Sec1, falling under the heads of comparative sequence and structure analysis, physicochemical studies, modeling, and molecular docking, and protein-protein interaction studies supported by molecular dynamic simulations.

Result

Sec1 is a thermally stable, 70kDa globular protein composed of three domains where domains 1 and 2 adopt an α-β-α fold. Domain 2 is split into 2a and 2b, separated by domain 3. This domain has two parts, 3a and 3b, at an angle of 56.7° to each other. Sec1 shows stable interaction with Syntaxin 1 isoforms (Syntaxin1A/1B) and Rab GTPase (RabX10). Molecular simulation investigating the dynamics of Sec1 with Syntaxin1A, showed that the interaction is stable due to the formation of 14 strong hydrogen bonds (bond length <2.4 Å). The pivotal residues of the interaction interface belong to domain 1 (53D, 60K, and 62E) and domain 3a (259K and 261R) of Sec1; Hc region (110R and 114N) and SNARE motif (234E, 237E, 242E) of Syntaxin 1A/1B. RabX10 binds to Sec1 its G3 region, and the key interacting residues of Sec1 (224R-225H, 490L-495F, and 518K) fall in domain 2.

Conclusion

Our study reveals that the Syntaxin 1 isoforms and RabX10 form stable complexes with Sec1, assembling the minimal template for the SNARE-based vesicle transport of . Our investigation aims to enhance comprehension of vesicle transport in and establish the potential of Sec1 as a viable drug target in future applications.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646329881241217082005
2025-01-21
2025-04-21
Loading full text...

Full text loading...

References

  1. Carrero J.C. Reyes-López M. Serrano-Luna J. Shibayama M. Unzueta J. León-Sicairos N. de la Garza M. Intestinal amoebiasis: 160 years of its first detection and still remains as a health problem in developing countries. Int. J. Med. Microbiol. 2020 310 1 151358 10.1016/j.ijmm.2019.151358 31587966
    [Google Scholar]
  2. Kantor M. Abrantes A. Estevez A. Schiller A. Torrent J. Gascon J. Hernandez R. Ochner C. Entamoeba histolytica: Updates in clinical manifestation, pathogenesis, and vaccine development. Can. J. Gastroenterol. Hepatol. 2018 2018 1 6 10.1155/2018/4601420 30631758
    [Google Scholar]
  3. Martínez-Palomo A. The pathogenesis of amoebiasis. Parasitol. Today 1987 3 4 111 118 10.1016/0169‑4758(87)90048‑2 15462926
    [Google Scholar]
  4. Bercu T.E. Petri W.A. Behm B.W. Amebic colitis: New insights into pathogenesis and treatment. Curr. Gastroenterol. Rep. 2007 9 5 429 433 10.1007/s11894‑007‑0054‑8 17991346
    [Google Scholar]
  5. Rawat A. Roy M. Jyoti A. Kaushik S. Verma K. Srivastava V.K. Cysteine proteases: Battling pathogenic parasitic protozoans with omnipresent enzymes. Microbiol. Res. 2021 249 126784 10.1016/j.micres.2021.126784 33989978
    [Google Scholar]
  6. Burkhardt P. Hattendorf D.A. Weis W.I. Fasshauer D. Munc18a controls SNARE assembly through its interaction with the syntaxin N-peptide. EMBO J. 2008 27 7 923 933 10.1038/emboj.2008.37 18337752
    [Google Scholar]
  7. Katagiri H. Terasaki J. Murata T. Ishihara H. Ogihara T. Inukai K. Fukushima Y. Anai M. Kikuchi M. Miyazaki J. Yazaki Y. Oka Y. A novel isoform of syntaxin-binding protein homologous to yeast Sec1 expressed ubiquitously in mammalian cells. J. Biol. Chem. 1995 270 10 4963 4966 10.1074/jbc.270.10.4963 7890599
    [Google Scholar]
  8. Halachmi N. Lev Z. The Sec1 family: A novel family of proteins involved in synaptic transmission and general secretion. J. Neurochem. 1996 66 3 889 897 10.1046/j.1471‑4159.1996.66030889.x 8769846
    [Google Scholar]
  9. Zucker R.S. Kullmann D.M. Kaeser P.S. Release of neurotransmitters. From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience Academic Press 2014 443 448 10.1016/B978‑0‑12‑397179‑1.00015‑4
    [Google Scholar]
  10. Araç D. Dulubova I. Pei J. Huryeva I. Grishin N.V. Rizo J. Three-dimensional structure of the rSly1 N-terminal domain reveals a conformational change induced by binding to syntaxin 5. J. Mol. Biol. 2005 346 2 589 601 10.1016/j.jmb.2004.12.004 15670607
    [Google Scholar]
  11. Baker R.W. Jeffrey P.D. Zick M. Phillips B.P. Wickner W.T. Hughson F.M. A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly. Science 2015 349 6252 1111 1114 10.1126/science.aac7906 26339030
    [Google Scholar]
  12. Roy M. Kaushik S. Jyoti A. Srivastava V.K. Probing the peculiarity of EhRabX10, a pseudoRab GTPase, from the enteric parasite Entamoeba histolytica through in silico modeling and docking studies. BioMed Res. Int. 2021 2021 1 13 10.1155/2021/9913625 34660804
    [Google Scholar]
  13. Gasteiger E. Gattiker A. Hoogland C. Ivanyi I. Appel R.D. Bairoch A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003 31 13 3784 3788 10.1093/nar/gkg563 12824418
    [Google Scholar]
  14. Gasteiger E. Hoogland C. Gattiker A. Duvaud S. Wilkins M.R. Appel R.D. Bairoch A. Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook. Humana Press 2005 571 607 10.1385/1‑59259‑890‑0:571
    [Google Scholar]
  15. Madeira F. Madhusoodanan N. Lee J. Eusebi A. Niewielska A. Tivey A.R.N. Lopez R. Butcher S. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 2024 52 W1 W521 W525 10.1093/nar/gkae241 38597606
    [Google Scholar]
  16. Larkin M.A. Blackshields G. Brown N.P. Chenna R. McGettigan P.A. McWilliam H. Valentin F. Wallace I.M. Wilm A. Lopez R. Thompson J.D. Gibson T.J. Higgins D.G. Clustal W. Clustal W and Clustal X version 2.0. Bioinformatics 2007 23 21 2947 2948 10.1093/bioinformatics/btm404 17846036
    [Google Scholar]
  17. Waterhouse A. Bertoni M. Bienert S. Studer G. Tauriello G. Gumienny R. Heer F.T. de Beer T.A.P. Rempfer C. Bordoli L. Lepore R. Schwede T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018 46 W1 W296 W303 10.1093/nar/gky427 29788355
    [Google Scholar]
  18. Bienert S. Waterhouse A. de Beer T.A.P. Tauriello G. Studer G. Bordoli L. Schwede T. The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Res. 2017 45 D1 D313 D319 10.1093/nar/gkw1132 27899672
    [Google Scholar]
  19. Mariani V. Biasini M. Barbato A. Schwede T. lDDT: A local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics 2013 29 21 2722 2728 10.1093/bioinformatics/btt473 23986568
    [Google Scholar]
  20. Benkert P. Biasini M. Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 2011 27 3 343 350 10.1093/bioinformatics/btq662 21134891
    [Google Scholar]
  21. Wiederstein M. Sippl M.J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007 35 Web Server W407 W410 10.1093/nar/gkm290 17517781
    [Google Scholar]
  22. Sippl M.J. Recognition of errors in three‐dimensional structures of proteins. Proteins 1993 17 4 355 362 10.1002/prot.340170404 8108378
    [Google Scholar]
  23. Colovos C. Yeates T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993 2 9 1511 1519 10.1002/pro.5560020916 8401235
    [Google Scholar]
  24. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2
    [Google Scholar]
  25. Abramson J. Adler J. Dunger J. Evans R. Green T. Pritzel A. Ronneberger O. Willmore L. Ballard A.J. Bambrick J. Bodenstein S.W. Evans D.A. Hung C.C. O’Neill M. Reiman D. Tunyasuvunakool K. Wu Z. Žemgulytė A. Arvaniti E. Beattie C. Bertolli O. Bridgland A. Cherepanov A. Congreve M. Cowen-Rivers A.I. Cowie A. Figurnov M. Fuchs F.B. Gladman H. Jain R. Khan Y.A. Low C.M.R. Perlin K. Potapenko A. Savy P. Singh S. Stecula A. Thillaisundaram A. Tong C. Yakneen S. Zhong E.D. Zielinski M. Žídek A. Bapst V. Kohli P. Jaderberg M. Hassabis D. Jumper J.M. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024 630 8016 493 500 10.1038/s41586‑024‑07487‑w
    [Google Scholar]
  26. Varadi M. Anyango S. Deshpande M. Nair S. Natassia C. Yordanova G. Yuan D. Stroe O. Wood G. Laydon A. Žídek A. Green T. Tunyasuvunakool K. Petersen S. Jumper J. Clancy E. Green R. Vora A. Lutfi M. Figurnov M. Cowie A. Hobbs N. Kohli P. Kleywegt G. Birney E. Hassabis D. Velankar S. Alphafold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022 50 D1 D439 D444 10.1093/nar/gkab1061 34791371
    [Google Scholar]
  27. Robert X. Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014 42 W1 W320 W324 10.1093/nar/gku316 24753421
    [Google Scholar]
  28. Mering C. Huynen M. Jaeggi D. Schmidt S. Bork P. Snel B. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res. 2003 31 1 258 261 10.1093/nar/gkg034 12519996
    [Google Scholar]
  29. Snel B. Lehmann G. Bork P. Huynen M.A. STRING: A web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 2000 28 18 3442 3444 10.1093/nar/28.18.3442 10982861
    [Google Scholar]
  30. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. von Mering C. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  31. Kozakov D. Hall D.R. Xia B. Porter K.A. Padhorny D. Yueh C. Beglov D. Vajda S. The ClusPro web server for protein–protein docking. Nat. Protoc. 2017 12 2 255 278 10.1038/nprot.2016.169 28079879
    [Google Scholar]
  32. Kozakov D. Beglov D. Bohnuud T. Mottarella S.E. Xia B. Hall D.R. Vajda S. How good is automated protein docking? Proteins 2013 81 12 2159 2166 10.1002/prot.24403 23996272
    [Google Scholar]
  33. Desta I.T. Porter K.A. Xia B. Kozakov D. Vajda S. Performance and its limits in rigid body protein-protein docking. Structure 2020 28 9 1071 1081.e3 10.1016/j.str.2020.06.006 32649857
    [Google Scholar]
  34. Tina K.G. Bhadra R. Srinivasan N. PIC: Protein interactions calculator. Nucleic Acids Res. 2007 35 Web Server W473 W476 10.1093/nar/gkm423 17584791
    [Google Scholar]
  35. Laskowski R.A. Swindells M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011 51 10 2778 2786 10.1021/ci200227u 21919503
    [Google Scholar]
  36. Wallace A.C. Laskowski R.A. Thornton J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel. 1995 8 2 127 134 10.1093/protein/8.2.127 7630882
    [Google Scholar]
  37. Pronk S. Páll S. Schulz R. Larsson P. Bjelkmar P. Apostolov R. Shirts M.R. Smith J.C. Kasson P.M. van der Spoel D. Hess B. Lindahl E. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013 29 7 845 854 10.1093/bioinformatics/btt055 23407358
    [Google Scholar]
  38. Brooks B.R. Bruccoleri R.E. Olafson B.D. States D.J. Swaminathan S. Karplus M. CHARMM : A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 1983 4 2 187 217 10.1002/jcc.540040211
    [Google Scholar]
  39. Berendsen H.J.C. Postma J.P.M. van Gunsteren W.F. DiNola A. Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984 81 8 3684 3690 10.1063/1.448118
    [Google Scholar]
  40. Parrinello M. Rahman A. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 1980 45 14 1196 1199 10.1103/PhysRevLett.45.1196
    [Google Scholar]
  41. Hess B. Bekker H. Berendsen H.J.C. Fraaije J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997 18 12 1463 1472 10.1002/(SICI)1096‑987X(199709)18:12<1463::AID‑JCC4>3.0.CO;2‑H
    [Google Scholar]
  42. Darden T. York D. Pedersen L. Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems. J. Chem. Phys. 1993 98 12 10089 10092 10.1063/1.464397
    [Google Scholar]
  43. Biovia, Dassault Systèmes, Discovey Studio. San Diego Dassault Systèmes 2020
    [Google Scholar]
  44. Burkhardt P. Stegmann C.M. Cooper B. Kloepper T.H. Imig C. Varoqueaux F. Wahl M.C. Fasshauer D. Primordial neurosecretory apparatus identified in the choanoflagellate Monosiga brevicollis. Proc. Natl. Acad. Sci. USA 2011 108 37 15264 15269 10.1073/pnas.1106189108 21876177
    [Google Scholar]
  45. Colbert K.N. Hattendorf D.A. Weiss T.M. Burkhardt P. Fasshauer D. Weis W.I. Syntaxin1a variants lacking an N-peptide or bearing the LE mutation bind to Munc18a in a closed conformation. Proc. Natl. Acad. Sci. USA 2013 110 31 12637 12642 10.1073/pnas.1303753110 23858467
    [Google Scholar]
  46. Stefani I. Iwaszkiewicz J. Fasshauer D. Exploring the conformational changes of the Munc18‐1 /syntaxin 1a complex. Protein Sci. 2024 33 3 e4870 10.1002/pro.4870 38109275
    [Google Scholar]
  47. Li W. Xing Y. Wang Y. Xu T. Song E. Feng W. A non-canonical target-binding site in Munc18-1 domain 3b for assembling the Mint1-Munc18-1-syntaxin-1 complex. Structure 2023 31 1 68 77.e5 10.1016/j.str.2022.11.002 36608665
    [Google Scholar]
  48. Graham S.C. Wartosch L. Gray S.R. Scourfield E.J. Deane J.E. Luzio J.P. Owen D.J. Structural basis of Vps33A recruitment to the human HOPS complex by Vps16. Proc. Natl. Acad. Sci. USA 2013 110 33 13345 13350 10.1073/pnas.1307074110 23901104
    [Google Scholar]
  49. Hackmann Y. Graham S.C. Ehl S. Höning S. Lehmberg K. Aricò M. Owen D.J. Griffiths G.M. Syntaxin binding mechanism and disease-causing mutations in Munc18-2. Proc. Natl. Acad. Sci. USA 2013 110 47 E4482 E4491 10.1073/pnas.1313474110 24194549
    [Google Scholar]
  50. De Vries K.J. Geijtenbeek A. Brian E.C. De Graan P.N.E. Ghijsen W.E.J.M. Verhage M. Dynamics of munc18‐1 phosphorylation/dephosphorylation in rat brain nerve terminals. Eur. J. Neurosci. 2000 12 1 385 390 10.1046/j.1460‑9568.2000.00931.x 10651895
    [Google Scholar]
  51. Egerton M. Zueco J. Boyd A. Molecular characterization of the SEC1 gene of Saccharomyces cerevisiae : Subcellular distribution of a protein required for yeast protein secretion. Yeast 1993 9 7 703 713 10.1002/yea.320090704 8368004
    [Google Scholar]
  52. Roy M. Rawat A. Kaushik S. Jyoti A. Srivastava V.K. Endogenous cysteine protease inhibitors in upmost pathogenic parasitic protozoa. Microbiol. Res. 2022 261 127061 10.1016/j.micres.2022.127061 35605309
    [Google Scholar]
  53. Batra S. Pancholi P. Roy M. Kaushik S. Jyoti A. Verma K. Srivastava V.K. Exploring insights of syntaxin superfamily proteins from Entamoeba histolytica : A prospective simulation, protein‐protein interaction, and docking study. J. Mol. Recognit. 2021 34 6 e2886 10.1002/jmr.2886 33393093
    [Google Scholar]
  54. ERRAT: An empirical atom-based method for validating protein structures. Available from: https://yeateslab.mbi.ucla.edu/structure-validation/ (accessed November 2, 2023).
  55. Dulubova I. Khvotchev M. Liu S. Huryeva I. Südhof T.C. Rizo J. Munc18-1 binds directly to the neuronal SNARE complex. Proc. Natl. Acad. Sci. USA 2007 104 8 2697 2702 10.1073/pnas.0611318104 17301226
    [Google Scholar]
  56. Abramov D. Guiberson N.G.L. Daab A. Na Y. Petsko G.A. Sharma M. Burré J. Targeted stabilization of Munc18‐1 function via pharmacological chaperones. EMBO Mol. Med. 2021 13 1 e12354 10.15252/emmm.202012354 33332765
    [Google Scholar]
  57. Hu S.H. Christie M.P. Saez N.J. Latham C.F. Jarrott R. Lua L.H.L. Collins B.M. Martin J.L. Possible roles for Munc18-1 domain 3a and Syntaxin1 N-peptide and C-terminal anchor in SNARE complex formation. Proc. Natl. Acad. Sci. USA 2011 108 3 1040 1045 10.1073/pnas.0914906108 21193638
    [Google Scholar]
  58. Han G.A. Bin N.R. Kang S.Y.A. Han L. Sugita S. The domain-3a of Munc18-1 plays a crucial role at the priming stage of exocytosis. J. Cell Sci. 2013 126 Pt 11 jcs.126862 10.1242/jcs.126862 23525015
    [Google Scholar]
  59. Latham C.F. Lopez J.A. Hu S.H. Gee C.L. Westbury E. Blair D.H. Armishaw C.J. Alewood P.F. Bryant N.J. James D.E. Martin J.L. Molecular dissection of the Munc18c/syntaxin4 interaction: Implications for regulation of membrane trafficking. Traffic 2006 7 10 1408 1419 10.1111/j.1600‑0854.2006.00474.x 16899085
    [Google Scholar]
  60. van Weering J.R.T. Toonen R.F. Verhage M. The role of Rab3a in secretory vesicle docking requires association/dissociation of guanidine phosphates and Munc18-1. PLoS One 2007 2 7 e616 10.1371/journal.pone.0000616 17637832
    [Google Scholar]
  61. Gengyo-Ando K. Kuroyanagi H. Kobayashi T. Murate M. Fujimoto K. Okabe S. Mitani S. The SM protein VPS‐45 is required for RAB‐5‐dependent endocytic transport in Caenorhabditis elegans. EMBO Rep. 2007 8 2 152 157 10.1038/sj.embor.7400882 17235359
    [Google Scholar]
  62. Huang C.C. Yang D.M. Lin C.C. Kao L.S. Involvement of Rab3A in vesicle priming during exocytosis: Interaction with Munc13-1 and Munc18-1. Traffic 2011 12 10 1356 1370 10.1111/j.1600‑0854.2011.01237.x 21689256
    [Google Scholar]
  63. Simonsen A. Gaullier J.M. D’Arrigo A. Stenmark H. The Rab5 effector EEA1 interacts directly with syntaxin-6. J. Biol. Chem. 1999 274 41 28857 28860 10.1074/jbc.274.41.28857 10506127
    [Google Scholar]
  64. Stroupe C. Hickey C.M. Mima J. Burfeind A.S. Wickner W. Minimal membrane docking requirements revealed by reconstitution of Rab GTPase-dependent membrane fusion from purified components. Proc. Natl. Acad. Sci. USA 2009 106 42 17626 17633 10.1073/pnas.0903801106 19826089
    [Google Scholar]
/content/journals/cp/10.2174/0115701646329881241217082005
Loading
/content/journals/cp/10.2174/0115701646329881241217082005
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: syntaxins ; Entamoeba Histolytica ; SNARE proteins ; docking ; EhSec1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test