Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Objective

This pilot study aimed to analyze serum differential proteins in Vestibular Migraine (VM) group (n=21) and the healthy controls (HC) group (n=21).

Methods

Serum samples collected from subjects were analyzed using the relative quantitative proteomics Tandem Mass Tag (TMT) quantification technique for protein identification.

Results

Based on TMT proteomics technology and bioinformatics analysis, we identified a total of 35 differentially expressed proteins, including 24 up-regulated proteins and 11 down-regulated proteins.

Conclusion

Proteomic analysis was able to reveal differences in protein expression between VM sufferers and healthy controls. Similar to other neurological diseases characterized by neuroinflammation, the serum proteome of VM patients shows an abundance of proteins that indicate cellular damage and inflammation. If this relevant inflammatory status is confirmed in a larger series, it could serve as a target for VM treatment.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646331735241231070050
2025-01-02
2025-07-15
Loading full text...

Full text loading...

References

  1. Multidisciplinary expert consensus on the diagnosis and treatment of vestibular migraine.Chin. J. Integr. Med.2019582102107
    [Google Scholar]
  2. YuS. QiW. WangW. Expert consensus on the diagnosis and treatment of vestibular migraine (2018).Chinese J. Pain Med.20182407481488
    [Google Scholar]
  3. Headache classification committee of the international headache society (IHS) the international classification of headache disorders, 3rd edition.Cephalalgia20183811211
    [Google Scholar]
  4. FormeisterE.J. RizkH.G. KohnM.A. SharonJ.D. The epidemiology of vestibular migraine: A population-based survey study.Otol. Neurotol.20183981037104410.1097/MAO.0000000000001900 30020261
    [Google Scholar]
  5. LiV. McArdleH. TripS.A. Vestibular migraine.BMJ2019366l421310.1136/bmj.l4213 31270067
    [Google Scholar]
  6. WuJ. LiuC. YuH. LiH. JiaY. ZhangD. ChenL. LiX. Clinical characteristics of sleep disorders in patients with vestibular migraine.Sleep Breath.20202441383138810.1007/s11325‑019‑01994‑1 31832981
    [Google Scholar]
  7. HuangT.C. WangS.J. KheradmandA. Vestibular migraine: An update on current understanding and future directions.Cephalalgia202040110712110.1177/0333102419869317 31394919
    [Google Scholar]
  8. SanchezE.J.M. EscamezL.J.A. New insights into pathophysiology of vestibular migraine.Front. Neurol.201561210.3389/fneur.2015.00012 25705201
    [Google Scholar]
  9. AhnS.K. BalabanC.D. Distribution of 5-HT1B and 5-HT1D receptors in the inner ear.Brain Res.201013469210110.1016/j.brainres.2010.05.057 20510890
    [Google Scholar]
  10. ZhangY. ZhangY. TianK. WangY. FanX. PanQ. QinG. ZhangD. ChenL. ZhouJ. Calcitonin gene-related peptide facilitates sensitization of the vestibular nucleus in a rat model of chronic migraine.J. Headache Pain20202117210.1186/s10194‑020‑01145‑y 32522232
    [Google Scholar]
  11. WuX. QiuF. WangZ. LiuB. QiX. Correlation of 5‐HTR6 gene polymorphism with vestibular migraine.J. Clin. Lab. Anal.2020342e2304210.1002/jcla.23042 31587366
    [Google Scholar]
  12. TietjenG.E. KhubchandaniJ. Vascular biomarkers in migraine.Cephalalgia20153529511710.1177/0333102414544976 25281220
    [Google Scholar]
  13. NagarshethN. WichaM.S. ZouW. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy.Nat. Rev. Immunol.201717955957210.1038/nri.2017.49 28555670
    [Google Scholar]
  14. UrbantatR. VajkoczyP. BrandenburgS. Advances in chemokine signaling pathways as therapeutic targets in glioblastoma.Cancers20211312298310.3390/cancers13122983 34203660
    [Google Scholar]
  15. GroblewskaM. ZawadzkaL.A. MroczkoB. The role of selected chemokines and their receptors in the development of gliomas.Int. J. Mol. Sci.20202110370410.3390/ijms21103704 32456359
    [Google Scholar]
  16. KeaneM.P. StrieterR.M. Chemokine signaling in inflammation.Crit. Care Med.200028S4N13N2610.1097/00003246‑200004001‑00003 10807313
    [Google Scholar]
  17. ZhangZ.J. JiangB.C. GaoY.J. Chemokines in neuron–glial cell interaction and pathogenesis of neuropathic pain.Cell. Mol. Life Sci.201774183275329110.1007/s00018‑017‑2513‑1 28389721
    [Google Scholar]
  18. WarkentinT.E. Platelet-activating anti-PF4 disorders: An overview.Semin. Hematol.2022592597110.1053/j.seminhematol.2022.02.005 35512902
    [Google Scholar]
  19. BakogiannisC. SachseM. StamatelopoulosK. StellosK. Platelet-derived chemokines in inflammation and atherosclerosis.Cytokine201912215415710.1016/j.cyto.2017.09.013 29198385
    [Google Scholar]
  20. CuiG. WangC. LinZ. FengX. WeiM. MiaoZ. SunZ. WeiF. Prognostic and immunological role of Ras-related protein Rap1b in pan-cancer.Bioengineered20211214828484010.1080/21655979.2021.1955559 34346294
    [Google Scholar]
  21. ZhangL. CuiM. SongL. ZhangM. ZhangJ. Function, significance, and regulation of Rap1b in malignancy.Crit. Rev. Eukaryot. Gene Expr.201929215116010.1615/CritRevEukaryotGeneExpr.2019025997 31679270
    [Google Scholar]
  22. ZiZ. Molecular engineering of the TGF-β signaling pathway.J. Mol. Biol.2019431152644265410.1016/j.jmb.2019.05.022 31121181
    [Google Scholar]
  23. HaqueS. MorrisJ.C. Transforming growth factor-β: A therapeutic target for cancer.Hum. Vaccin. Immunother.20171381741175010.1080/21645515.2017.1327107 28575585
    [Google Scholar]
  24. IsenbergJ.S. RobertsD.D. THBS1 (thrombospondin-1).Atlas Genet. Cytogenet. Oncol. Haematol.2020248291299 33244322
    [Google Scholar]
  25. BrayE.R. YungherB.J. LevayK. RibeiroM. DvoryanchikovG. AyupeA.C. ThakorK. MarksV. RandolphM. DanziM.C. SchmidtT.M. ChaudhariN. LemmonV.P. HattarS. ParkK.K. Thrombospondin-1 mediates axon regeneration in retinal ganglion cells.Neuron20191034642657.e710.1016/j.neuron.2019.05.044 31255486
    [Google Scholar]
  26. PrzyklenkM. GeorgievaV.S. MetzenF. MostertS. KobbeB. CallewaertB. SengleG. BrachvogelB. MechamR.P. PaulssonM. WagenerR. KochM. SchiavinatoA. LTBP1 promotes fibrillin incorporation into the extracellular matrix.Matrix Biol.2022110607510.1016/j.matbio.2022.04.004 35452817
    [Google Scholar]
  27. ZhangQ.J. LiD.Z. LinB.Y. GengL. YangZ. ZhengS.S. SNHG16 promotes hepatocellular carcinoma development via activating ECM receptor interaction pathway.Hepatobiliary Pancreat. Dis. Int.2022211414910.1016/j.hbpd.2021.09.006 34600815
    [Google Scholar]
  28. RothG.J. ChurchT.A. McMullenB.A. WilliamsS.A. Human platelet glycoprotein V: A surface leucine-rich glycoprotein related to adhesion.Biochem. Biophys. Res. Commun.1990170115316110.1016/0006‑291X(90)91253‑O 2372284
    [Google Scholar]
  29. CalverleyD.C. YagiM. StrayS.M. RothG.J. Human platelet glycoprotein V: Its role in enhancing expression of the glycoprotein Ib receptor.Blood19958641361136710.1182/blood.V86.4.1361.bloodjournal8641361 7632943
    [Google Scholar]
  30. ChabléC.S.J. LezamaR.A. MaldonadoR.E. Platelet activation as a trigger factor for inflammation and atherosclerosis.Cir. Cir.2020882233243 32116325
    [Google Scholar]
  31. YunS.H. SimE.H. GohR.Y. ParkJ.I. HanJ.Y. Platelet activation: The mechanisms and potential biomarkers.BioMed Res. Int.201620161510.1155/2016/9060143 27403440
    [Google Scholar]
  32. DaneseE. MontagnanaM. LippiG. Platelets and migraine.Thromb. Res.20141341172210.1016/j.thromres.2014.03.055 24767953
    [Google Scholar]
  33. SunY. DuR. ShangY. LiuC. ZhengL. SunR. WangY. LuG. Rho GTPase-activating protein 35 suppresses gastric cancer metastasis by regulating cytoskeleton reorganization and epithelial-to-mesenchymal transition.Bioengineered2022136146051461510.1080/21655979.2022.2092677 35758029
    [Google Scholar]
  34. ReisL.M. ChassaingN. BardakjianT. ARHGAP35 is a novel factor disrupted in human developmental eye phenotypes.Eur. J. Hum. Genet.2023313363367 36450800
    [Google Scholar]
  35. DahmaneH.S. ShenR.Y. ElmesM.W. StudholmeK. KanjiyaM.P. BogdanD. ThanosP.K. MiyauchiJ.T. TsirkaS.E. DeutschD.G. KaczochaM. Fatty-acid–binding protein 5 controls retrograde endocannabinoid signaling at central glutamate synapses.Proc. Natl. Acad. Sci.2018115133482348710.1073/pnas.1721339115 29531087
    [Google Scholar]
  36. FauzanM. OubraimS. YuM. GlaserS.T. KaczochaM. DahmaneH.S. Fatty acid-binding protein 5 modulates brain endocannabinoid tone and retrograde signaling in the striatum.Front. Cell. Neurosci.20221693693910.3389/fncel.2022.936939 35875351
    [Google Scholar]
  37. LiZ. LiuL. LiB. Progress of astrocyte-associated structure and function in migraine.Chin. Med. J.20221901485110.4103/0366‑6999.172570
    [Google Scholar]
  38. ZhouX. LiangJ. WangJ. FeiZ. QinG. ZhangD. ZhouJ. ChenL. Up‐regulation of astrocyte excitatory amino acid transporter 2 alleviates central sensitization in a rat model of chronic migraine.J. Neurochem.2020155437038910.1111/jnc.14944 31872442
    [Google Scholar]
/content/journals/cp/10.2174/0115701646331735241231070050
Loading
/content/journals/cp/10.2174/0115701646331735241231070050
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): dizziness; migraine; omics; Proteomics; vertigo; vestibular migraine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test