Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Transposable elements are the oldest structural and functional units that were formed during the emergence of life on Earth. The most ancient properties of transposable elements are the multifunctionality of their transcription and translation products and the formation of their many variants through processing, due to which transposable elements are key evolutionary sources of long non-coding RNAs, circular RNAs, microRNAs, proteins and peptides formation. Moreover, the same type of transposon can simultaneously serve as the source of the origin of all these molecules, providing the adaptive properties of living organisms, especially complex eukaryotes, including humans. The ancient ability of transposable elements for mutual integration due to their protein products interacting with DNA and RNA molecules, as well as for mutual regulation due to the functionality of their RNA, is the basis for the origin of many proteins and non-coding RNAs characterized by the same properties. This can explain the emergence of transcription factors from transposable elements, that is, proteins capable of interacting with the structures of DNA molecules due to the presence of specific amino acid sequences derived from transposable elements. This article presents facts about the origin during the evolution of many protein and non-coding RNA genes from transposable elements. Specific proteins and peptides translated from long non-coding RNAs, pri-microRNAs and circular RNAs are described, which reflect the origin of non-coding RNAs from transposable elements in evolution. These proteins and peptides are promising tools for the treatment of viral infections and drug-resistant tumors, since, together with non-coding RNAs, they are involved in antiviral and antitumor responses.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646319572240805103747
2024-09-01
2025-05-31
Loading full text...

Full text loading...

References

  1. NurkS. KorenS. RhieA. RautiainenM. BzikadzeA.V. MikheenkoA. VollgerM.R. AltemoseN. UralskyL. GershmanA. AganezovS. HoytS.J. DiekhansM. LogsdonG.A. AlongeM. AntonarakisS.E. BorchersM. BouffardG.G. BrooksS.Y. CaldasG.V. ChenN.C. ChengH. ChinC.S. ChowW. de LimaL.G. DishuckP.C. DurbinR. DvorkinaT. FiddesI.T. FormentiG. FultonR.S. FungtammasanA. GarrisonE. GradyP.G.S. Graves-LindsayT.A. HallI.M. HansenN.F. HartleyG.A. HauknessM. HoweK. HunkapillerM.W. JainC. JainM. JarvisE.D. KerpedjievP. KirscheM. KolmogorovM. KorlachJ. KremitzkiM. LiH. MaduroV.V. MarschallT. McCartneyA.M. McDanielJ. MillerD.E. MullikinJ.C. MyersE.W. OlsonN.D. PatenB. PelusoP. PevznerP.A. PorubskyD. PotapovaT. RogaevE.I. RosenfeldJ.A. SalzbergS.L. SchneiderV.A. SedlazeckF.J. ShafinK. ShewC.J. ShumateA. SimsY. SmitA.F.A. SotoD.C. SovićI. StorerJ.M. StreetsA. SullivanB.A. Thibaud-NissenF. TorranceJ. WagnerJ. WalenzB.P. WengerA. WoodJ.M.D. XiaoC. YanS.M. YoungA.C. ZarateS. SurtiU. McCoyR.C. DennisM.Y. AlexandrovI.A. GertonJ.L. O’NeillR.J. TimpW. ZookJ.M. SchatzM.C. EichlerE.E. MigaK.H. PhillippyA.M. The complete sequence of a human genome.Science20223766588445310.1126/science.abj698735357919
    [Google Scholar]
  2. DerrienT. JohnsonR. BussottiG. TanzerA. DjebaliS. TilgnerH. GuernecG. MartinD. MerkelA. KnowlesD.G. LagardeJ. VeeravalliL. RuanX. RuanY. LassmannT. CarninciP. BrownJ.B. LipovichL. GonzalezJ.M. ThomasM. DavisC.A. ShiekhattarR. GingerasT.R. HubbardT.J. NotredameC. HarrowJ. GuigóR. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression.Genome Res.20122291775178910.1101/gr.132159.11122955988
    [Google Scholar]
  3. MakałowskiW. GoteaV. PandeA. MakałowskaI. Transposable elements: Classification, identification, and their use as a tool for comparative genomics.Methods Mol. Biol.2019191017720710.1007/978‑1‑4939‑9074‑0_631278665
    [Google Scholar]
  4. de KoningA.P.J. GuW. CastoeT.A. BatzerM.A. PollockD.D. Repetitive elements may comprise over two-thirds of the human genome.PLoS Genet.2011712e100238410.1371/journal.pgen.100238422144907
    [Google Scholar]
  5. MustafinRN Functional dualism of transcripts of transposons in the evolution of eukaryotic genomes.Russ. J. Dev. Biol.201849633935510.1134/S1062360418070019
    [Google Scholar]
  6. MustafinR.N. KhusnutdinovaE.K. The role of reverse transcriptase in the origin of life.Biochemistry (Mosc.)201984887088310.1134/S000629791908003031522669
    [Google Scholar]
  7. KangM. TangB. LiJ. ZhouZ. LiuK. WangR. JiangZ. BiF. PatrickD. KimD. MitraA.K. Yang-HartwichY. Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA.Mol. Cancer202019114310.1186/s12943‑020‑01248‑932928232
    [Google Scholar]
  8. FitzgeraldK.A. CaffreyD.R. Long noncoding RNAs in innate and adaptive immunity.Curr. Opin. Immunol.20142614014610.1016/j.coi.2013.12.00124556411
    [Google Scholar]
  9. FicoA. FiorenzanoA. PascaleE. PatriarcaE.J. MinchiottiG. Long non-coding RNA in stem cell pluripotency and lineage commitment: Functions and evolutionary conservation.Cell. Mol. Life Sci.20197681459147110.1007/s00018‑018‑3000‑z30607432
    [Google Scholar]
  10. LongY. WangX. YoumansD.T. CechT.R. How do lncRNAs regulate transcription?Sci. Adv.201739eaao211010.1126/sciadv.aao211028959731
    [Google Scholar]
  11. MustafinR.N. The Relationship between transposons and transcription factors in the evolution of eukaryotes.J. Evol. Biochem. Physiol.2019551142310.1134/S0022093019010022
    [Google Scholar]
  12. KapustaA. KronenbergZ. LynchV.J. ZhuoX. RamsayL. BourqueG. YandellM. FeschotteC. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs.PLoS Genet.201394e100347010.1371/journal.pgen.100347023637635
    [Google Scholar]
  13. JohnsonR. GuigóR. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs.RNA201420795997610.1261/rna.044560.11424850885
    [Google Scholar]
  14. HadjiargyrouM. DelihasN. The intertwining of transposable elements and non-coding RNAs.Int. J. Mol. Sci.2013147133071332810.3390/ijms14071330723803660
    [Google Scholar]
  15. GerdesP. RichardsonS.R. MagerD.L. FaulknerG.J. Transposable elements in the mammalian embryo: Pioneers surviving through stealth and service.Genome Biol.201617110011610.1186/s13059‑016‑0965‑527161170
    [Google Scholar]
  16. LuX. SachsF. RamsayL. JacquesP.É. GökeJ. BourqueG. NgH.H. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity.Nat. Struct. Mol. Biol.201421442342510.1038/nsmb.279924681886
    [Google Scholar]
  17. HonsonD.D. MacfarlanT.S. A lncRNA-like Role for LINE1s in Development.Dev. Cell201846213213410.1016/j.devcel.2018.06.02230016617
    [Google Scholar]
  18. RamsayL. MarchettoM.C. CaronM. ChenS.H. BuscheS. KwanT. PastinenT. GageF.H. BourqueG. Conserved expression of transposon-derived non-coding transcripts in primate stem cells.BMC Genomics201718121422610.1186/s12864‑017‑3568‑y28245871
    [Google Scholar]
  19. ArendtT. UeberhamU. JanitzM. Non-coding transcriptome in brain aging.Aging (Albany NY)2017991943194410.18632/aging.10129028898200
    [Google Scholar]
  20. LappH.E. HunterR.G. The dynamic genome: Transposons and environmental adaptation in the nervous system.Epigenomics20168223724910.2217/epi.15.10726791965
    [Google Scholar]
  21. AndersonD.M. AndersonK.M. ChangC.L. MakarewichC.A. NelsonB.R. McAnallyJ.R. KasaragodP. SheltonJ.M. LiouJ. Bassel-DubyR. OlsonE.N. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance.Cell2015160459560610.1016/j.cell.2015.01.00925640239
    [Google Scholar]
  22. NelsonB.R. MakarewichC.A. AndersonD.M. WindersB.R. TroupesC.D. WuF. ReeseA.L. McAnallyJ.R. ChenX. KavalaliE.T. CannonS.C. HouserS.R. Bassel-DubyR. OlsonE.N. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle.Science2016351627027127510.1126/science.aad407626816378
    [Google Scholar]
  23. ZhangJ. MujahidH. HouY. NallamilliBR. PengZ. Plant Long ncRNAs: A new frontier for gene regulatory control.Am. J. Plant Sci.2013451038104510.4236/ajps.2013.45128
    [Google Scholar]
  24. LevineM.T. JonesC.D. KernA.D. LindforsH.A. BegunD.J. Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression.Proc. Natl. Acad. Sci. USA2006103269935993910.1073/pnas.050980910316777968
    [Google Scholar]
  25. CaiJ. ZhaoR. JiangH. WangW. De novo origination of a new protein-coding gene in Saccharomyces cerevisiae .Genetics2008179148749610.1534/genetics.107.08449118493065
    [Google Scholar]
  26. XieC. ZhangY.E. ChenJ.Y. LiuC.J. ZhouW.Z. LiY. ZhangM. ZhangR. WeiL. LiC.Y. Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs.PLoS Genet.201289e100294210.1371/journal.pgen.100294223028352
    [Google Scholar]
  27. Ruiz-OreraJ. MesseguerX. SubiranaJ.A. AlbaM.M. Long non-coding RNAs as a source of new peptides.eLife20143e0352310.7554/eLife.0352325233276
    [Google Scholar]
  28. GuoL. ZhaoY. YangS. ZhangH. WuQ. ChenF. An integrated evolutionary analysis of miRNA–lncRNA in mammals.Mol. Biol. Rep.201441120120710.1007/s11033‑013‑2852‑424186852
    [Google Scholar]
  29. LauresserguesD. CouzigouJ.M. ClementeH.S. MartinezY. DunandC. BécardG. CombierJ.P. Primary transcripts of microRNAs encode regulatory peptides.Nature20155207545909310.1038/nature1434625807486
    [Google Scholar]
  30. FangJ. MorsalinS. RaoV. ReddyE.S. Decoding of non-coding DNA and non-coding RNA: Pri-micro RNA-encoded novel peptides regulate migration of cancer cells.J. Pharm. Sci. Pharmacol.201731232710.1166/jpsp.2017.1070
    [Google Scholar]
  31. NiuL. LouF. SunY. SunL. CaiX. LiuZ. ZhouH. WangH. WangZ. BaiJ. YinQ. ZhangJ. ChenL. PengD. XuZ. GaoY. TangS. FanL. WangH. A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation.Sci. Adv.2020621eaaz205910.1126/sciadv.aaz205932671205
    [Google Scholar]
  32. PrelA. DozierC. CombierJ.P. PlazaS. BessonA. Evidence that regulation of Pri-miRNA/miRNA expression is not a general rule of miPEPs function in humans.Int. J. Mol. Sci.2021227343210.3390/ijms2207343233810468
    [Google Scholar]
  33. WeiG. QinS. LiW. ChenL. MaF. MDTE DB: A database for microRNAs derived from transposable element.IEEE/ACM Trans Comput Biol Bioinform.20161361155116010.1109/TCBB.2015.2511767
    [Google Scholar]
  34. SchraderL. SchmitzJ. The impact of transposable elements in adaptive evolution.Mol. Ecol.20192861537154910.1111/mec.1479430003608
    [Google Scholar]
  35. KubiakM.R. MakałowskaI. Protein-coding genes’ retrocopies and their functions.Viruses2017948010.3390/v904008028406439
    [Google Scholar]
  36. AbascalF. TressM.L. ValenciaA. Alternative splicing and co-option of transposable elements: The case of TMPO/LAP2α and ZNF451 in mammals.Bioinformatics201531142257226110.1093/bioinformatics/btv13225735770
    [Google Scholar]
  37. HeZ. ChenO. PhillipsN. PasquesiG.I.M. SabunciyanS. FloreaL. Predicting Alu exonization in the human genome with a deep learning model.bioRxiv20242024.01.03.57409910.1101/2024.01.03.574099.
    [Google Scholar]
  38. TanS. Cardoso-MoreiraM. ShiW. ZhangD. HuangJ. MaoY. JiaH. ZhangY. ChenC. ShaoY. LengL. LiuZ. HuangX. LongM. ZhangY.E. LTR-mediated retroposition as a mechanism of RNA-based duplication in metazoans.Genome Res.201626121663167510.1101/gr.204925.11627934698
    [Google Scholar]
  39. ZhuZ. TanS. ZhangY. ZhangY.E. LINE-1-like retrotransposons contribute to RNA-based gene duplication in dicots.Sci. Rep.2016612475510.1038/srep2475527098918
    [Google Scholar]
  40. SakaiH. MizunoH. KawaharaY. WakimotoH. IkawaH. KawahigashiH. KanamoriH. MatsumotoT. ItohT. GautB.S. Retrogenes in rice ( Oryza sativa L. ssp. japonica ) exhibit correlated expression with their source genes.Genome Biol. Evol.201131357136810.1093/gbe/evr11122042334
    [Google Scholar]
  41. GrandiF.C. RosserJ.M. NewkirkS.J. YinJ. JiangX. XingZ. WhitmoreL. BashirS. IvicsZ. IzsvákZ. YeP. YuY.E. AnW. Retrotransposition creates sloping shores: A graded influence of hypomethylated CpG islands on flanking CpG sites.Genome Res.20152581135114610.1101/gr.185132.11425995269
    [Google Scholar]
  42. DuZ.Q. YangC.X. RothschildM.F. RossJ.W. Novel microRNA families expanded in the human genome.BMC Genomics20131419810510.1186/1471‑2164‑14‑9823402294
    [Google Scholar]
  43. HoenD.R. BureauT.E. Discovery of novel genes derived from transposable elements using integrative genomic analysis.Mol. Biol. Evol.20153261487150610.1093/molbev/msv04225713212
    [Google Scholar]
  44. AlzohairyA.M. GyulaiG. JansenR.K. BahieldinA. Transposable elements domesticated and neofunctionalized by eukaryotic genomes.Plasmid201369111510.1016/j.plasmid.2012.08.00122960324
    [Google Scholar]
  45. KoperaH.C. MoldovanJ.B. MorrishT.A. Garcia-PerezJ.L. MoranJ.V. Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase.Proc. Natl. Acad. Sci. USA201110851203452035010.1073/pnas.110027510821940498
    [Google Scholar]
  46. CasacubertaE. Drosophila: Retrotransposons making up telomeres.Viruses20179719210.3390/v907019228753967
    [Google Scholar]
  47. KiplingD. WarburtonP.E. Centromeres, CENP-B and tigger too.Trends Genet.199713414114510.1016/S0168‑9525(97)01098‑69097724
    [Google Scholar]
  48. ZdobnovE.M. CampillosM. HarringtonE.D. TorrentsD. BorkP. Protein coding potential of retroviruses and other transposable elements in vertebrate genomes.Nucleic Acids Res.200533394695410.1093/nar/gki23615716312
    [Google Scholar]
  49. FeschotteC. Transposable elements and the evolution of regulatory networks.Nat. Rev. Genet.20089539740510.1038/nrg233718368054
    [Google Scholar]
  50. de SouzaF.S.J. FranchiniL.F. RubinsteinM. Exaptation of transposable elements into novel cis-regulatory elements: Is the evidence always strong?Mol. Biol. Evol.20133061239125110.1093/molbev/mst04523486611
    [Google Scholar]
  51. CouzigouJ.M. AndréO. GuillotinB. AlexandreM. CombierJ.P. Use of micro RNA -encoded peptide mi PEP 172c to stimulate nodulation in soybean.New Phytol.2016211237938110.1111/nph.1399127105382
    [Google Scholar]
  52. LvS. PanL. WangG. Commentary: Primary transcripts of micrornas encode regulatory peptides.Front. Plant Sci.20167143610.3389/fpls.2016.0143627713758
    [Google Scholar]
  53. VolffJ.N. Turning junk into gold: Domestication of transposable elements and the creation of new genes in eukaryotes.BioEssays200628991392210.1002/bies.2045216937363
    [Google Scholar]
  54. KapitonovV.V. JurkaJ. Harbinger transposons and an ancient HARBI1 gene derived from a transposase.DNA Cell Biol.200423531132410.1089/10445490432309094915169610
    [Google Scholar]
  55. AbrusánG. ZhangY. SzilágyiA. Structure prediction and analysis of DNA transposon and LINE retrotransposon proteins.J. Biol. Chem.201328822161271613810.1074/jbc.M113.45150023530042
    [Google Scholar]
  56. DuanC.G. WangX. XieS. PanL. MikiD. TangK. HsuC.C. LeiM. ZhongY. HouY.J. WangZ. ZhangZ. MangrauthiaS.K. XuH. ZhangH. DilkesB. TaoW.A. ZhuJ.K. A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation.Cell Res.201727222624010.1038/cr.2016.14727934869
    [Google Scholar]
  57. SinzelleL. IzsvákZ. IvicsZ. Molecular domestication of transposable elements: From detrimental parasites to useful host genes.Cell. Mol. Life Sci.20096661073109310.1007/s00018‑009‑8376‑319132291
    [Google Scholar]
  58. WangJ. Vicente-GarcíaC. SeruggiaD. MoltóE. Fernandez-MiñánA. NetoA. LeeE. Gómez-SkarmetaJ.L. MontoliuL. LunyakV.V. JordanI.K. MIR retrotransposon sequences provide insulators to the human genome.Proc. Natl. Acad. Sci. USA2015112324428443710.1073/pnas.1507253112
    [Google Scholar]
  59. Malfavon-BorjaR. FeschotteC. Fighting fire with fire: Endogenous retrovirus envelopes as restriction factors.J. Virol.20158984047405010.1128/JVI.03653‑1425653437
    [Google Scholar]
  60. MalikH.S. HenikoffS. EickbushT.H. Poised for contagion: Evolutionary origins of the infectious abilities of invertebrate retroviruses.Genome Res.20001091307131810.1101/gr.14500010984449
    [Google Scholar]
  61. MalletF. BoutonO. PrudhommeS. CheynetV. OriolG. BonnaudB. LucotteG. DuretL. MandrandB. The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology.Proc. Natl. Acad. Sci. USA200410161731173610.1073/pnas.030576310114757826
    [Google Scholar]
  62. DupressoirA. MarceauG. VernochetC. BénitL. KanellopoulosC. SapinV. HeidmannT. Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae.Proc. Natl. Acad. Sci. USA2005102372573010.1073/pnas.040650910215644441
    [Google Scholar]
  63. CornelisG. VernochetC. MalicorneS. SouquereS. TzikaA.C. GoodmanS.M. CatzeflisF. RobinsonT.J. MilinkovitchM.C. PierronG. HeidmannO. DupressoirA. HeidmannT. Retroviral envelope syncytin capture in an ancestrally diverged mammalian clade for placentation in the primitive Afrotherian tenrecs.Proc. Natl. Acad. Sci. USA201411141E4332E434110.1073/pnas.141226811125267646
    [Google Scholar]
  64. HeidmannO. VernochetC. DupressoirA. HeidmannT. Identification of an endogenous retroviral envelope gene with fusogenic activity and placenta-specific expression in the rabbit: A new “syncytin” in a third order of mammals.Retrovirology20096110710.1186/1742‑4690‑6‑10719943933
    [Google Scholar]
  65. Joly-LopezZ. BureauT.E. Exaptation of transposable element coding sequences.Curr. Opin. Genet. Dev.201849344210.1016/j.gde.2018.02.01129525543
    [Google Scholar]
  66. BernardD. MéhulB. Thomas-CollignonA. DelattreC. DonovanM. SchmidtR. Identification and characterization of a novel retroviral-like aspartic protease specifically expressed in human epidermis.J. Invest. Dermatol.2005125227828710.1111/j.0022‑202X.2005.23816.x16098038
    [Google Scholar]
  67. Toll-RieraM. BoschN. BelloraN. CasteloR. ArmengolL. EstivillX. Mar AlbaM. Origin of primate orphan genes: A comparative genomics approach.Mol. Biol. Evol.200826360361210.1093/molbev/msn28119064677
    [Google Scholar]
  68. LuS. ZhangJ. LianX. SunL. MengK. ChenY. SunZ. YinX. LiY. ZhaoJ. WangT. ZhangG. HeQ.Y. A hidden human proteome encoded by ‘non-coding’ genes.Nucleic Acids Res.201947158111812510.1093/nar/gkz64631340039
    [Google Scholar]
  69. van HeeschS. WitteF. Schneider-LunitzV. SchulzJ.F. AdamiE. FaberA.B. KirchnerM. MaatzH. BlachutS. SandmannC.L. KandaM. WorthC.L. SchaferS. CalvielloL. MerriottR. PatoneG. HummelO. WylerE. ObermayerB. MückeM.B. LindbergE.L. TrnkaF. MemczakS. SchillingM. FelkinL.E. BartonP.J.R. QuaifeN.M. VanezisK. DieckeS. MukaiM. MahN. OhS.J. KurtzA. SchrammC. SchwingeD. SebodeM. HarakalovaM. AsselbergsF.W. VinkA. de WegerR.A. ViswanathanS. WidjajaA.A. Gärtner-RommelA. MiltingH. dos RemediosC. KnosallaC. MertinsP. LandthalerM. VingronM. LinkeW.A. SeidmanJ.G. SeidmanC.E. RajewskyN. OhlerU. CookS.A. HubnerN. The translational landscape of the human heart.Cell20191781242260.e2910.1016/j.cell.2019.05.01031155234
    [Google Scholar]
  70. LiX.L. PongorL. TangW. DasS. MuysB.R. JonesM.F. LazarS.B. DangelmaierE.A. HartfordC.C.R. GrammatikakisI. HaoQ. SunQ. SchetterA. MartindaleJ.L. TangB. JenkinsL.M. RoblesA.I. WalkerR.L. AmbsS. ChariR. ShabalinaS.A. GorospeM. HussainS.P. HarrisC.C. MeltzerP.S. PrasanthK.V. AladjemM.I. AndressonT. LalA. A small protein encoded by a putative lncRNA regulates apoptosis and tumorigenicity in human colorectal cancer cells.eLife20209e5373410.7554/eLife.5373433112233
    [Google Scholar]
  71. GeQ. JiaD. CenD. QiY. ShiC. LiJ. SangL. YangL. HeJ. LinA. ChenS. WangL. Micropeptide ASAP encoded by LINC00467 promotes colorectal cancer progression by directly modulating ATP synthase activity.J. Clin. Invest.202113122e15291110.1172/JCI15291134591791
    [Google Scholar]
  72. WuS. ZhangL. DengJ. GuoB. LiF. WangY. WuR. ZhangS. LuJ. ZhouY. A novel micropeptide encoded by Y-Linked LINC00278 links cigarette smoking and AR signaling in male esophageal squamous cell carcinoma.Cancer Res.202080132790280310.1158/0008‑5472.CAN‑19‑344032169859
    [Google Scholar]
  73. BarczakW. CarrS.M. LiuG. MunroS. NicastriA. LeeL.N. HutchingsC. TernetteN. KlenermanP. KanapinA. SamsonovaA. La ThangueN.B. Long non-coding RNA-derived peptides are immunogenic and drive a potent anti-tumour response.Nat. Commun.2023141107810.1038/s41467‑023‑36826‑036841868
    [Google Scholar]
  74. XiaoW. HalabiR. LinC.H. NazimM. YeomK.H. BlackD.L. The lncRNA Malat1 is trafficked to the cytoplasm as a localized mRNA encoding a small peptide in neurons.Genes Dev.2024387-829430710.1101/gad.351557.12438688681
    [Google Scholar]
  75. ZapataJ.C. CampilongoF. BarclayR.A. DeMarinoC. Iglesias-UsselM.D. KashanchiF. RomerioF. The human immunodeficiency virus 1 ASP RNA promotes viral latency by recruiting the Polycomb Repressor Complex 2 and promoting nucleosome assembly.Virology2017506344410.1016/j.virol.2017.03.00228340355
    [Google Scholar]
  76. BidetK. DadlaniD. Garcia-BlancoM.A. G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA.PLoS Pathog.2014107e100424210.1371/journal.ppat.100424224992036
    [Google Scholar]
  77. MustafinR.N. The hypothesis of the origin of viruses from transposons.Mol. Gen. Microbiol. Virol.201833422323210.3103/S0891416818040067
    [Google Scholar]
  78. VachonV.K. ConnG.L. Adenovirus VA RNA: An essential pro-viral non-coding RNA.Virus Res.2016212395210.1016/j.virusres.2015.06.01826116898
    [Google Scholar]
  79. CaoS. MossW. O’GradyT. ConchaM. StrongM.J. WangX. YuY. BaddooM. ZhangK. FewellC. LinZ. DongY. FlemingtonE.K. New noncoding lytic transcripts derived from the Epstein-Barr virus latency origin of replication, oriP, are hyperedited, bind the paraspeckle protein, NONO/p54nrb, and Support viral lytic transcription.J. Virol.201589147120713210.1128/JVI.00608‑1525926645
    [Google Scholar]
  80. SzafronL.M. BalcerakA. GrzybowskaE.A. Pienkowska-GrelaB. Felisiak-GolabekA. PodgorskaA. The novel gene journal pre-proof 25 CRNDE encodes a nuclear peptide (CRNDEP) which is overexpressed in highly proliferating tissues.PLoS One2015105e012747510.1371/journal.pone.012747525978564
    [Google Scholar]
  81. D’LimaN.G. MaJ. WinklerL. ChuQ. LohK.H. CorpuzE.O. BudnikB.A. Lykke-AndersenJ. SaghatelianA. SlavoffS.A. A human microprotein that interacts with the mRNA decapping complex.Nat. Chem. Biol.201713217418010.1038/nchembio.224927918561
    [Google Scholar]
  82. GuoB. WuS. ZhuX. ZhangL. DengJ. LiF. WangY. ZhangS. WuR. LuJ. ZhouY. Micropeptide CIP 2A- BPencoded by LINC 00665 inhibits triple-negative breast cancer progression.EMBO J.2020391e10219010.15252/embj.201910219031755573
    [Google Scholar]
  83. WangY. WuS. ZhuX. ZhangL. DengJ. LiF. LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis.J Exp Med.20202173jem.2019095010.1084/jem.20190950.
    [Google Scholar]
  84. ZhangZ. YiY. WangZ. ZhangH. ZhaoY. HeR. LuoY. CuiZ. LncRNA MAGI2-AS3-encoded polypeptide restrains the proliferation and migration of breast cancer cells.Mol. Biotechnol.20246661409142310.1007/s12033‑023‑00801‑337358745
    [Google Scholar]
  85. Polycarpou-SchwarzM. GroßM. MestdaghP. SchottJ. GrundS.E. HildenbrandC. RomJ. AulmannS. SinnH.P. VandesompeleJ. DiederichsS. The cancer-associated microprotein CASIMO1 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation.Oncogene201837344750476810.1038/s41388‑018‑0281‑529765154
    [Google Scholar]
  86. HuangJ.Z. ChenM. ChenD. GaoX.C. ZhuS. HuangH. HuM. ZhuH. YanG.R. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth.Mol. Cell2017681171184.e610.1016/j.molcel.2017.09.01528985503
    [Google Scholar]
  87. MengN. ChenM. ChenD. ChenX.H. WangJ.Z. ZhuS. HeY.T. ZhangX.L. LuR.X. YanG.R. Small protein hidden in lncRNA LOC90024 promotes “cancerous” RNA splicing and tumorigenesis.Adv. Sci. (Weinh.)2020710190323310.1002/advs.20190323332440474
    [Google Scholar]
  88. ZhuS. WangJ.Z. ChenD. HeY.T. MengN. ChenM. LuR.X. ChenX.H. ZhangX.L. YanG.R. An oncopeptide regulates m6A recognition by the m6A reader IGF2BP1 and tumorigenesis.Nat. Commun.2020111168510.1038/s41467‑020‑15403‑932245947
    [Google Scholar]
  89. ZhengW. GuoY. ZhangG. BaiJ. SongY. SongX. ZhuQ. BaoX. WuG. ZhangC. Peptide encoded by lncRNA BVES-AS1 promotes cell viability, migration, and invasion in colorectal cancer cells via the SRC/mTOR signaling pathway.PLoS One2023186e028713310.1371/journal.pone.028713337347740
    [Google Scholar]
  90. PangY. LiuZ. HanH. WangB. LiW. MaoC. LiuS. Peptide SMIM30 promotes HCC development by inducing SRC/YES1 membrane anchoring and MAPK pathway activation.J. Hepatol.20207351155116910.1016/j.jhep.2020.05.02832461121
    [Google Scholar]
  91. XuW. DengB. LinP. LiuC. LiB. HuangQ. ZhouH. YangJ. QuL. Ribosome profiling analysis identified a KRAS-interacting microprotein that represses oncogenic signaling in hepatocellular carcinoma cells.Sci. China Life Sci.202063452954210.1007/s11427‑019‑9580‑531240521
    [Google Scholar]
  92. ZhangM. ZhaoK. XuX. YangY. YanS. WeiP. LiuH. XuJ. XiaoF. ZhouH. YangX. HuangN. LiuJ. HeK. XieK. ZhangG. HuangS. ZhangN. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma.Nat. Commun.201891447510.1038/s41467‑018‑06862‑230367041
    [Google Scholar]
  93. DuB. ZhangZ. JiaL. ZhangH. ZhangS. WangH. ChengZ. Micropeptide AF127577.4-ORF hidden in a lncRNA diminishes glioblastoma cell proliferation via the modulation of ERK2/METTL3 interaction.Sci. Rep.20241411209010.1038/s41598‑024‑62710‑y38802444
    [Google Scholar]
  94. SongH. WangJ. WangX. YuanB. LiD. HuA. GuoY. CaiS. JinS. ZhouY. LiQ. ChenG. GaoH. ZhengL. TongQ. HNF4A-AS1-encoded small peptide promotes self-renewal and aggressiveness of neuroblastoma stem cells via eEF1A1-repressed SMAD4 transactivation.Oncogene202241172505251910.1038/s41388‑022‑02271‑435318442
    [Google Scholar]
  95. SunL. WangW. HanC. HuangW. SunY. FangK. ZengZ. YangQ. PanQ. ChenT. LuoX. ChenY. The oncomicropeptide APPLE promotes hematopoietic malignancy by enhancing translation initiation.Mol. Cell2021812144934508.e910.1016/j.molcel.2021.08.03334555354
    [Google Scholar]
  96. KermiC. LauL. Asadi ShahmirzadiA. ClassonM. Disrupting mechanisms that regulate genomic repeat elements to combat cancer and drug resistance.Front. Cell Dev. Biol.20221082646110.3389/fcell.2022.82646135602594
    [Google Scholar]
  97. MustafinR.N. KhusnutdinovaE.K. Non-coding parts of genomes as the basis of epigenetic heredity.Vavilov Journal of Genetics and Breeding201721674274910.18699/10.18699/VJ17.30‑o
    [Google Scholar]
  98. MombachD.M. MercuriR.L.V. da Fontoura GomesT.M.F. GalanteP.A.F. LoretoE.L.S. Transposable elements alter gene expression and may impact response to cisplatin therapy in ovarian cancer.Carcinogenesis2024bgae02910.1093/carcin/bgae02938722203
    [Google Scholar]
  99. ZhangC. KangT. WangX. WangJ. LiuL. ZhangJ. LiuX. LiR. WangJ. ZhangJ. LINC-PINT suppresses cisplatin resistance in gastric cancer by inhibiting autophagy activation via epigenetic silencing of ATG5 by EZH2.Front. Pharmacol.20221396822310.3389/fphar.2022.96822336091809
    [Google Scholar]
  100. ChenJ. ZhuM. ZouL. XiaJ. HuangJ. DengQ. XuR. Long non-coding RNA LINC-PINT attenuates paclitaxel resistance in triple-negative breast cancer cells via targeting the RNA-binding protein NONO.Acta Biochim. Biophys. Sin. (Shanghai)202052880180910.1093/abbs/gmaa07232632453
    [Google Scholar]
  101. YuanZ. XiuC. LiuD. ZhouG. YangH. PeiR. DingC. CuiX. SunJ. SongK. Long noncoding RNA LINC-PINT regulates laryngeal carcinoma cell stemness and chemoresistance through miR-425-5p/PTCH1/SHH axis.J. Cell. Physiol.201923412231112312210.1002/jcp.2887431131448
    [Google Scholar]
  102. LingL. WenY. XiongY. LiuX. ChenJ. LiuT. ZhangB. Anisomycin inhibits the activity of human ovarian cancer stem cells via regulating antisense RNA NCBP2-AS2/MEK/ERK/STAT3 signaling.J. Gene Med.2024261e357110.1002/jgm.357137483091
    [Google Scholar]
  103. LiL. ZhangY. ZhanY. ZhongY. LiX. LINC00467 mediates the 5-fluorouracil resistance in breast cancer cells. In Vitro Cell. Dev. Biol. Anim.2023601808810.1007/s11626‑023‑00832‑938127229
    [Google Scholar]
  104. LiW. HeY. ChenW. ManW. FuQ. TanH. GuoH. ZhouJ. YangP. Knockdown of LINC00467 contributed to Axitinib sensitivity in hepatocellular carcinoma through miR-509-3p/PDGFRA axis.Gene Ther.20212810-1163464510.1038/s41434‑020‑0137‑932221502
    [Google Scholar]
  105. YaoM. ShiX. LiY. XiaoY. ButlerW. HuangY. DuL. WuT. BianX. ShiG. YeD. FuG. WangJ. RenS. LINC00675 activates androgen receptor axis signaling pathway to promote castration-resistant prostate cancer progression.Cell Death Dis.202011863810.1038/s41419‑020‑02856‑532801300
    [Google Scholar]
  106. TsengC.F. ChenL.T. WangH.D. LiuY.H. ShiahS.G. Transcriptional suppression of Dicer by HOXB-AS3/EZH2 complex dictates sorafenib resistance and cancer stemness.Cancer Sci.202211351601161210.1111/cas.1531935253323
    [Google Scholar]
  107. YangG. LiT. LiuJ. QuanZ. LiuM. GuoY. WuY. OuL. WuX. ZhengY. lncRNA MAGI2-AS3 suppresses castration-resistant prostate cancer proliferation and migration via the miR-106a-5p/RAB31 axis.Genomics2023115211059910.1016/j.ygeno.2023.11059936889366
    [Google Scholar]
  108. LuM. QinX. ZhouY. LiG. LiuZ. GengX. YueH. Long non-coding RNA LINC00665 promotes gemcitabine resistance of cholangiocarcinoma cells via regulating EMT and stemness properties through miR-424-5p/BCL9L axis.Cell Death Dis.20211217210.1038/s41419‑020‑03346‑433436545
    [Google Scholar]
  109. LiuX. LuX. ZhenF. JinS. YuT. ZhuQ. WangW. XuK. YaoJ. GuoR. LINC00665 induces acquired resistance to gefitinib through recruiting EZH2 and activating PI3K/AKT pathway in NSCLC.Mol. Ther. Nucleic Acids20191615516110.1016/j.omtn.2019.02.01030889481
    [Google Scholar]
  110. WuJ. NiX. YuZ. WuS. LiuZ. CRNDE inducing cisplatin resistance through SRSF1/TIA1 signaling pathway in ovarian cancer.Pathol. Res. Pract.202223515395710.1016/j.prp.2022.15395735653925
    [Google Scholar]
  111. ChenK.Y. ZhuS.G. HeJ.W. DuanX.P. LncRNA CRNDE is involved in radiation resistance in hepatocellular carcinoma via modulating the SP1/PDK1 axis.Neoplasma202269491893010.4149/neo_2022_211230N185335652619
    [Google Scholar]
  112. LiuP. LiX. CuiY. ChenJ. LiC. LiQ. LiH. ZhangX. ZuX. LncRNA-MALAT1 mediates cisplatin resistance via miR-101-3p/VEGF-C pathway in bladder cancer.Acta Biochim. Biophys. Sin. (Shanghai)201951111148115710.1093/abbs/gmz11231650173
    [Google Scholar]
  113. ZhangZ. LiM. ZhangZ. lncRNA MALAT1 modulates oxaliplatin resistance of gastric cancer via sponging miR-22-3p.OncoTargets Ther.2020131343135410.2147/OTT.S19661932104001
    [Google Scholar]
  114. CaoY. ZhangF. WangH. BiC. CuiJ. LiuF. PanH. LncRNA MALAT1 mediates doxorubicin resistance of hepatocellular carcinoma by regulating miR-3129-5p/Nova1 axis.Mol. Cell. Biochem.2021476127929210.1007/s11010‑020‑03904‑632965597
    [Google Scholar]
  115. ShiC. RenS. ZhaoX. LiQ. lncRNA MALAT1 regulates the resistance of breast cancer cells to paclitaxel via the miR-497-5p/SHOC2 axis.Pharmacogenomics2022231897398510.2217/pgs‑2022‑007736420706
    [Google Scholar]
  116. ChenW. TanX. YangQ. FangZ. XuY. MALAT1 enhances gemcitabine resistance in non-small cell lung cancer cells by directly affecting miR-27a-5p/PBOV1 axis.Cell. Signal.20229411032610.1016/j.cellsig.2022.11032635367362
    [Google Scholar]
  117. YuZ. TangH. ChenS. XieY. ShiL. XiaS. JiangM. LiJ. ChenD. Exosomal LOC85009 inhibits docetaxel resistance in lung adenocarcinoma through regulating ATG5-induced autophagy.Drug Resist. Updat.20236710091510.1016/j.drup.2022.10091536641841
    [Google Scholar]
  118. ZhuC. XieY. LiQ. ZhangZ. ChenJ. ZhangK. XiaX. YuD. ChenD. YuZ. ChenJ. CPSF6-mediated XBP1 3’UTR shortening attenuates cisplatin-induced ER stress and elevates chemo-resistance in lung adenocarcinoma.Drug Resist. Updat.20236810093310.1016/j.drup.2023.10093336821972
    [Google Scholar]
  119. ZhouH. LouF. BaiJ. SunY. CaiW. SunL. XuZ. LiuZ. ZhangL. YinQ. ZhangJ. GaoY. WangZ. NiuL. CaiX. DengS. WangH. XiaL. GinhouxF. LiQ. WangH. A peptide encoded by pri-miRNA-31 represses autoimmunity by promoting T reg differentiation.EMBO Rep.2022235e5347510.15252/embr.20215347535343645
    [Google Scholar]
  120. OrmanceyM. ThuleauP. CombierJ.P. PlazaS. The essentials on microRNA-encoded peptides from plants to animals.Biomolecules202313220610.3390/biom1302020636830576
    [Google Scholar]
  121. KumarR.S. SinhaH. DattaT. AsifM.H. TrivediP.K. microRNA408 and its encoded peptide regulate sulfur assimilation and arsenic stress response in Arabidopsis.Plant Physiol.2023192283785610.1093/plphys/kiad03336682886
    [Google Scholar]
  122. RazookyB. ObermayerB. O’MayJ. TarakhovskyA. Viral infection identifies micropeptides differentially regulated in smORF-Containing lncRNAs.Genes (Basel)20178820610.3390/genes808020628825667
    [Google Scholar]
  123. LeeC.Q.E. KerouantonB. ChothaniS. ZhangS. ChenY. MantriC.K. HockD.H. LimR. NadkarniR. HuynhV.T. LimD. ChewW.L. ZhongF.L. StroudD.A. SchaferS. TergaonkarV. St JohnA.L. RackhamO.J.L. HoL. Coding and non-coding roles of MOCCI (C15ORF48) coordinate to regulate host inflammation and immunity.Nat. Commun.2021121213010.1038/s41467‑021‑22397‑533837217
    [Google Scholar]
  124. AhmadI. ValverdeA. SiddiquiH. SchallerS. NaqviA.R. Viral microRNAs: Interfering the interferon signaling.Curr. Pharm. Des.202026444645410.2174/138161282666620010918123831924149
    [Google Scholar]
  125. De CeccoM. ItoT. PetrashenA.P. EliasA.E. SkvirN.J. CriscioneS.W. CaligianaA. BrocculiG. AdneyE.M. BoekeJ.D. LeO. BeauséjourC. AmbatiJ. AmbatiK. SimonM. SeluanovA. GorbunovaV. SlagboomP.E. HelfandS.L. NerettiN. SedivyJ.M. L1 drives IFN in senescent cells and promotes age-associated inflammation.Nature20195667742737810.1038/s41586‑018‑0784‑930728521
    [Google Scholar]
  126. EnderC. KrekA. FriedländerM.R. BeitzingerM. WeinmannL. ChenW. PfefferS. RajewskyN. MeisterG. A human snoRNA with microRNA-like functions.Mol. Cell200832451952810.1016/j.molcel.2008.10.01719026782
    [Google Scholar]
  127. JacobM.D. AudasT.E. MullineuxS.T. LeeS. Where no RNA polymerase has gone before.Nucleus20123431531910.4161/nucl.2058522688644
    [Google Scholar]
  128. LiZ. EnderC. MeisterG. MooreP.S. ChangY. JohnB. Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs.Nucleic Acids Res.201240146787679910.1093/nar/gks30722492706
    [Google Scholar]
  129. KumarP. AnayaJ. MudunuriS.B. DuttaA. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets.BMC Biol.20141217810.1186/s12915‑014‑0078‑025270025
    [Google Scholar]
  130. VenkateshT. SureshP.S. TsutsumiR. tRFs: miRNAs in disguise.Gene2016579213313810.1016/j.gene.2015.12.05826743126
    [Google Scholar]
  131. MartinezG. ChouduryS.G. SlotkinR.K. tRNA-derived small RNAs target transposable element transcripts.Nucleic Acids Res.20174595142515210.1093/nar/gkx10328335016
    [Google Scholar]
  132. RuanQ. WangC. WuY. ZhuQ. Exosome microRNA-22 inhibiting proliferation, migration and invasion through regulating Twist1/CADM1 axis in osteosarcoma.Sci. Rep.202414176110.1038/s41598‑023‑50612‑438191892
    [Google Scholar]
  133. MaoX. ZhouJ. KongL. ZhuL. YangD. ZhangZ. A peptide encoded by lncRNA MIR7-3 host gene (MIR7-3HG) alleviates dexamethasone-induced dysfunction in pancreatic β-cells through the PI3K/AKT signaling pathway.Biochem. Biophys. Res. Commun.2023647627110.1016/j.bbrc.2023.01.00436731335
    [Google Scholar]
  134. MichailleJ.J. AwadH. FortmanE.C. EfanovA.A. TiliE. miR-155 expression in antitumor immunity: The higher the better?Genes Chromosomes Cancer201958420821810.1002/gcc.2269830382602
    [Google Scholar]
  135. JiangM. QiF. ZhangK. ZhangX. MaJ. XiaS. ChenL. YuZ. ChenJ. ChenD. MARCKSL1–2 reverses docetaxel-resistance of lung adenocarcinoma cells by recruiting SUZ12 to suppress HDAC1 and elevate miR-200b.Mol. Cancer202221115010.1186/s12943‑022‑01605‑w35864549
    [Google Scholar]
  136. SukochevaO.A. LiuJ. NeganovaM.E. BeerakaN.M. AleksandrovaY.R. ManogaranP. GrigorevskikhE.M. ChubarevV.N. FanR. Perspectives of using microRNA-loaded nanocarriers for epigenetic reprogramming of drug resistant colorectal cancers.Semin. Cancer Biol.202286Pt 235837510.1016/j.semcancer.2022.05.01235623562
    [Google Scholar]
  137. YuD. LvM. ChenW. ZhongS. ZhangX. ChenL. MaT. TangJ. ZhaoJ. Role of miR-155 in drug resistance of breast cancer.Tumour Biol.20153631395140110.1007/s13277‑015‑3263‑z25744731
    [Google Scholar]
  138. HsuH.H. KuoW.W. ShihH.N. ChengS.F. YangC.K. ChenM.C. TuC.C. ViswanadhaV.P. LiaoP.H. HuangC.Y. FOXC1 regulation of miR-31-5p confers oxaliplatin resistance by targeting LATS2 in colorectal cancer.Cancers (Basel)20191110157610.3390/cancers1110157631623173
    [Google Scholar]
  139. TianY. ChenZ.H. WuP. ZhangD. MaY. LiuX.F. WangX. DingD. CaoX.C. YuY. MIR497HG-Derived miR-195 and miR-497 mediate tamoxifen resistance via PI3K/AKT signaling in breast cancer.Adv. Sci. (Weinh.)20231012220481910.1002/advs.20220481936815359
    [Google Scholar]
  140. RearickD. PrakashA. McSweenyA. ShepardS.S. FedorovaL. FedorovA. Critical association of ncRNA with introns.Nucleic Acids Res.20113962357236610.1093/nar/gkq108021071396
    [Google Scholar]
  141. SoemediR. CyganK.J. RhineC.L. GliddenD.T. TaggartA.J. LinC.L. FredericksA.M. FairbrotherW.G. The effects of structure on pre-mRNA processing and stability.Methods2017125364410.1016/j.ymeth.2017.06.00128595983
    [Google Scholar]
  142. GuC. ZhouN. WangZ. LiG. KouY. YuS. FengY. ChenL. YangJ. TianF. circGprc5a promoted bladder oncogenesis and metastasis through Gprc5a-targeting peptide.Mol. Ther. Nucleic Acids20181363364110.1016/j.omtn.2018.10.00830497053
    [Google Scholar]
  143. YangY. GaoX. ZhangM. YanS. SunC. XiaoF. HuangN. YangX. ZhaoK. ZhouH. HuangS. XieB. ZhangN. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis.J. Natl. Cancer Inst.2018110330431510.1093/jnci/djx16628903484
    [Google Scholar]
  144. ZhengX. ChenL. ZhouY. WangQ. ZhengZ. XuB. WuC. ZhouQ. HuW. WuC. JiangJ. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling.Mol. Cancer20191814710.1186/s12943‑019‑1010‑630925892
    [Google Scholar]
  145. PanZ. CaiJ. LinJ. ZhouH. PengJ. LiangJ. XiaL. YinQ. ZouB. ZhengJ. QiaoL. ZhangL. A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating snail in colon cancer.Mol. Cancer20201917110.1186/s12943‑020‑01179‑532241279
    [Google Scholar]
  146. KralovicovaJ. PatelA. SearleM. VorechovskyI. The role of short RNA loops in recognition of a single-hairpin exon derived from a mammalian-wide interspersed repeat.RNA Biol.2015121546910.1080/15476286.2015.101720725826413
    [Google Scholar]
  147. LegniniI. Di TimoteoG. RossiF. MorlandoM. BrigantiF. SthandierO. FaticaA. SantiniT. AndronacheA. WadeM. LaneveP. RajewskyN. BozzoniI. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis.Mol. Cell20176612237.e910.1016/j.molcel.2017.02.01728344082
    [Google Scholar]
  148. DongR. MaX.K. ChenL.L. YangL. Increased complexity of circRNA expression during species evolution.RNA Biol.20171481064107410.1080/15476286.2016.126999927982734
    [Google Scholar]
  149. AktaşT. Avşar Ilıkİ. MaticzkaD. BhardwajV. Pessoa RodriguesC. MittlerG. MankeT. BackofenR. AkhtarA. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome.Nature2017544764811511910.1038/nature2171528355180
    [Google Scholar]
  150. de la PeñaM. Circular RNAs biogenesis in eukaryotes through self-cleaving hammerhead ribozymes.Adv. Exp. Med. Biol.20181087536310.1007/978‑981‑13‑1426‑1_530259357
    [Google Scholar]
  151. CerveraA. de la PeñaM. Cloning and detection of genomic retrozymes and their circRNA intermediates.Methods Mol. Biol.20212167274410.1007/978‑1‑0716‑0716‑9_332712913
    [Google Scholar]
  152. WeldenJ.R. StammS. Pre-mRNA structures forming circular RNAs.Biochim. Biophys. Acta. Gene Regul. Mech.2019186211-1219441010.1016/j.bbagrm.2019.19441031421281
    [Google Scholar]
  153. XiaX. LiX. LiF. WuX. ZhangM. ZhouH. HuangN. YangX. XiaoF. LiuD. YangL. ZhangN. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1.Mol. Cancer201918113110.1186/s12943‑019‑1056‑531470874
    [Google Scholar]
  154. SongR. GuoP. RenX. ZhouL. LiP. RahmanN.A. WołczyńskiS. LiX. ZhangY. LiuM. LiuJ. LiX. A novel polypeptide CAPG-171aa encoded by circCAPG plays a critical role in triple-negative breast cancer.Mol. Cancer202322110410.1186/s12943‑023‑01806‑x37408008
    [Google Scholar]
  155. ZhangM. HuangN. YangX. LuoJ. YanS. XiaoF. ChenW. GaoX. ZhaoK. ZhouH. LiZ. MingL. XieB. ZhangN. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis.Oncogene201837131805181410.1038/s41388‑017‑0019‑929343848
    [Google Scholar]
  156. LiangW.C. WongC.W. LiangP.P. ShiM. CaoY. RaoS.T. TsuiS.K.W. WayeM.M.Y. ZhangQ. FuW.M. ZhangJ.F. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway.Genome Biol.20192018410.1186/s13059‑019‑1685‑431027518
    [Google Scholar]
  157. SongR. MaS. XuJ. RenX. GuoP. LiuH. LiP. YinF. LiuM. WangQ. YuL. LiuJ. DuanB. RahmanN.A. WołczyńskiS. LiG. LiX. A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR.Mol. Cancer20232211610.1186/s12943‑023‑01719‑936691031
    [Google Scholar]
  158. GeJ. WangJ. XiongF. JiangX. ZhuK. WangY. MoY. GongZ. ZhangS. HeY. LiX. ShiL. GuoC. WangF. ZhouM. XiangB. LiY. LiG. XiongW. ZengZ. Epstein–Barr virus–encoded circular RNA CircBART2.2 promotes immune escape of nasopharyngeal carcinoma by regulating PD-L1.Cancer Res.202181195074508810.1158/0008‑5472.CAN‑20‑432134321242
    [Google Scholar]
  159. TagawaT. GaoS. KopardeV.N. GonzalezM. SpougeJ.L. SerquiñaA.P. LurainK. RamaswamiR. UldrickT.S. YarchoanR. ZiegelbauerJ.M. Discovery of Kaposi’s sarcoma herpesvirus-encoded circular RNAs and a human antiviral circular RNA.Proc. Natl. Acad. Sci. USA201811550128051281010.1073/pnas.181618311530455306
    [Google Scholar]
  160. ZhaoJ. LeeE.E. KimJ. YangR. ChamseddinB. NiC. GushoE. XieY. ChiangC.M. BuszczakM. ZhanX. LaiminsL. WangR.C. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus.Nat. Commun.2019101230010.1038/s41467‑019‑10246‑531127091
    [Google Scholar]
  161. CaiZ. LuC. HeJ. LiuL. ZouY. ZhangZ. ZhuZ. GeX. WuA. JiangT. ZhengH. PengY. Identification and characterization of circRNAs encoded by MERS-CoV, SARS-CoV-1 and SARS-CoV-2.Brief. Bioinform.20212221297130810.1093/bib/bbaa33433757279
    [Google Scholar]
  162. AroraA. KolbergJ.E. Srinivasachar BadarinarayanS. SavytskaN. MunotD. MüllerM. KrchlíkováV. SauterD. BansalV. SARS-CoV-2 infection induces epigenetic changes in the LTR69 subfamily of endogenous retroviruses.Mob. DNA20231411110.1186/s13100‑023‑00299‑137667401
    [Google Scholar]
/content/journals/cp/10.2174/0115701646319572240805103747
Loading
/content/journals/cp/10.2174/0115701646319572240805103747
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test