Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition. The genetic basis of ASD involves numerous loci converging on neural pathways, particularly affecting excitatory synapses. SHANK3, an essential protein in the post-synaptic neurons, has been implicated in ASD, with mutations affecting its N-terminal, including the SPN domain.

Objective

This study aims to investigate the impact of the N52R mutation on SHANK3 and assess the dynamics, stability, flexibility, and compactness of the N52R mutant compared to SHANK3 WT.

Methods

Molecular dynamics simulations were conducted to investigate the structural dynamics of SHANK3 WT and the N52R mutant. The simulations involved heating dynamics, density equilibrium, and production dynamics. The trajectories were analyzed for RMSD, RMSF, Rg, hydrogen bond analysis, and secondary structure.

Results

The simulations revealed that the N52R mutant disrupts the stability and folding of SHANK3, affecting intramolecular contacts between SPN and ARR. This disruption opens up the distance between SPN and ARR domains, potentially influencing the protein's interactions with partners, including αCaMKII and α-Fodrin. The altered conformation of the SPN-ARR tandem in the N52R mutant suggests a potential impact on dendritic spine shape and synaptic plasticity.

Conclusion

The findings shed light on the structural consequences of the N52R mutation in SHANK3, emphasizing its role in influencing intramolecular interactions and potential effects on synaptic function. Understanding these molecular dynamics contributes to unraveling the intricate relationship between genetic variations in SHANK3 and clinical traits associated with ASD. Further investigations are warranted to explore the physiological implications of these structural alterations .

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646301703240730054408
2024-09-01
2025-02-26
Loading full text...

Full text loading...

References

  1. NisarS. HarisM. Neuroimaging genetics approaches to identify new biomarkers for the early diagnosis of autism spectrum disorder.Mol. Psychiatry2023114
    [Google Scholar]
  2. ZeidanJ. FombonneE. ScorahJ. IbrahimA. DurkinM.S. SaxenaS. YusufA. ShihA. ElsabbaghM. Global prevalence of autism: A systematic review update.Autism Res.202215577879010.1002/aur.269635238171
    [Google Scholar]
  3. Ghafouri-FardS. PourtavakoliA. HussenB.M. TaheriM. AyatollahiS.A. A review on the role of genetic mutations in the autism spectrum disorder.Mol. Neurobiol.20236095256527210.1007/s12035‑023‑03405‑937278883
    [Google Scholar]
  4. MolloyC.J. CookeJ. GatfordN.J.F. Rivera-OlveraA. AvazzadehS. HombergJ.R. GrandjeanJ. FernandesC. ShenS. LothE. SrivastavaD.P. GallagherL. Bridging the translational gap: What can synaptopathies tell us about autism?Front. Mol. Neurosci.202316119132310.3389/fnmol.2023.119132337441676
    [Google Scholar]
  5. MonteiroP. FengG. SHANK proteins: Roles at the synapse and in autism spectrum disorder.Nat. Rev. Neurosci.201718314715710.1038/nrn.2016.18328179641
    [Google Scholar]
  6. SatterstromF. K. KosmickiJ. A. WangJ. BreenM. S. De RubeisS. AnJ.-Y. PengM. CollinsR. GroveJ. KleiL. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism.Cell2020180356858410.1016/j.cell.2019.12.036
    [Google Scholar]
  7. FuJ.M. SatterstromF.K. PengM. BrandH. CollinsR.L. DongS. WamsleyB. KleiL. WangL. HaoS.P. StevensC.R. CusickC. BabadiM. BanksE. CollinsB. DodgeS. GabrielS.B. GauthierL. LeeS.K. LiangL. LjungdahlA. MahjaniB. SloofmanL. SmirnovA.N. BarbosaM. BetancurC. BruscoA. ChungB.H.Y. CookE.H. CuccaroM.L. DomeniciE. FerreroG.B. GargusJ.J. HermanG.E. Hertz-PicciottoI. MacielP. ManoachD.S. Passos-BuenoM.R. PersicoA.M. RenieriA. SutcliffeJ.S. TassoneF. TrabettiE. CamposG. CardaropoliS. CarliD. ChanM.C.Y. FalleriniC. GiorgioE. GirardiA.C. Hansen-KissE. LeeS.L. LintasC. LudenaY. NguyenR. PavinatoL. Pericak-VanceM. PessahI.N. SchmidtR.J. SmithM. CostaC.I.S. TrajkovaS. WangJ.Y.T. YuM.H.C. AleksicB. ArtomovM. BenettiE. Biscaldi-SchaferM. BørglumA.D. CarracedoA. ChiocchettiA.G. CoonH. DoanR.N. Fernández-PrietoM. FreitagC.M. GergesS. GuterS. HougaardD.M. HultmanC.M. JacobS. KaartinenM. KolevzonA. KushimaI. LehtimäkiT. RizzoC.L. MaltmanN. ManaraM. MeiriG. MenasheI. MillerJ. MinshewN. MosconiM. OzakiN. PalotieA. ParelladaM. PuuraK. ReichenbergA. SandinS. SchererS.W. SchlittS. SchmittL. Schneider-MommK. SiperP.M. SurenP. SweeneyJ.A. TeufelK. del Pilar TrellesM. WeissL.A. YuenR. CutlerD.J. De RubeisS. BuxbaumJ.D. DalyM.J. DevlinB. RoederK. SandersS.J. TalkowskiM.E. Autism Sequencing Consortium (ASC) Broad Institute Center for Common Disease Genomics (Broad-CCDG) iPSYCH-BROAD Consortium Rare coding variation provides insight into the genetic architecture and phenotypic context of autism.Nat. Genet.20225491320133110.1038/s41588‑022‑01104‑035982160
    [Google Scholar]
  8. ZhouX. FelicianoP. ShuC. WangT. AstrovskayaI. HallJ.B. ObiajuluJ.U. WrightJ.R. MuraliS.C. XuS.X. BrueggemanL. ThomasT.R. MarchenkoO. FleischC. BarnsS.D. SnyderL.G. HanB. ChangT.S. TurnerT.N. HarveyW.T. NishidaA. O’RoakB.J. GeschwindD.H. AdamsA. AmatyaA. AndrusA. BasharA. BermanA. BrownA. CambaA. GulsrudA.C. KrentzA.D. ShockleeA.D. EslerA. LashA.E. FantaA. FatemiA. FishA. GolerA. GonzalezA. GutierrezA.Jr HardanA. HessA. HirshmanA. HolbrookA. AceA.J. GriswoldA.J. GruberA.J. JarrattA. JelinekA. JorgensonA. JuarezA.P. KimA. KitaygorodskyA. LuoA. RachubinskiA.L. WainerA.L. DanielsA.M. MankarA. MasonA. MiceliA. MillikenA. Morales-LaraA. StephensA.N. NguyenA.N. NicholsonA. PaolicelliA.M. McKenzieA.P. GuptaA.R. RavenA. RheaA. SimonA. SoucyA. SwansonA. SziklayA. TallbullA. TesngA. WardA. ZickA. HilscherB.A. BellB. EnrightB. RobertsonB.E. HaufB. JensenB. LobisiB. VernoiaB.M. SchwindB. VanMetreB. EricksonC.A. SullivanC.A.W. AlbrightC. AngloC. BuescherC. BradleyC.C. Campo-SoriaC. CohenC. ColombiC. DigginsC. EdmonsonC. RiceC.E. FasslerC. GrayC. GunterC. WalstonC.H. KlaimanC. LeonczykC. MartinC.L. LordC. TaylorC.M. McCarthyC. Ochoa-LubinoffC. OrtizC. PierreC. RosenbergC.R. RigbyC. RocheC. ShrierC. SmithC. Van WadeC. White-LehmanC. ZaroC. ZhaC. BentleyD. CorreaD. SarverD.E. GiancarlaD. AmaralD.G. HowesD. IstephanousD. CouryD.L. LiD. LimonD. LimpocoD. PhillipsD. RambeckD. RojasD. SrishylaD. StampsD. MontesD.V. ChoD. ChoD. FoxE.A. BahlE. Berry-KravisE. BlankE. BowerE. BrooksE. CourchesneE. DillonE. DoyleE. GivenE. GrimesE. JonesE. FombonneE.J. KryszakE. WodkaE.L. LamarcheE. LampertE. ButterE.M. O’ConnorE. OcampoE. OrrickE. PerezE. RuzzoE. SingerE. MatthewsE.T. PedapatiE.V. FazalF. MillerF.K. AberbachG. BaraghoshiG. DuhonG. HooksG. FischerG.J. MarzanoG. SchoonoverG. DichterG.S. TiedeG. CottrellH. KaplanH.E. GhinaH. HutterH. KoeneH. SchneiderH.L. LechniakH. LiH. MorottiH. QiH. RichardsonH. ZaydensH. ZhangH. ZhaoH. ArriagaI. TsoI.F. AcampadoJ. GerdtsJ.A. BeesonJ. BrownJ. ComitreJ. CordovaJ. DelaporteJ. CubellsJ.F. HarrisJ.F. GongJ. GundersonJ. HernandezJ. JudgeJ. JurayjJ. LawJ.K. ManoharanJ. MontezumaJ. NeelyJ. OrobioJ. PandeyJ. PivenJ. PolancoJ. PoliteJ. RosewaterJ. ScherrJ. SutcliffeJ.S. McCrackenJ.T. TjernagelJ. ToroneyJ. Veenstra-VanderweeleJ. WangJ. AhlersK. SchweersK.A. BaalmanK. BeardK. CallahanK. ColemanK. FitzgeraldK.D. DentK. DiehlK. GonringK. PawlowskiK.G. HirstK. PierceK.L. MurilloK. MurrayK. NowellK. O’BrienK. PamaK. RealK. SingerK. SmithK. StephensonK. TsaiK. AbbedutoL. CartnerL.A. BeesonL. CarpenterL. CastenL. CoppolaL. CordieroL. DeMarcoL. PachecoL.D. CorzoL.F. ShulmanL.H. WalshL.K. LesherL. HerbertL.M. ProckL.M. MallochL. MannL. GrosvenorL.P. SimonL. SooryaL.V. WasserburgL. YehL. Huang-StormsL.Y. AlessandriM. PoppM.A. BaerM. BeckwithM. CasseusM. CoughlinM. CurrinM. CutriM. MallardiM.D. DuBoisM. DunlevyM. ButlerM.E. FrayneM. GwynetteM.L.F. GhaziuddinM. HaleyM. HeymanM. HojloM. JordyM. MorrierM.J. KowandaM. KozaM. LopezM. McTaggartM. NorrisM. HaleM.N. O’NeilM. PrintenM. RayosM. SabihaM. SahinM. SarrisM. ShirM. SiegelM. SteeleM. SweeneyM. TafollaM. Valicenti-McDermottM. VerdiM. DennisM.Y. AlvarezN. BardettN. BergerN. CalderonN. DeciusN. GonzalezN. HarrisN. LawsonN. LillieN. LoN. LongN. Russo-PonsaranN.M. MadiN. MccoyN. NagpalN. RodriguezN. RussellN. ShahN. TakahashiN. TargaliaN. NewmanO. OusleyO.Y. HeydemannP. ManningP. CarboneP.S. BernierR.A. GordonR.A. ShafferR.C. AnnettR.D. ClarkR.D. JouR. LandaR.J. EarlR.K. LiboveR. MariniR. DoanR.N. Goin-KochelR.P. RanaR. RemingtonR. ShikovR. SchultzR.T. AberleS. BirdwellS. BolandS. BookerS. CarpenterS. ChintalapalliS. ConyersS. D’AmbrosiS. EldredS. FrancisS. GanesanS. HepburnS. HornerS. HunterS. BrewsterS.J. LeeS.J. JacobS. JeanS. HyunS. KramerS. FriedmanS.L. LiconaS. LittlefieldS. KanneS.M. MastelS. MathaiS. MelnykS. MichaelsS. MohiuddinS. PalmerS. PlateS. QiuS. RandallS. SandhuS. SantangeloS. ShahS. SkinnerS. ThompsonS. WhiteS. WhiteS. XiaoS. XuS. XuS. ChenT. GreeneT. HoT. IbanezT. KoomarT. PramparoT. RutterT. ShaikhT. TranT. YuT.W. GalbraithV. GazestaniV. MyersV.J. RanganathanV. SinghV. WeaverW.C. CaIW. ChinW. YangW.S. ChoiY.B. WarrenZ.E. MichaelsonJ.J. VolfovskyN. EichlerE.E. ShenY. ChungW.K. SPARK Consortium Integrating de novo and inherited variants in 42,607 autism cases identifies mutations in new moderate-risk genes.Nat. Genet.20225491305131910.1038/s41588‑022‑01148‑235982159
    [Google Scholar]
  9. CaiQ. HosokawaT. ZengM. HayashiY. ZhangM. Shank3 binds to and stabilizes the active form of Rap1 and HRas GTPases via Its NTD-ANK tandem with distinct mechanisms.Structure202028329030010.1016/j.str.2019.11.018
    [Google Scholar]
  10. Hassani NiaF. WoikeD. MartensV. KlüssendorfM. HönckH.H. HarderS. KreienkampH.J. Targeting of δ-catenin to postsynaptic sites through interaction with the Shank3 N-terminus.Mol. Autism20201118510.1186/s13229‑020‑00385‑833115499
    [Google Scholar]
  11. ChiuS.L. ChenC.M. HuganirR.L. ICA69 regulates activity-dependent synaptic strengthening and learning and memory.Front. Mol. Neurosci.202316117143210.3389/fnmol.2023.117143237251649
    [Google Scholar]
  12. MacGillavryH.D. KerrJ.M. KassnerJ. FrostN.A. BlanpiedT.A. Shank–cortactin interactions control actin dynamics to maintain flexibility of neuronal spines and synapses.Eur. J. Neurosci.201643217919310.1111/ejn.1312926547831
    [Google Scholar]
  13. Hassani NiaF. KreienkampH.J. Functional relevance of missense mutations affecting the N-terminal part of Shank3 found in autistic patients.Front. Mol. Neurosci.20181126810.3389/fnmol.2018.0026830131675
    [Google Scholar]
  14. DurandC.M. BetancurC. BoeckersT.M. BockmannJ. ChasteP. FauchereauF. NygrenG. RastamM. GillbergI.C. AnckarsäterH. SponheimE. Goubran-BotrosH. DelormeR. ChabaneN. Mouren-SimeoniM.C. de MasP. BiethE. RogéB. HéronD. BurglenL. GillbergC. LeboyerM. BourgeronT. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders.Nat. Genet.2007391252710.1038/ng193317173049
    [Google Scholar]
  15. LiljaJ. ZacharchenkoT. GeorgiadouM. JacquemetG. FranceschiN.D. PeuhuE. HamidiH. PouwelsJ. MartensV. NiaF.H. BeifussM. BoeckersT. KreienkampH.J. BarsukovI.L. IvaskaJ. SHANK proteins limit integrin activation by directly interacting with Rap1 and R-Ras.Nat. Cell Biol.201719429230510.1038/ncb348728263956
    [Google Scholar]
  16. SalomaaS. I. MiihkinenM. KremnevaE. PaateroI. LiljaJ. JacquemetG. VuorioJ. AntenucciL. KoganK. NiaF. H. SHANK3 conformation regulates direct actin binding and crosstalk with Rap1 signaling.Curr. Biol.2021312249564970
    [Google Scholar]
  17. WoikeD. WangE. TibbeD. Hassani NiaF. FaillaA.V. KibækM. OvergårdT.M. LarsenM.J. FagerbergC.R. BarsukovI. KreienkampH.J. Mutations affecting the N-terminal domains of SHANK3 point to different pathomechanisms in neurodevelopmental disorders.Sci. Rep.202212190210.1038/s41598‑021‑04723‑535042901
    [Google Scholar]
  18. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.23510592235
    [Google Scholar]
  19. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera—A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.2008415264254
    [Google Scholar]
  20. HenriquesJ. CragnellC. SkepöM. Molecular dynamics simulations of intrinsically disordered proteins: force field evaluation and comparison with experiment.J. Chem. Theory Comput.20151173420343110.1021/ct501178z26575776
    [Google Scholar]
  21. JorgensenW.L. ChandrasekharJ. MaduraJ.D. ImpeyR.W. KleinM.L. Comparison of simple potential functions for simulating liquid water.J. Chem. Phys.198379292693510.1063/1.445869
    [Google Scholar]
  22. Salomon-FerrerR. GötzA.W. PooleD. Le GrandS. WalkerR.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald.J. Chem. Theory Comput.2013993878388810.1021/ct400314y26592383
    [Google Scholar]
  23. RyckaertJ.P. CiccottiG. BerendsenH.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes.J. Comput. Phys.197723332734110.1016/0021‑9991(77)90098‑5
    [Google Scholar]
  24. BerendsenH.J.C. PostmaJ.P.M. van GunsterenW.F. DiNolaA. HaakJ.R. Molecular dynamics with coupling to an external bath.J. Chem. Phys.19848183684369010.1063/1.448118
    [Google Scholar]
  25. RomoT.D. GrossfieldA. Block covariance overlap method and convergence in molecular dynamics simulation.J. Chem. Theory Comput.2011782464247210.1021/ct200275426606620
    [Google Scholar]
  26. KabschW. SanderC. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features.Biopolymers198322122577263710.1002/bip.3602212116667333
    [Google Scholar]
  27. KriegerE. KoraimannG. VriendG. Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field.Proteins200247339340210.1002/prot.1010411948792
    [Google Scholar]
  28. WoikeD. TibbeD. Hassani NiaF. MartensV. WangE. BarsukovI. KreienkampH-J. The Shank/ProSAP N-terminal (SPN) domain of Shank3 regulates targeting to postsynaptic sites and postsynaptic signalling.bioRxiv202310.1101/2023.04.28.538665
    [Google Scholar]
  29. YiF. DankoT. BotelhoS.C. PatzkeC. PakC. WernigM. SüdhofT.C. Autism-associated SHANK3 haploinsufficiency causes I h channelopathy in human neurons.Science20163526286aaf266910.1126/science.aaf266926966193
    [Google Scholar]
  30. MamezaM.G. DvoretskovaE. BamannM. HönckH.H. GülerT. BoeckersT.M. SchoenM. VerpelliC. SalaC. BarsukovI. DityatevA. KreienkampH.J. SHANK3 gene mutations associated with autism facilitate ligand binding to the Shank3 ankyrin repeat region.J. Biol. Chem.201328837266972670810.1074/jbc.M112.42474723897824
    [Google Scholar]
  31. CaiQ. ZengM. WuX. WuH. ZhanY. TianR. ZhangM. CaMKIIα-driven, phosphatase-checked postsynaptic plasticity via phase separation.Cell Res.2021311375110.1038/s41422‑020‑00439‑933235361
    [Google Scholar]
/content/journals/cp/10.2174/0115701646301703240730054408
Loading
/content/journals/cp/10.2174/0115701646301703240730054408
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test